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Preface

This is a book about algorithms for computing with modular forms that started
as a series of notes for a graduate course at Harvard University in 2004. This
book is meant to answer the question “How do you compute spaces of modular
forms”, by both providing a clear description of the specific algorithms that are
used and explaining how to apply them using SAGE [SJ05].

I have spent many years trying to find good practical ways to compute
with classical modular forms for congruence subgroups of SL2(Z), and have
implemented most of these algorithms several times, first in C++ [Ste99], then
in MAGMA [BCP97], and most recently as part of SAGE. Much of this work
has involved turning formulas and constructions burried in obscure research
papers into precise computational recipes, then testing these in many cases and
eliminating subtle inaccuracies (published theorems sometimes contain small
mistakes that appear magnified when implemented and run on a computer).
The goal of this book is to explain some of what I have learned along the way.

The author is aware of no other books on computing with modular forms,
the closest work being Cremona’s book [Cre97a], which is about computing with
elliptic curves, and Cohen’s book [Coh93] about algebraic number theory. The
field is not yet mature, and there are missing details and potential improvements
to many of the algorithms, which you the reader might fill in, and which would
be greatly appreciated by other mathematicians.

This book focuses on how best to compute the spaces Mk(N, ε) of modular
forms, where k ≥ 2 is an integer and ε is a Dirichlet character modulo N . I
will spend the most effort explaining the algorithms that appear so far to be
the best (in practice!) for such computations. I will not discuss computing half-
integral weight forms, weight one forms, forms for non-congruence subgroups
or groups other than GL2, Hilbert and Siegel modular forms, trace formulas,
p-adic modular forms, and modular abelian varieties, all of which are topics for
another book.

The reader is not assumed to have prior exposure to modular forms, but
should be familiar with abstract algebra, basic algebraic number theory, Rie-
mann surfaces, and complex analysis.

Acknowledgement. Kevin Buzzard made many helpful remarks which were
helpful in finding the algorithms in Chapter 4. Noam Elkies made many re-
marks about chapters 1 and 2. The students in the Harvard course made help-
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ful remark; in particular, Abhinav Kumar made observations about computing
widths of cusps, Thomas James Barnet-Lamb about how to represent Dirichlet
characters, and Tseno V. Tselkov, Jennifer Balakrishnan and Jesse Kass made
other remarks.

Parts of Chapter 1 follow [Ser73, Ch. VII] closely, though we adjust the
notation, definitions, and order of presentation to be consistent with the rest of
this book. (For example, Serre writes 2k for the weight instead of k.)

Mark Watkins and Lynn Walling made many helpful comments on Chap-
ter 3.

Grant Information. This material is based upon work supported by the
National Science Foundation under Grant No. 0400386.



Chapter 1

Modular Forms

This chapter introduces modular forms, which are the central object of study in
this book. We first introduce the upper half plane and the group SL2(Z), then
recall some definitions from complex analysis. Next we define modular forms of
level 1 followed by modular forms of general level.

This chapter assumes familiarity with basic number theory, group theory,
and complex analysis.

1.1 Basic Definitions

Modular forms are certain types of functions on the complex upper half plane

h = {z ∈ C : Im(z) > 0}.

The objects we will consider arise from the modular group SL2(Z) of two-by-two
integer matrices with determinant equal to one. This group

SL2(R) =

{(

a b
c d

)

: ad− bc = 1, and a, b, c, d ∈ R

}

acts on h via linear fractional transformations, as follows. If γ =
(

a b
c d

)

∈ SL2(R)
and z ∈ h, then (see Exercise 1.1)

γ(z) =
az + b

cz + d
∈ h. (1.1.1)

Definition 1.1.1 (Modular Group). The modular group is the subgroup
SL2(Z) of SL2(R) of matrices with integer entries. Thus SL2(Z) is the group of
all matrices

(

a b
c d

)

with a, b, c, d ∈ Z and ad− bc = 1.

For example, the matrices

S =

(

0 −1
1 0

)

and T =

(

1 1
0 1

)

(1.1.2)

9



10 CHAPTER 1. MODULAR FORMS

are both elements of SL2(Z); the matrix S defines the function z 7→ −1/z, and T
the function z 7→ z + 1.

Theorem 1.1.2. The group SL2(Z) is generated by S and T .

Proof. See e.g. [Ser73, §VII.1], which uses the fundamental domain F consisting
of all elements of h that satisfy |z| ≥ 1 and Re(z) ≤ 1/2.

In SAGE we compute the group SL2(Z) and its generators as follows:

sage: G = SL(2,Z)

sage: print G

The modular group SL(2,Z)

sage: S, T = G.gens()

sage: S

[ 0 -1]

[ 1 0]

sage: T

[1 1]

[0 1]

Definition 1.1.3 (Holomorphic and Meromorphic). Let R be an open
subset of C. A function f : R→ C is holomorphic if f is complex differentiable
at every point z ∈ R, i.e., for each z ∈ R the limit limh→0(f(z + h) − f(z))/h
exists, where h may approach 0 along any path. The function f : R→ C∪{∞}
is meromorphic if it is holomorphic except (possibly) at a discrete set S of points
in R, and at each α ∈ S there is a positive integer n such that (z − α)nf(z) is
holomorphic at α.

The function f(z) = ez is a holomorphic function on h (in fact on all of C).
The function 1/(z − i) is meromorphic on h, and fails to be analytic at i.

Modular forms are holomorphic functions on h that transform in a particular
way under a subgroup of SL2(Z). Before definining general modular forms, we
define modular forms of level 1.

1.2 Modular Forms of Level 1

Definition 1.2.1 (Weakly Modular Function). A weakly modular function
of weight k ∈ Z is a meromorphic function f on h such that for all γ =

(

a b
c d

)

∈
SL2(Z) and all z ∈ h we have

f(z) = (cz + d)−kf(γ(z)). (1.2.1)

The constant functions are weakly modular of weight 0. There are no nonzero
weakly modular functions of odd weight (see Exercise 1.4), and it is by no means
obvious that there are any weakly modular functions of even weight k ≥ 2. The
product of two weakly modular functions of weights k1 and k2 is a weakly
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modular function of weight k1 + k2 (see Exercise 1.3), so once we find some
nonconstant weakly modular functions, we’ll find many of them.

When k is even (1.2.1) has a possibly more conceptual interpretation; namely
(1.2.1) is the same as

f(γ(z))d(γ(z))k/2 = f(z)dzk/2.

Thus (1.2.1) simply says that the weight k “differential form” f(z)dzk/2 is fixed
under the action of every element of SL2(Z).

Since SL2(Z) is generated by the matrices S and T of (1.1.2), to show that
a meromorphic function f on h is a weakly modular function all we have to do
is show that for all z ∈ h we have

f(z + 1) = f(z) and f(−1/z) = zkf(z). (1.2.2)

Suppose that f is a weakly modular function of some weight k. Then f
might have a Fourier expansion, which we try to obtain as follows. Let q =
q(z) = e2πiz, which we view as a holomorphic function C∪∞ → D, where D is
the closed unit disk. Let D′ be the punctured unit disk, i.e., D with the origin
removed, and note that q : C → D′. By (1.2.2) we have f(z + 1) = f(z), so
there is a set-theoretic map F : D′ → C such that for every z ∈ h we have
F (q(z)) = f(z). This function F is thus a complex-valued function on the open
unit disk. It may or may not be well behaved at 0.

Suppose that F is well-behaved at 0, namely that for some m ∈ Z and all q
in a neighborhood of 0 we have the equality

F (q) =

∞
∑

n=m

anq
n.

If this is the case, we say that f is meromorphic at ∞. If, moreover, m ≥ 0,
then we say that f is holomorphic at ∞.

Definition 1.2.2 (Modular Function). A modular function of weight k is a
weakly modular function of weight k that is meromorphic at ∞.

Definition 1.2.3 (Modular Form). A modular form of weight k (and level
1) is a modular function of weight k that is holomorphic on h and at ∞.

If f is a modular form, then there are complex numbers an such that for all
z ∈ h,

f(z) =

∞
∑

n=0

anq
n =

∞
∑

n=0

ane
2πinz. (1.2.3)

Proposition 1.2.4. The above series converges for all z ∈ h.

Proof. n The function f(q) is holomorphic on D, so its Taylor series converges
absolutely in D. See also [Ser73, §VII.4] for an explicit bound on the |an|.

We set f(∞) = a0, since q2πiz → 0 as z → i∞, and the value of f at ∞
should be the value of F at 0, which is a0 from the power series.

Definition 1.2.5 (Cusp Form). A cusp form of weight k (and level 1) is a
modular form of weight k such that f(∞) = 0, i.e., a0 = 0.
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1.3 Modular Forms of Any Level

We next define spaces of modular forms of arbitrary level. For example, when
k = 2 these are closely related to elliptic curves and abelian varieties.

A congruence subgroup of SL2(Z) is any subgroup that contains

Γ(N) = ker(SL2(Z) → SL2(Z/NZ))

for some N . The smallest such N is the level of Γ. For example,

Γ1(N) =

{(

a b
c d

)

∈ SL2(Z) :

(

a b
c d

)

≡
(

1 ∗
0 1

)

(mod N)

}

and

Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) :

(

a b
c d

)

≡
(

∗ ∗
0 ∗

)

(mod N)

}

are congruence subgroups of level N .
Let k be an integer. Define the weight k right action of GL2(Q) on the set

of functions f : h → C as follows. If γ =
(

a b
c d

)

∈ GL2(Q), let

f |[γ]k = det(γ)k−1(cz + d)−kf(γ(z)). (1.3.1)

Proposition 1.3.1. The action f 7→ f |[γ]k is a right action of GL2(Z) on the
set of all functions f : h → C; in particular,

f |[γ1γ2]k = (f |[γ1]k)|[γ2]k,

Proof. See Exercise 1.7.

Definition 1.3.2 (Weakly Modular Function). A weakly modular function
of weight k for a congruence subgroup Γ is a meromorphic function f : h → C
such that f |[γ]k = f for all γ ∈ Γ.

A central object in the theory of modular forms (and modular symbols) is
the set of all cusps

P1(Q) = Q ∪ {∞}.
The set of cusps for a congruence subgroup Γ is the set C(Γ) of orbits of P1(Q)
under the action of Γ. (We will often identify elements of C(Γ) with a repre-
sentative element from the orbit.) For example, if Γ = SL2(Z) there is exactly
one orbit.

Lemma 1.3.3. For any cusps α, β ∈ P1(Q) there exists γ ∈ SL2(Z) such that
γ(α) = β.

Proof. This is Exercise 1.8.

Proposition 1.3.4. For any congruence subgroup Γ, the set C(Γ) of cusps is
finite.
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In order to define modular forms for general congruence subgroups we need
to make sense of what it means for a function to be holomorphic on the extended
upper halfplane

h∗ = h ∪ P1(Q).

See [Shi94, §1.3–1.5] for a detailed description of the right topology to con-
sider on h∗, so that h∗ is a compactification of h. In particular, a basis of
neighborhoods for α ∈ Q is given by the sets {α} ∪ D, where D is a disc in h

that is tangent to the real line at α.
Recall from Section 1.2 that a weakly modular function f on SL2(Z) is

holomorphic at ∞ if its q-expansion is of the form
∑∞
n=0 anq

n.
In order to make sense of holomorphicity of a weakly modular function f for

Γ at any α ∈ Q, we first prove a lemma.

Lemma 1.3.5. If f : h → C is a weakly modular function of weight k for a
congruence subgroup Γ, and δ ∈ SL2(Z), then f |[δ]k is a weakly modular function
for δ−1Γδ.

Proof. If s = δ−1γδ ∈ δ−1Γδ, then

(f |[δ]k)|[s]k = f |[δs]k = f |[δδ−1γδ]k = f |[γδ]k = f |[δ]k.

Fix a weight k weakly modular function f for some congruence subgroup Γ,
and suppose α ∈ Q. In Section 1.2 we constructed the q-expansion of f by using

that f(z) = f(z + 1), which held since T =

(

1 1
0 1

)

∈ SL2(Z). Unfortunately,

there are congruence subgroups Γ such that T 6∈ Γ. Moreover, even if we are
interested only in modular forms for Γ1(N), where we have T ∈ Γ1(N) for
all N , we have to consider q-expansions at infinity for modular forms on groups

δ−1Γ1(N)δ, and these need not contain T . Fortunately, TN =

(

1 N
0 1

)

∈ Γ(N),

so a congruence subgroup of level N contains TN . Thus for our f we have
f(z + h) = f(z) for some positive integer h, and again when f is meromorphic
at infinity we obtain a Fourier expansion

f(z) =

∞
∑

n=m

anq
n/N , (1.3.2)

but instead it is in powers of the function q1/N = e2πiz/N . We say that f is
holomorphic at ∞ if in (1.3.2) we have m ≥ 0.

What about the other cusps α ∈ P1(Q)? By Lemma 1.3.3 there is a γ ∈
SL2(Z) such that γ(∞) = α. We declare f to be holomorphic at the cusp α if
the weakly modular function f |[γ]k is holomorphic at ∞.

Definition 1.3.6 (Modular Form). A modular form of integer weight k for
a congruence subgroup Γ is a weakly modular function f : h∗ → C that is
holomorphic on h∗.
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Proposition 1.3.7. A weakly modular function f of weight k for Γ is holo-
morphic at every element of P1(Q) if is holomorphic at a set of representative
elements for C(Γ).

Proof. Let c1, . . . , cn ∈ P1(Q) be representatives for the set of cusps for Γ. If
α ∈ P1(Q) then there is γ ∈ Γ such that α = γ(ci) for some i. By hypothesis
f is holomorphic at ci, so if δ ∈ SL2(Z) is such that δ(∞) = ci, then f |[δ]k is
holomorphic at ∞. Since f is a weakly modular function,

f |[δ]k = (f |[γ]k)|[δ]k = f |[γδ]k. (1.3.3)

But γ(δ(∞)) = γ(ci) = α, so (1.3.3) implies that f is holomorphic at α.

1.4 Exercises

1.1 Suppose γ =
(

a b
c d

)

is a matrix with real entries and positive determinant.
Prove that if z ∈ C is a complex number with positive imaginary part,
then the imaginary part of γ(z) = (az + b)/(cz + d) is also positive.

1.2 (a) Prove that a polynomial is an analytic function on C.

(b) Prove that a rational function (quotient of two polynomials) is a
meromorphic function on C.

1.3 Suppose f and g are weakly modular functions with f 6= 0.

(a) Prove that the product fg is a weakly modular function.

(b) Prove that 1/f is a weakly modular function.

(c) If f and g are modular functions, show that fg is a modular function.

(d) If f and g are modular forms, show that fg is a modular form.

1.4 Suppose f is a weakly modular function of odd weight k. Show that f = 0.

1.5 Prove that SL2(Z) = Γ0(1) = Γ1(1) = Γ(1).

1.6 (a) Prove that Γ1(N) is a group.

(b) Prove that Γ1(N) has finite index in SL2(Z) (Hint: it contains the
kernel of the homomorphism SL2(Z) → SL2(Z/NZ).)

(c) Prove that Γ0(N) has finite index in SL2(Z).

1.7 Let k be an integer, and for any function f : h∗ → C and γ =
(

a b
c d

)

∈
GL2(Q), set f |[γ]k(z) = (cz + d)−kf(γ(z)). Prove that if γ1, γ2 ∈ SL2(Z),
then for all z ∈ h∗ we have

f |[γ1γ2]k(z) = ((f |[γ1]k)|[γ2]k)(z).

1.8 Prove that for any α, β ∈ P1(Q), there exists γ ∈ SL2(Z) such that γ(α) =
β.



Chapter 2

Modular Forms of Level

One

In this chapter we study in more detail the structure of level 1 modular forms.
We assume that you know some complex analysis (e.g., the residue theorem)

and linear algebra.

2.1 Examples of Modular Forms of Level 1

In this section you will finally see some examples of modular forms of level 1!
We will first introduce the Eisenstein series, one of each weight, then define ∆,
which is a cusp form of weight 12. In Section 2.2 we will prove the structure
theorem, which says that using addition and multiplication of these forms, we
can generate all modular forms of level 1.

For an even integer k ≥ 4, the non-normalized weight k Eisenstein series is

Gk(z) =

∗
∑

m,n∈Z

1

(mz + n)k
,

where for a given z, the sum is over all m,n ∈ Z such that mz + n 6= 0.

Proposition 2.1.1. The function Gk(z) is a modular form of weight k, i.e.,
Gk ∈Mk(SL2(Z)).

Proof. See [Ser73, § VII.2.3] for a proof that Gk(z) defines a holomorphic func-
tion on h∗. To see that Gk is modular, observe that

Gk(z + 1) =
∗
∑ 1

(m(z + 1) + n)k
=

∗
∑ 1

(mz + (n+m))k
=

∗
∑ 1

(mz + n)k
,

and

Gk(−1/z) =

∗
∑ 1

(−m/z + n)k
=

∗
∑ zk

(−m+ nz)k
= zk

∗
∑ 1

(mz + n)k
= zkGk(z).

15
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Proposition 2.1.2. Gk(∞) = 2ζ(k), where ζ is the Riemann zeta function.

Proof. Taking the limit as z → i∞ in the definition of Gk(z), we obtain
∑∗
n∈Z

1
nk , since the terms involving z all go to 0 as z 7→ i∞. This sum is

twice ζ(k) =
∑

n≥1
1
nk .

For example,

G4(∞) = 2ζ(4) =
1

32 · 5π
4

and

G6(∞) = 2ζ(6) =
2

33 · 5 · 7π
6.

2.1.1 The Cusp Form ∆

Suppose E = C/Λ is an elliptic curve over C, viewed as a quotient of C by a
lattice Λ = Zω1 + Zω2, with ω1/ω2 ∈ h. Then

℘Λ(u) =
1

u2
+

∞
∑

k=4, (k even)

(k − 1)Gk(ω1/ω2)u
k−2,

and
(℘′)2 = 4℘3 − 60G4(ω1/ω2)℘− 140G6(ω1/ω2).

The discriminant of the cubic 4x3−60G4(ω1/ω2)x−140G6(ω1/ω2) is 16∆(ω1/ω2),
where

∆ = (60G4)
3 − 27(140G6)

2

is a cusp form of weight 12.

Lemma 2.1.3. The cusp form ∆ has a 0 only at ∞.

Proof. Let ω1, ω2 be as above. Since E is an elliptic curve, ∆(ω1/ω2) 6= 0.

2.1.2 Fourier Expansions of Eisenstein Series

Recall from (1.2.3) that elements f of Mk(SL2(Z)) can be expressed as formal
power series in terms of q(z) = e2πiz, and that this expansion is called the
Fourier expansion of f . The following proposition gives the Fourier expansion
of the Eisenstein series Gk(z).

Definition 2.1.4 (Sigma). For any integer t ≥ 0 and any positive integer n,
let

σt(n) =
∑

1≤d|n
dt

be the sum of the tth powers of the positive divisors of n. Also, let σ(n) = σ0(n).
For example, if p is prime then σt(p) = 1 + pt.
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Proposition 2.1.5. For every even integer k ≥ 4, we have

Gk(z) = 2ζ(k) + 2 · (2πi)k

(k − 1)!
·

∞
∑

n=1

σk−1(n)qn.

Proof. See [Ser73, §VII.4], which uses a series of clever manipulations of series,
starting with the identity

π cot(πz) =
1

z
+

∞
∑

m=1

(

1

z +m
+

1

z −m

)

.

From a computational point of view, the q-expansion for Gk from Propo-
sition 2.1.5 is unsatisfactory, because it involves transcendental numbers. To
understand more clearly what is going on, we introduce the Bernoulli numbers
Bn for n ≥ 0 defined by the following equality of formal power series:

x

ex − 1
=

∞
∑

n=0

Bn
xn

n!
. (2.1.1)

Expanding the power series on the left we have

x

ex − 1
= 1 − x

2
+
x2

12
− x4

720
+

x6

30240
− x8

1209600
+ · · ·

As this expansion suggests, the Bernoulli numbers Bn with n > 1 odd are 0 (see
Exercise 1.6). Expanding the series further, we obtain the following table:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
,

B10 =
5

66
, B12 = − 691

2730
, B14 =

7

6
, B16 = −3617

510
, B18 =

43867

798
,

B20 = −174611

330
, B22 =

854513

138
, B24 = −236364091

2730
, B26 =

8553103

6
.

Use the bernoulli command to compute Bernoulli numbers in SAGE.

sage: bernoulli(12)

-691/2730

sage: bernoulli(50)

495057205241079648212477525/66

For us, the significance of the Bernoulli numbers is their connection with
values of ζ at positive even integers.

Proposition 2.1.6. If k ≥ 2 is an even integer, then

ζ(k) = − (2πi)k

2 · k! ·Bk.
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Proof. The proof in [Ser73, §VII.4] involves manipulating a power series expan-
sion for z cot(z).

Definition 2.1.7 (Normalized Eisenstein Series). The normalized Eisen-
stein series of even weight k ≥ 4 is

Ek =
(k − 1)!

2 · (2πi)k ·Gk

Combining Propositions 2.1.5 and 2.1.6 we see that

Ek = −Bk
2k

+ q +

∞
∑

n=2

σk−1(n)qn. (2.1.2)

It is thus now simple to explicitly write down Eisenstein series (see Exercise 2.1).

Warning 2.1.8. Our series Ek is normalized so that the coefficient of q is 1,
but often in the literature Ek is normalized so that the constant coefficient is 1.
We use the normalization with the coefficient of q equal to 1, because then the
eigenvalue of the nth Hecke operator (see Section 2.4) is the coefficient of qn.
Our normalization is also convenient when considering congruences between
cusp forms and Eisenstein series.

2.2 Structure Theorem For Level 1 Modular Forms

In this section we describe a structure theorem for modular forms of level 1.
If f is a nonzero meromorphic function on h and w ∈ h, let ordw(f) be the
largest integer n such that f/(w− z)n is holomorphic at w. If f =

∑∞
n=m anq

n

with am 6= 0, let ord∞(f) = m. We will use the following theorem to give a
presentation for the vector space of modular forms of weight k; this presentation
will allow us to obtain an algorithm to compute a basis for this space.

Let F be the subset of h of numbers z with |z| ≥ 1 and Re(z) ≤ 1/2. This
is the standard fundamental domain for SL2(Z).

Theorem 2.2.1 (Valence Formula). Suppose f ∈ Mk(SL2(Z)) is nonzero.
Then

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∗
∑

w∈D
ordw(f) =

k

12
,

where
∗
∑

w∈D
is the sum over elements of F other than i or ρ.

Proof. Serre proves this theorem in [Ser73, §VII.3] using the residue theorem
from complex analysis.



2.2. STRUCTURE THEOREM FOR LEVEL 1 MODULAR FORMS 19

Let Mk = Mk(SL2(Z)) denote the complex vector space of modular forms of
weight k for SL2(Z), and let Sk = Sk(SL2(Z)) denote the subspace of weight k
cusp forms for SL2(Z). We have an exact sequence

0 → Sk →Mk → C

that sends f ∈ Mk to f(∞). When k ≥ 4 is even, the space Mk contains the
Eisenstein series Gk and Gk(∞) = 2ζ(k) 6= 0, so the map Mk → C is surjective,
so the following sequence is exact:

0 → Sk →Mk → C → 0 (when k ≥ 4 is even)

Thus when k ≥ 4 is even dim(Sk) = dim(Mk) − 1 hence

Mk = Sk ⊕ CGk.

Proposition 2.2.2. For k < 0 and k = 2, we have Mk = 0.

Proof. Suppose f ∈Mk is nonzero yet k = 2 or k < 0. By Theorem 2.2.1,

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∗
∑

w∈D
ordw(f) =

k

12
≤ 1/6.

This is impossible because each quantity on the left-hand side is nonnegative so
whatever the sum is, it is too big (or 0, in which k = 0).

Theorem 2.2.3. Multiplication by ∆ defines an isomorphism Mk−12 → Sk.

Proof. (We follow [Ser73, §VII.3.2] closely.) We apply Theorem 2.2.1 to G4

and G6. If f = G4, then

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∗
∑

w∈D
ordw(f) =

4

12
=

1

3
,

with the ords all nonnegative, so ordρ(G4) = 1 and ordw(G4) = 0 for all w 6= ρ.
Likewise ordi(G6) = 1 and ordw(G6) = 0 for all w 6= i. Thus ∆(i) 6= 0, so ∆
is not identically 0 (this also follows from Lemma 2.1.3 above). Since ∆ has
weight 12 and ord∞(∆) ≥ 1, Theorem 2.2.1 implies that ∆ has a simple zero
at ∞ and does not vanish on h. Thus if f ∈ Sk and we let g = f/∆, then g
is holomorphic and satisfies the appropriate transformation formula, so g is a
modular form of weight k − 12.

Corollary 2.2.4. For k = 0, 4, 6, 8, 10, 14, the vector space Mk has dimension 1,
with basis 1, G4, G6, E8, E10, and E14, respectively, and Sk = 0.

Proof. Combining Proposition 2.2.2 with Theorem 2.2.3 we see that the spaces
Mk for k ≤ 10 can not have dimension bigger than 1, since then Mk′ 6= 0 for
some k′ < 0. Also M14 has dimension at most 1, since M2 has dimension 0.
Each of the indicated spaces of weight ≥ 4 contains the indicated Eisenstein
series, so has dimension 1, as claimed.
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Corollary 2.2.5. dimMk =











0 if k is odd,

bk/12c if k ≡ 2 (mod 12),

bk/12c + 1 if k 6≡ 2 (mod 12),

where bxc is

the biggest integer ≤ x.

Proof. As we have seen above, the formula is true when k ≤ 12. By Theo-
rem 2.2.3, the dimension increases by 1 when k is replaced by k + 12.

Theorem 2.2.6. The space Mk has as basis the modular forms Ga4G
b
6, where

a, b are all pairs of nonnegative integers such that 4a+ 6b = k.

Proof. We first prove by induction that the modular forms Ga4G
b
6 generate Mk,

the cases k ≤ 12 being clear (e.g., when k = 0 we have a = b = 0 and basis 1).
Choose some pair of integers a, b such that 4a + 6b = k (it is an elementary
exercise to show these exist). The form g = Ga4G

b
6 is not a cusp form, since it is

nonzero at ∞. Now suppose f ∈Mk is arbitrary. Since Mk = Sk ⊕ CGk, there
is α ∈ C such that f − αg ∈ Sk. Then by Theorem 2.2.3, there is h ∈ Mk−12

such that f − αg = ∆h. By induction, h is a polynomial in G4 and G6 of the
required type, and so is ∆, so f is as well.

Suppose there is a nontrivial linear relation between the Ga4G
b
6 for a given k.

By multiplying the linear relation by a suitable power of G4 and G6, we may
assume that that we have such a nontrivial relation with k ≡ 0 (mod 12). Now

divide the linear relation by G
k/12
6 to see that G3

4/G
2
6 satisfies a polynomial

with coefficients in C. Hence G3
4/G

2
6 is a root of a polynomial, hence a constant,

which is a contradiction since the q-expansion of G3
4/G

2
6 is not constant.

Algorithm 2.2.7 (Basis for Mk). Given integers n and k, this algorithm
computes a basis of q-expansions for the complex vector space Mk mod qn. The
q-expansions output by this algorithm have coefficients in Q.

1. [Simple Case] If k = 0 output the basis with just 1 in it, and terminate;
otherwise if k < 4 or k is odd, output the empty basis and terminate.

2. [Power Series] Compute E4 and E6 mod qn using the formula from (2.1.2)
and the definition (2.1.1) of Bernoulli numbers.

3. [Initialize] Set b = 0.

4. [Enumerate Basis] For each integer b between 0 and bk/6c, compute a =
(k−6b)/4. If a is an integer, compute and output the basis element Ea4E

b
6

mod qn. When we compute, e.g., Ea4 , do the computation by finding Em4
(mod qn) for each m ≤ a, and save these intermediate powers, so they can
be reused later, and likewise for powers of E6.

Proof. This is simply a translation of Theorem 2.2.6 into an algorithm, since
Ek is a nonzero scalar multiple of Gk. That the q-expansions have coefficients
in Q follows from (2.1.2).
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Example 2.2.8. We compute a basis for M24, which is the space with smallest
weight whose dimension is bigger than 1. It has as basis E6

4 , E3
4E

2
6 , and E4

6 ,
whose explicit expansions are

E6
4 =

1

191102976000000
+

1

132710400000
q +

203

44236800000
q2 + · · ·

E3
4E

2
6 =

1

3511517184000
− 1

12192768000
q − 377

4064256000
q2 + · · ·

E4
6 =

1

64524128256
− 1

32006016
q +

241

10668672
q2 + · · ·

In Section 2.3, we will discuss properties of the reduced row echelon form of
any basis for Mk, which have better properties than the above basis.

2.3 The Victor Miller Basis

Lemma 2.3.1 (Victor Miller). The space Sk has a basis f1, . . . , fd such that
if ai(fj) is the ith coefficient of fj, then ai(fj) = δi,j for i = 1, . . . , d. Moreover
the fj all lie in Z[[q]].

This is a straightforward construction involving E4, E6 and ∆. The following
proof very closely follows [Lan95, Ch. X, Thm. 4.4], which is in turn follows the
first lemma of Victor Miller’s thesis.

Proof. Let d = dimSk. Since B4 = −1/30 and B6 = 1/42, we note that

F4 = − 8

B4
· E4 = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + · · ·

and

F6 = − 12

B6
· E6 = 1 − 504q − 16632q2 − 122976q3 − 532728q4 + · · ·

have q-expansions in Z[[q]] with leading coefficient 1. Choose integers a, b ≥ 0
such that

4a+ 6b ≤ 14 and 4a+ 6b ≡ k (mod 12),

with a = b = 0 when k ≡ 0 (mod 12), and let

gj = ∆jF
2(d−j)+b
6 F a4 , for j = 1, . . . , d.

Then it is elementary to check that gj has weight k, and

aj(gj) = 1, and ai(gj) = 0 when i < j.

Hence the gj are linearly independent over C, and thus form a basis for Sk. Since
F4, F6, and ∆ are all in Z[[q]], so are the gj . The fi may then be constructed
from the gj by Gauss elimination. The coefficients of the resulting power series
lie in Z because each time we clear a column we use the power series gj whose
leading coefficient is 1 (so no denominators are introduced).
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Remark 2.3.2. The basis coming from Victor Miller’s lemma is canonical,
since it is just the reduced row echelon form of any basis. Also the integral
linear combinations are precisely the modular forms of level 1 with integral
q-expansion.

We extend the Victor Miller basis to all Mk by taking a multiple of Gk with
constant term 1, and subtracting off the fi from the Victor Miller basis so that
the coefficients of q, q2, . . . qd of the resulting expansion are 0. We call the extra
basis element f0.

Example 2.3.3. If k = 24, then d = 2. Choose a = b = 0, since k ≡ 0
(mod 12). Then

g1 = ∆F 2
6 = q − 1032q2 + 245196q3 + 10965568q4 + 60177390q5 − · · ·

and

g2 = ∆2 = q2 − 48q3 + 1080q4 − 15040q5 + · · ·
We let f2 = g2 and

f1 = g1 + 1032g2 = q + 195660q3 + 12080128q4 + 44656110q5 − · · · .

Example 2.3.4. When k = 36, the Victor Miller basis, including f0, is

f0 = 1 + 6218175600q4 + 15281788354560q5 + · · ·
f1 = q + 57093088q4 + 37927345230q5 + · · ·
f2 = q2 + 194184q4 + 7442432q5 + · · ·
f3 = q3 − 72q4 + 2484q5 + · · ·

Remark 2.3.5. If you wish to write f ∈ Mk as a polynomial in E4 and E6,
then it is wasteful to compute the Victor Miller basis. Instead, use the upper

triangular basis ∆jF
2(d−j)+a
6 F b4 , and match coefficients from q0 to qd.

2.4 Hecke Operators

For any positive integer n, let

Sn =

{(

a b
0 d

)

∈M2(Z) : a ≥ 1, ad = n, and 0 ≤ b < d

}

.

Note that the set Sn is in bijection with the set of sublattices of Z2 of index n,
where

(

a b
c d

)

corresponds to L = Z · (a, b) + Z · (0, d), as one can see, e.g., by
using Hermite normal form (the analogue of reduced row echelon form over Z).

Recall from (1.3.1) that if γ =
(

a b
c d

)

∈ GL2(Q), then

f |[γ]k = det(γ)k−1(cz + d)−kf(γ(z)).
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Definition 2.4.1 (Hecke Operator Tn,k). The nth Hecke operator Tn,k of
weight k is the operator on functions on h defined by

Tn,k(f) =
∑

γ∈Sn

f |[γ]k.

Remark 2.4.2. It would make more sense to write Tn,k on the right, e.g.,
f |Tn,k, since Tn,k is defined using a right group action. However, if n,m are
integers, then Tn,k and Tm,k commute (by Proposition 2.4.4 below), so it does
not matter whether we consider the Hecke operators as acting on the right or
left.

Proposition 2.4.3. If f is a weakly modular function of weight k, then so is
Tn,k(f), and if f is also a modular function, then so is Tn,k(f).

Proof. Suppose γ ∈ SL2(Z). Since γ induces an automorphism of Z2, the set

Sn · γ = {δγ : δ ∈ Sn}

is also in bijection with the sublattices of Z2 of index n. Then for each element
δγ ∈ Sn · γ, there is σ ∈ SL2(Z) such that σδγ ∈ Sn (the element σ transforms
δγ to Hermite normal form), and the set of elements σδγ is equal to Sn. Thus

Tn,k(f) =
∑

σδγ∈Sn

f |[σδγ]k =
∑

δ∈Sn

f |[δγ]k = Tn,k(f)|[γ]k.

Since f is holomorphic on h, each f |[γ]k is holomorphic on h. A finite sum
of holomorphic functions is holomorphic, so Tn,k(f) is holomorphic.

We will frequently drop k from the notation in Tn,k, since the weight k is
implicit in the modular function to which we apply the Hecke operator. Thus
we henceforth make the convention that if we write Tn(f) and f is modular,
then we mean Tn,k(f), where k is the weight of f .

Proposition 2.4.4. On weight k modular functions we have

Tmn = TnTm if (n,m) = 1, (2.4.1)

and
Tpn = Tpn−1Tp − pk−1Tpn−2 , if p is prime. (2.4.2)

Proof. Let L be a lattice of index mn. The quotient Z2/L is an abelian group
of order mn, and (m,n) = 1, so Z2/L decomposes uniquely as a direct sum of
a subgroup order m with a subgroup of order n. Thus there exists a unique
lattice L′ such that L ⊂ L′ ⊂ Z2, and L′ has index m in Z2. The lattice L′

corresponds to an element of Sm, and the index n subgroup L ⊂ L′ corresponds
to multiplying that element on the right by some uniquely determined element
of Sn. We thus have

SL2(Z) · Sm · Sn = SL2(Z) · Smn,
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i.e., the set products of elements in Sm with elements of Sn equal the elements
of Smn, up to SL2(Z)-equivalence. It then follows from the definitions that for
any f , we have Tmn(f) = Tn(Tm(f)).

We will show that Tpn + pk−1Tpn−2 = TpTpn−1 . Suppose f is a weight k
weakly modular function. Using that f |[p]k = (p2)k−1p−kf = pk−2f , we have

∑

x∈Spn

f |[x]k + pk−1
∑

x∈S
pn−2

f |[x]k =
∑

x∈Spn

f |[x]k + p
∑

x∈pS
pn−2

f |[x]k.

Also

TpTpn−1(f) =
∑

y∈Sp

∑

x∈S
pn−1

f |[x]k|[y]k =
∑

x∈S
pn−1 ·Sp

f |[x]k.

Thus it suffices to show that Spn union p copies of pSpn−2 is equal to Spn−1 ·Sp,
where we consider elements up to left SL2(Z)-equivalence (i.e., the left action
of SL2(Z)).

Suppose L is a sublattice of Z2 of index pn, so L corresponds to an element
of Spn . First suppose L is not contained in pZ2. Then the image of L in
Z2/pZ2 = (Z/pZ)2 is of order p, so if L′ = pZ2 + L, then [Z2 : L′] = p and
[L : L′] = pn−1, and L′ is the only lattice with this property. Second suppose
that L ⊂ pZ2 if of index pn, and that x ∈ Spn corresponds to L. Then every
one of the p + 1 lattices L′ ⊂ Z2 of index p contains L. Thus there are p + 1
chains L ⊂ L′ ⊂ Z2 with [Z2 : L′] = p.

The chains L ⊂ L′ ⊂ Z2 with [Z2 : L′] = p and [Z2 : L] = pn−1 are in
bijection with the elements of Spn−1 · Sp. On the other hand the union of Spn

with p copies of pSpn−2 corresponds to the lattices L of index pn, but with
those that contain pZ2 counted p+ 1 times. The structure of the set of chains
L ⊂ L′ ⊂ Z2 that we derived in the previous paragraph gives the result.

Corollary 2.4.5. The Hecke operator Tpn , for prime p, is a polynomial in Tp.
If n,m are any integers then TnTm = TmTn.

Proof. The first statement is clear from (2.4.2), and this gives commutativity
when m and n are both powers of p. Combining this with (2.4.1) gives the
second statement in general.

Proposition 2.4.6. Suppose f =
∑

n∈Z anq
n is a modular function of weight k.

Then

Tn(f) =
∑

m∈Z





∑

1≤d | gcd(n,m)

dk−1amn/d2



 qm.

In particular, if n = p is prime, then

Tp(f) =
∑

m∈Z

(

amp + pk−1am/p
)

qm,

where am/p = 0 if m/p 6∈ Z.
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The proposition is not that difficult to prove (or at least the proof is easy
to follow), and is proved in [Ser73, §VII.5.3] by writing out Tn(f) explicitly
and using that

∑

0≤b<d e
2πibm/d is d if d | m and 0 otherwise. A corollary of

Proposition 2.4.6 is that Tn preserves Mk and Sk.

Corollary 2.4.7. The Hecke operators preserve Mk and Sk.

Remark 2.4.8. We knew this already—for Mk it’s Proposition 2.4.3, and for
Sk it’s easy to show directly that if f(i∞) = 0 then Tnf also vanishes at i∞.

Example 2.4.9. Recall that

E4 =
1

240
+ q + 9q2 + 28q3 + 73q4 + 126q5 + 252q6 + 344q7 + · · · .

Using the formula of Proposition 2.4.6, we see that

T2(E4) = (1/240 + 23 · (1/240)) + 9q + (73 + 23 · 1)q2 + · · · = 9E4.

Since Mk has dimension 1, and we have proved that T2 preserves Mk, we know
that T2 acts as a scalar. Thus we know just from the constant coefficient of
T2(E4) that T2(E4) = 9E4. More generally, Tp(E4) = (1 + p3)E4. In fact for
any k one has that

Tn(Ek) = σk−1(n)Ek,

for any integer n ≥ 1 and even weight k ≥ 4.

Example 2.4.10. By Corollary 2.4.7, the Hecke operators Tn also preserve the
subspace Sk of Mk. Since S12 has dimension 1 (spanned by ∆), we see that ∆
is an eigenvector for every Tn. Since the coefficient of q in the q-expansion of ∆
is 1, the eigenvalue of Tn on ∆ is the nth coefficient of ∆. Moreover the function
τ(n) that gives the nth coefficient of ∆ is a multiplicative function. Likewise,
one can show that the series Ek are eigenvectors for all Tn, and because in this
book we normalize Ek so that the coefficient of q is 1, the eigenvalue of Tn on
Ek is the coefficient σk−1(n) of qn.

2.5 Computing Hecke Operators

In this section we describe a simple algorithm for computing matrices of Hecke
operators on Mk.

Algorithm 2.5.1 (Hecke Operator). This algorithm computes a matrix for
the Hecke operator Tn on the Victor Miller basis for Mk.

1. [Compute dimension] Set d = dim(Sk), which we compute using Corol-
lary 2.2.5.

2. [Compute basis] Using the algorithm implicit in Lemma 2.3.1, compute a
basis f0, . . . , fd for Mk modulo qdn+1.
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3. [Compute Hecke operator] Using the formula from Proposition 2.4.6, com-
pute Tn(fi) (mod qd+1) for each i.

4. [Write in terms of basis] The elements Tn(fi) (mod qd+1) uniquely de-
termine linear combinations of f0, f1, . . . , fd (mod qd). These linear com-
binations are trivial to find once we have computed Tn(fi) (mod qd+1),
since the basis of fi are in reduced row echelon form, so the combinations
are just the first few coefficients of the power series Tn(fi).

5. [Write down matrix] The matrix of Tn acting from the right is the matrix
whose columsn are the linear combinations found in the previous step, i.e.,
whose columns are the coefficients of Tn(fi).

Proof. First note that we compute a modular form f modulo qdn+1 in order
to compute Tn(f) modulo qd+1. This follows from Proposition 2.4.6, since in
the formula the dth coefficient of Tn(f) involves only adn, and smaller-indexed
coefficients of f . The uniqueness assertion of Step 4 follows from Lemma 2.3.1
above.

Example 2.5.2. This is the Hecke operator T2 on M36 is:








34359738369 0 6218175600 9026867482214400
0 0 34416831456 5681332472832
0 1 194184 −197264484
0 0 −72 −54528









It has characteristic polynomial

(x− 34359738369) · (x3 − 139656x2 − 59208339456x− 1467625047588864),

where the cubic factor is irreducible.

Conjecture 2.5.3 (Maeda). The characteristic polynomial of T2 on Sk is
irreducible for any k.

Kevin Buzzard even observed that in many specific cases the Galois group
of the characteristic polynomial of T2 is the full symmetric group (see [Buz96]).
See also [FJ02] for more evidence for Maeda’s conjecture.

2.5.1 A Conjecture about Complexity

Let

∆ =

∞
∑

n=1

τ(n)qn

= q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7

+ 84480q8 − 113643q9 − 115920q10 + 534612q11−
370944q12 − 577738q13 + 401856q14 + 1217160q15+

987136q16 − 6905934q17 + 2727432q18 + 10661420q19 + · · ·
be the ∆-function.



2.6. EXERCISES 27

Conjecture 2.5.4 (Edixhoven). There is an algorithm to compute τ(p), for
prime p, that is polynomial-time in log(p). More generally, suppose f =

∑

anq
n

is an eigenform in some space Mk(N, ε), where k ≥ 2. Then there is an algo-
rithm to compute ap, for p prime, in time polynomial in log(p).

Bas Edixhoven, Jean-Marc Couveignes and Robin de Jong have mostly
proved that τ(p) can be computed in polynomial time; their approach involves
sophisticated techniques from arithmetic geometry (e.g., étale cohomology, mo-
tives, Arakelov theory). This is work in progress and has not been written up
completely yet. The ideas Edixhoven uses are inspired by the ones introduced
by Schoof, Elkies and Atkin for quickly counting points on elliptic curves over
finite fields (see [Sch95]).

More precisely, Edixhoven describes his strategy as follows:

1. We compute the mod ` Galois representations associated to ∆. In partic-
ular, we produce a polynomial f such that Q[x]/(f) is the corresponding
field. This is then used to obtain τ(p) (mod `) and do a Schoof like algo-
rithm for computing τ(p).

2. We compute the field of definition of suitable points of order ` on J1(`) to
do part 1.

3. The method is to approximate the polynomial f in some sense (e.g., over
the complex numbers, or modulo many small primes r), and use an esti-
mate from Arakelov theory to determine a precision that will suffice.

The rest of this book is about methods for computing subspaces ofMk(Γ1(N))
for general N and k. These general methods are much more complicated than
the methods presented in this chapter, since there are many more forms of small
weight, and it can be difficult to obtain them. These forms of higher level have
subtle and deep connections with arithmetic geometric objects such as elliptic
curves, abelian varieties, and motives.

2.6 Exercises

2.1 By hand use (2.1.2) write down the coefficients of 1, q, q2, and q3 of the
Eisenstein series E8.

2.2 Explicitly compute the Victor Miller basis for M28(SL2(Z)) to precision
O(q8). Your answer will look like Example 2.3.4.

2.3 Consider the cuspform f = q2+192q3−8280q4 · · · in S28(SL2(Z)). Write f
as a polynomial in E4 and E6 (see Remark 2.3.5).
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Chapter 3

Modular Symbols of Weight

Two

We saw in Chapter 2 (especially Section 2.2) that we can compute each space
Mk(SL2(Z)) explicitly. This involved computing Eisenstein series E4 and E6

to some precision, then forming the basis {Ea4Eb6 : 4a + 6b = k, 0 ≤ a, b ∈ Z}
for Mk(SL2(Z)). In this chapter we instead consider the problem of computing
M2(Γ0(N)), for positive integers N . Again we have a decomposition

M2(Γ0(N)) = S2(Γ0(N)) ⊕ Eis2(Γ0(N)),

where Eis2(Γ0(N)) is a space spanned by explicit generalized Eisenstein series
and S2(Γ0(N)) is the space of cusp forms, i.e., elements of M2(Γ0(N)) that
vanish at all cusps.

The space Eis2(Γ0(N)) can be computed explicitly much like Mk(SL2(Z)),
as we will see in Chapter 5. On the other hand, general elements of S2(Γ0(p))
can not be written as sums or products of generalized Eisenstein series. In fact,
the structure of M2(Γ0(N)) is drastically different than that of Mk(SL2(Z)).
For example, when p is a prime Eis2(Γ0(p)) has dimension 1, whereas S2(Γ0(p))
has dimension about p/12.

Fortunately an idea of Birch called “modular symbols” provides a powerful
method for computing S2(Γ0(N)), and indeed much more. In this chapter,
we explain how S2(Γ0(N)) is related to modular symbols, and how to use this
relationship to explicitly compute a basis for S2(Γ0(N)). We will discuss much
more general modular symbols in Chapter 8, where we will explain how to use
them to compute Sk(Γ1(N)) for any integers k ≥ 2 and N .

Section 3.1 contains a brief summary of basic facts about modular forms,
Hecke operators, and integral homology. Section 3.2 introduces modular sym-
bols, and describes how to compute with them. Section 3.5 outlines an algo-
rithm for constructing cusp forms using modular symbols in conjunction with
Atkin-Lehner theory.

29
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This chapter assumes some familiarity with algebraic curves, Riemann sur-
faces, and homology groups of compact Riemann surfaces.

3.1 Review of modular forms and Hecke opera-

tors

The group Γ0(N) acts on h∗ by linear fractional transformations, and the quo-
tient Γ0(N)\h∗ is a Riemann surface, which we denote by X0(N). Shimura
showed in [Shi94, §6.7] that X0(N) has a canonical structure of algebraic curve
over Q.

Recall from Section 1.3 that a cusp form of weight 2 for Γ0(N) is a function f
on h such that f(z)dz defines a holomorphic differential onX0(N). Equivalently,
a cusp form is a holomorphic function f on h such that

(a) the expression f(z)dz is invariant under replacing z by γ(z) for each γ ∈
Γ0(N), and

(b) f(z) vanishes at every cusp for Γ0(N).

The space S2(Γ0(N)) of weight 2 cusp forms on Γ0(N) is a finite dimensional
complex vector space, of dimension equal to the genus g of X0(N). Viewed
topologically, as a 2-dimensional real manifold, X0(N)(C) is a g-holed torus
(see Figure 3.1.1 on page 32).

Condition (b) in the definition of f(z) means that f(z) has a Fourier expan-
sion about each element of P1(Q). Thus, at ∞ we have

f(z) = a1e
2πiz + a2e

2πi2z + a3e
2πi3z + · · ·

= a1q + a2q
2 + a3q

3 + · · · ,

where, for brevity, we write q = q(z) = e2πiz.

Example 3.1.1. Let E be the elliptic curve defined by the equation y2 + xy =
x3 +x2−4x−5. Let ap = p+1−#Ẽ(Fp), where Ẽ is the reduction of E mod p
(note that for the bad primes we have a3 = −1, a13 = 1). For n composite,
define an using the relations at the end of Section 3.5. Then

f = q + a2q
2 + a3q

3 + a4q
4 + a5q

5 + · · ·
= q + q2 − q3 − q4 + 2q5 + · · ·

is the q-expansion of a modular form on Γ0(39). The Shimura-Taniyama con-
jecture, which is now a theorem (see [BCDT01]) asserts that any q-expansion
constructed as above from an elliptic curve over Q is a modular form.

Just as is the case for level 1 modular forms (see Section 2.4) there is a
family of commuting Hecke operators that act on S2(Γ0(N)). To define them
conceptually, we introduce an interpretation of X0(N) as a space whose points
parameterize elliptic curves with extra structure.
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Proposition 3.1.2. The complex points of the open subcurve Y0(N) = Γ0(N)\h
are in natural bijection with pairs (E,C), where E is an elliptic curve over C
and C is a cyclic subgroup of E(C) of order N .

Suppose n and N are coprime positive integers. Keeping in mind Proposi-
tion 3.1.2, we see that there are two natural maps π1 and π2 from Y0(n ·N) to
Y0(N); the first, π1, sends a pair (E,C) to (E,C ′), where C ′ is the unique cyclic
subgroup of C of order N , and the second, π2, sends a point (E,C) ∈ Y0(N)(C)
to (E/D,C/D), where D is the unique cyclic subgroup of C of order n. These
maps extend in a unique way to algebraic maps from X0(n ·N) to X0(N):

X0(n ·N)

π2

yyrrrrrrrrrr
π1

&&LLLLLLLLLL

X0(N) X0(N).

The nth Hecke operator Tn is (π1)∗ ◦ (π2)
∗, where π∗

2 and (π1)∗ denote pullback
and pushforward of differentials respectively. (There is a similar definition of
Tn when gcd(n,N) 6= 1.) Using our interpretation of S2(Γ0(N)) as differentials
on X0(N) this gives an action of Hecke operators on S2(Γ0(N)). One can show
that these induce the maps of Proposition 2.4.6 on q-expansions.

Example 3.1.3. There is a basis of S2(39) so that

T2 =





1 1 0
−2 −3 −2

0 0 1



 and T5 =





−4 −2 −6
4 4 4
0 0 2



 .

Notice that these matrices commute, and that 1 is an eigenvalue of T2, and 2 is
an eigenvalue of T5.

The first homology group H1(X0(N),Z) is the group of closed 1-cycles mod-
ulo boundaries of 2 cycles (formal sums of images of 2-simplexes). Recall that
topologically X0(N) is a g-holed torus, where g is the genus of X0(N). The
group H1(X0(N),Z) is thus a free abelian group of rank 2g (see, e.g., [GH81,
Ex. 19.30]), with two generators corresponding to each hole, as illustrated in
the case N = 39 in Figure 3.1.1.

Homology is closely connected to modular forms, since the Hecke operators
Tn also act on H1(X0(N),Z). The action is by pullback of homology classes
by π2 followed by taking the image under π1. Moreover, integration defines a
pairing

〈 , 〉 : S2(Γ0(N)) ×H1(X0(N),Z) → C. (3.1.1)

Explicitly, for a path x,

〈f, x〉 = 2πi

∫

x

f(z)dz,

where the integral is locally a complex line integral along preimages of intervals
of x in the upper half plane.
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H1(X0(39),Z) ∼= Z × Z × Z × Z × Z × Z

Figure 3.1.1: The homology of X0(39).

Theorem 3.1.4. The pairing (3.1.1) is nondegenerate and Hecke equivariant
in the sense that for every Hecke operator Tn, we have 〈fTn, x〉 = 〈f, Tnx〉.

As we will see, modular symbols allow us to make explicit the action of the
Hecke operators on H1(X0(N),Z); the above pairing then translates this into a
wealth of information about cusp forms.

3.2 Modular symbols

The modular symbols formalism provides a presentation of H1(X0(N),Z) in
terms of paths between elements of P1(Q). Furthermore, a trick due to Manin
gives an explicit finite list of generators and relations for the space of modular
symbols.

The modular symbol defined by a pair α, β ∈ P1(Q) is denoted {α, β}. As
illustrated in Figure 3.2.1, we view this modular symbol as the homology class,
relative to the cusps, of a (geodesic) path from α to β in h∗. The homology
group relative to the cusps is a slight enlargement of the usual homology group,
in that we allow paths with endpoints in the cusps instead of restricting to
closed loops.

Note that modular symbols satisfy the following homology relations: if
α, β, γ ∈ Q ∪ {∞}, then

{α, β} + {β, γ} + {γ, α} = 0.

Furthermore, the space of modular symbols is torsion free, so, e.g., {α, α} = 0
and {α, β} = −{β, α}.

Denote by M2 the free abelian group with basis the set of symbols {α, β}
modulo the three-term homology relations above and modulo any torsion. There
is a left action of GL2(Q) on M2, whereby a matrix g acts by

g{α, β} = {g(α), g(β)},
and g acts on α and β by a linear fractional transformation. The space M2(Γ0(N))
of modular symbols for Γ0(N) is the quotient of M2 by the submodule gener-
ated by the infinitely many elements of the form x− g(x), for x in M2 and g in
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PSfrag replacements

∞
α
β

0
Q

Figure 3.2.1: The modular symbols {α, β} and {0,∞}.

Γ0(N), and modulo any torsion. A modular symbol for Γ0(N) is an element of
this space. We frequently denote the equivalence class that defines a modular
symbol by giving a representative element.

Example 3.2.1. Some modular symbols are 0 no matter what the level N is!
For example, since γ = ( 1 1

0 1 ) ∈ Γ0(N), we have

{∞, 0} = {γ(∞), γ(0)} = {∞, 1},

so

0 = {∞, 1} − {∞, 0} = {∞, 1} + {0,∞} = {0,∞} + {∞, 1} = {0, 1}.

There is a natural homomorphism

ϕ : M2(Γ0(N)) → H1(X0(N), {cusps},Z) (3.2.1)

that sends a formal linear combination of geodesic paths in the upper half plane
to their image as paths on X0(N). In [Man72] Manin proved that (3.2.1) is
an isomorphism. He also identified the subspace of M2(Γ0(N)) that is sent
isomorphically onto H1(X0(N),Z). This subspace is constructed as follows. Let
B2(Γ0(N)) denote the free abelian group whose basis is the finite set C(Γ0(N)) =
Γ0(N)\P1(Q) of cusps for Γ0(N). The boundary map

δ : M2(Γ0(N)) → B2(Γ0(N))

sends {α, β} to {β} − {α}, where {β} denotes the basis element of B2(Γ0(N))
corresponding to β ∈ P1(Q). The kernel S2(Γ0(N)) of δ is the subspace of
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cuspidal modular symbols. An element of S2(Γ0(N)) can be thought of as a
linear combination of paths in h∗ whose endpoints are cusps, and whose images
in X0(N) are a linear combination of loops.

Theorem 3.2.2 (Manin). The map ϕ given above induces a canonical iso-
morphism

S2(Γ0(N)) ∼= H1(X0(N),Z).

Example 3.2.3. We illustrate modular symbols in the case when N = 11.
Using SAGE we find that M2(11) has basis {∞, 0}, {−1/8, 0}, {−1/9, 0}:

sage: M = ModularSymbols(11, 2)

sage: print [b.modular_symbol_rep() for b in M.basis()]

[{Infinity,0}, {-1/8,0}, {-1/9,0}]

The integral homology H1(X0(11),Z) corresponds to the abelian subgroup gen-
erated by {−1/7, 0} and {−1/5, 0}.

3.2.1 Manin’s trick

In this section, we describe a trick of Manin that shows that the space of modular
symbols can be computed.

The group Γ0(N) has finite index in SL2(Z) (see Exercise 1.6). Let r0, r1, . . . , rm
be distinct right coset representatives for Γ0(N) in SL2(Z), so that

SL2(Z) = Γ0(N)r0 ∪ Γ0(N)r1 ∪ · · · ∪ Γ0(N)rm,

where the union is disjoint. For example, when N is prime, a list of coset
representatives is

(

1 0
0 1

)

,

(

1 0
1 1

)

,

(

1 0
2 1

)

,

(

1 0
3 1

)

, . . . ,

(

1 0
N − 1 1

)

,

(

0 −1
1 0

)

.

Let

P1(Z/NZ) = {(a : b) : a, b ∈ Z/NZ, gcd(a, b,N) = 1 }/ ∼

where (a : b) ∼ (a′ : b′) if there is u ∈ (Z/NZ)∗ such that a = ua′, b = ub′.

Proposition 3.2.4. There is a bijection between P1(Z/NZ) and the right cosets
of Γ0(N) in SL2(Z), which sends a coset representative

(

a b
c d

)

to the class of
(c : d) in P1(Z/NZ).

Proof. See Exercise 3.1.

We now describe an observation of Manin (see [Man72, §1.5]) that is crucial
to making M2(Γ0(N)) computable. It allows us to write any modular symbol
{α, β} as a Z-linear combination of symbols of the form ri{0,∞}, where the
ri ∈ SL2(Z) are coset representatives as above. In particular, the finitely many
symbols r0{0,∞}, . . . rm{0,∞} generate M2(Γ0(N)).
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Proposition 3.2.5 (Manin). Let N be a positive integer and r0, . . . , rm a set
of right coset representatives for Γ0(N) in SL2(Z). Every {α, β} ∈ M2(Γ0(N))
is a Z-linear combination of r0{0,∞}, . . . rm{0,∞}.

We give two proofs of the proposition. The first is useful for actual compu-
tation (see [Cre97a, §2.1.6]); the second seems less useful for computation but
is easy to understand conceptually (see [MTT86, §2]).
Continued Fractions Proof of Proposition 3.2.5. Because of the relation {α, β} =
{0, β}−{0, α}, it suffices to consider modular symbols of the form {0, b/a}, where
the rational number b/a is in lowest terms. Expand b/a as a continued fraction
and consider the successive convergents in lowest terms:

b−2

a−2
=

0

1
,

b−1

a−1
=

1

0
,

b0
a0

=
b0
1
, . . . ,

bn−1

an−1
,

bn
an

=
b

a

where the first two are added formally. Then

bkak−1 − bk−1ak = (−1)k−1,

so that

gk =

(

bk (−1)k−1bk−1

ak (−1)k−1ak−1

)

∈ SL2(Z).

Hence
{

bk−1

ak−1
,
bk
ak

}

= gk{0,∞} = ri{0,∞},

for some i, is of the required special form. Since

{0, b/a} = {0,∞} + {∞, b0} +

{

b0
1
,
b1
a1

}

+ · · · +
{

bn−1

an−1
,
bn
an

}

,

this completes the proof.

Inductive Proof of Proposition 3.2.5. As in the first proof it suffices to prove
the proposition for any symbol {0, b/a}, where b/a is in lowest terms. We will
induct on a ∈ Z≥0. If a = 0 then the symbol is {0,∞}, which corresponds to
the identity coset, so assume that a > 0. Find a′ ∈ Z such that

ba′ ≡ 1 (mod a),

and set b′ = (ba′ − 1)/a. Then the matrix

δ =

(

b b′

a a′

)

is an element of SL2(Z), so δ = γ · rj for some right coset representative rj and
γ ∈ Γ0(N). Then

{0, b/a} − {0, b′/a′} = {b′/a′, b/a} =

(

b b′

a a′

)

· {0,∞} = rj{0,∞}.

By induction {0, b′/a′} is a linear combination of symbols of the form rk{0,∞},
which completes the proof.
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Example 3.2.6. Let N = 11, and consider the modular symbol {0, 4/7}. We
have

4

7
= 0 +

1

1 + 1
1+ 1

3

,

so the partial convergents are

b−2

a−2
=

0

1
,

b−1

a−1
=

1

0
,

b0
a0

=
0

1
,

b1
a1

=
1

1
,

b2
a2

=
1

2
,

b3
a3

=
4

7
.

Thus, noting as in Example 3.2.1 that {0, 1} = 0, we have

{0, 4/7} = {0,∞} + {∞, 0} + {0, 1} + {1, 1/2} + {1/2, 4/7}

=

(

1 −1
2 −1

)

{0,∞} +

(

4 1
7 2

)

{0,∞}

=

(

1 0
9 1

)

{0,∞} +

(

1 0
9 1

)

{0,∞}

= 2 ·
[(

1 0
9 1

)

{0,∞}
]

3.2.2 Manin symbols

As above, fix coset representatives r0, . . . , rm for Γ0(N) in SL2(Z). Consider for-
mal symbols [ri]

′ for i = 0, . . . ,m. Let [ri] be the modular symbol ri{0,∞} =
{ri(0), ri(∞)}. We equip the symbols [r0]

′, . . . , [rm]′ with a right action of
SL2(Z), which is given by [ri]

′.g = [rj ]
′, where Γ0(N)rj = Γ0(N)rig. We extend

the notation by writing [γ]′ = [Γ0(N)γ]′ = [ri]
′, where γ ∈ Γ0(N)ri; then the

action is simply [γ]′.g = [γg]′.

Theorem 1.1.2 implies that SL2(Z) is generated by the two matrices σ =
(

0 −1
1 0

)

and τ =
(

1 −1
1 0

)

. Note that σ = S from that theorem and τ = TS, so
T = τσ ∈ 〈σ, τ〉.

The following theorem provides us with a finite presentation for the space
of modular symbols.

Theorem 3.2.7 (Manin). Consider the quotient M of the free abelian group
on Manin symbols [r0]

′, . . . , [rm]′ modulo the subgroup generated by the elements
(for all i):

[ri]
′ + [ri]

′σ and [ri]
′ + [ri]

′τ + [ri]
′τ2,

and modulo any torsion. Then there is an isomorphism Ψ : M
∼−→ M2(Γ0(N))

given by [ri]
′ 7→ [ri] = ri{0,∞}.

Proof. Proposition 3.2.5 implies that Ψ is surjective, assuming that Ψ is well
defined.
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We next verify that Ψ is well defined, i.e. that the listed two and three term
relations hold in the image. To see that the the first relation holds, note that

[ri] + [ri]σ = {ri(0), ri(∞)} + {riσ(0), riσ(∞)}
= {ri(0), ri(∞)} + {ri(∞), ri(0)}
= 0.

For the second relation we have

[ri] + [ri]τ + [ri]τ
2 = {ri(0), ri(∞)} + {riτ(0), riτ(∞)} + {riτ2(0), riτ

2(∞)}
= {ri(0), ri(∞)} + {ri(∞), ri(1)} + {ri(1), ri(0)}
= 0

The proof that Ψ is injective requires more work; see [Man72, §1.7].

Example 3.2.8. By default SAGE computes modular symbols spaces over Q,
i.e., M2(Γ0(N); Q) ∼= M2(Γ0(N)) ⊗ Q. SAGE represents (weight 2) Manin sym-
bols as pairs (c, d). Here c, d are integers that satisfy 0 ≤ c, d < N ; they
define a point (c : d) ∈ P1(Z/NZ), hence a right coset of Γ0(N) in SL2(Z) (see
Proposition 3.2.4).

Create M2(Γ0(N); Q) in SAGE by typing ModularSymbols(N, 2). We then
use the SAGE command manin generators to enumerate a list of generators
[r0], . . . , [rn] as in Theorem 3.2.7 for several spaces of modular symbols.

sage: M = ModularSymbols(2,2)

sage: M

Full Modular Symbols space for Gamma_0(2) of weight 2 with

sign 0 and dimension 1 over Rational Field

sage: M.manin_generators()

[(0,1), (1,0), (1,1)]

sage: M = ModularSymbols(3,2)

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2)]

sage: M = ModularSymbols(6,2)

sage: M.manin_generators()

[(0,1), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (2,1),

(2,3), (2,5), (3,1), (3,2)]

Given x=(c,d), the command x.lift to sl2z(N) finds an element [a,b,c’,d’]
of SL2(Z) whose lower two entries are congruent to (c, d) modulo N .
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sage: M = ModularSymbols(2,2)

sage: [x.lift_to_sl2z(2) for x in M.manin_generators()]

[[1, 0, 0, 1], [0, -1, 1, 0], [0, -1, 1, 1]]

sage: M = ModularSymbols(6,2)

sage: x = M.manin_generators()[9]

sage: x

(2,5)

sage: x.lift_to_sl2z(6)

[1, 2, 2, 5]

The manin basis command returns a list of indices into the Manin generator
list such that the corresponding symbols form a basis for the quotient of the
Q-vector space spanned by Manin symbols modulo the 2 and 3-term relations
of Theorem 3.2.7.

sage: M = ModularSymbols(2,2)

sage: M.manin_basis()

[1]

sage: [M.manin_generators()[i] for i in M.manin_basis()]

[(1,0)]

sage: M = ModularSymbols(6,2)

sage: M.manin_basis()

[1, 10, 11]

sage: [M.manin_generators()[i] for i in M.manin_basis()]

[(1,0), (3,1), (3,2)]

Thus, e.g., every element of M2(Γ0(6)) is a Q-linear combination of the symbols
[(1, 0)], [(3, 1)], and [(3, 2)]. We can write each of these as a modular symbol
using the modular symbol rep function.

sage: M.basis()

((1,0), (3,1), (3,2))

sage: [x.modular_symbol_rep() for x in M.basis()]

[{Infinity,0}, {0,1/3}, {-1/2,-1/3}]

The manin gens to basis function returns a matrix whose rows express
each Manin symbol generator in terms of the subset of Manin symbols that
forms a basis (as returned by manin basis.

sage: M = ModularSymbols(2,2)

sage: M.manin_gens_to_basis()

[-1]

[ 1]

[ 0]
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Since the basis is (1, 0) this means that in M2(Γ0(2); Q), we have [(0, 1)] =
−[(1, 0)] and [(1, 1)] = 0. (Since no denominators are involved, we have in fact
computed a presentation of M2(Γ0(2); Z).)

Convert a Manin symbol x = (c, d) to an element of a modular symbols
space M , use M(xx):

sage: M = ModularSymbols(2,2)

sage: x = (1,0); M(x)

(1,0)

sage: M( (3,1) ) # entries are reduced modulo $2$ first

0

sage: M( (10,19) )

-(1,0)

Next consider M2(Γ0(6); Q):

sage: M = ModularSymbols(6,2)

sage: M.manin_gens_to_basis()

[-1 0 0]

[ 1 0 0]

[ 0 0 0]

[ 0 -1 1]

[ 0 -1 0]

[ 0 -1 1]

[ 0 0 0]

[ 0 1 -1]

[ 0 0 -1]

[ 0 1 -1]

[ 0 1 0]

[ 0 0 1]

Recalling that our choice of basis for M2(Γ0(6); Q) is [(1, 0)], [(3, 1)], [(3, 2)].
Thus, e.g., first row of this matrix says that [(0, 1)] = −[(1, 0)], and the fourth
row asserts that [(1, 2)] = −[(3, 1)] + [(3, 2)].

sage: M = ModularSymbols(6,2)

sage: M((0,1))

-(1,0)

sage: M((1,2))

-(3,1) + (3,2)
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3.2.3 Hecke operators on modular symbols

When p is a prime not dividing N , define

Tp{α, β} =

(

p 0
0 1

)

{α, β} +
∑

r mod p

(

1 r
0 p

)

{α, β}.

As mentioned before, this definition is compatible with the integration pairing
〈 , 〉 of Section 3.1, in the sense that 〈fTp, x〉 = 〈f, Tpx〉. When p | N , the
definition is the same, except that the matrix

(

p 0
0 1

)

is not included in the sum.
(There is a similar definition of Tn for n composite; see Section 8.3.1 for the
general definition.)

Example 3.2.9. For example, when N = 11 we have

T2{0, 1/5} = {0, 2/5} + {0, 1/10} + {1/2, 3/5}
= −2{0, 1/5}.

In [Mer94], L. Merel gives a description of the action of Tp directly on Manin
symbols [ri] (see Section 8.3.2 for details). For example, when p = 2 and N is
odd, we have

T2([ri]) = [ri]

(

1 0
0 2

)

+ [ri]

(

2 0
0 1

)

+ [ri]

(

2 1
0 1

)

+ [ri]

(

1 0
1 2

)

. (3.2.2)

The SAGE command HeilbronnMerelList(n) gives a list of matrices [a, b, c, d]
that compute Tn on Manin symbols. The command HeilbronnCremonaList(p),
for p prime, gives a list of matrices that computes Tp on Manin symbols for p - N .

sage: HeilbronnMerelList(2)

[[1, 0, 0, 2], [1, 0, 1, 2], [2, 0, 0, 1], [2, 1, 0, 1]]

sage: HeilbronnMerelList(4)

[[1, 0, 0, 4], [1, 0, 1, 4], [1, 0, 2, 4], [1, 0, 3, 4],

[2, 0, 0, 2], [2, 1, 0, 2], [2, 0, 1, 2], [2, 1, 2, 3],

[3, 2, 1, 2], [4, 0, 0, 1], [4, 1, 0, 1], [4, 2, 0, 1],

[4, 3, 0, 1]]

sage: HeilbronnMerelList(5)

[[1, 0, 0, 5], [1, 0, 1, 5], [1, 0, 2, 5], [1, 0, 3, 5],

[1, 0, 4, 5], [2, 1, 1, 3], [2, 1, 3, 4], [3, 1, 1, 2],

[3, 2, 2, 3], [4, 3, 1, 2], [5, 0, 0, 1], [5, 1, 0, 1],

[5, 2, 0, 1], [5, 3, 0, 1], [5, 4, 0, 1]]

Notice that Cremona’s list is shorter than Merel’s (see [Cre97a] for a derivation
that Cremona’s list can be used to compute Hecke operators).
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sage: HeilbronnCremonaList(5)

[[1, 0, 0, 5], [5, 2, 0, 1], [2, 1, 1, 3], [1, 0, 3, 5],

[5, 1, 0, 1], [1, 0, 1, 5], [5, 0, 0, 1], [5, -1, 0, 1],

[-1, 0, 1, -5], [5, -2, 0, 1], [-2, 1, 1, -3], [1, 0, -3, 5]]

sage: len(HeilbronnCremonaList(97))

392

sage: len(HeilbronnMerelList(97))

1039

Example 3.2.10. Using SAGE we compute the matrix of T2 on M2(Γ0(2)):

sage: M = ModularSymbols(2,2)

sage: M.T(2).matrix()

[1]

We can do this more explicitly as follows, recalling that (1, 0) is a basis for
M2(Γ0(2)) from Example 3.2.8 and using (3.2.2):

sage: M = ModularSymbols(2,2)

sage: M.basis()

((1,0),)

sage: M((1,0)) + M((2,1)) + M((1,0))

(1,0)

Note that we do not include (2,0) since 2 divides the level.

Example 3.2.11. We use SAGE to compute Hecke operators on M2(Γ0(6)):

sage: M = ModularSymbols(6, 2)

sage: M.T(2).matrix()

[ 2 1 -1]

[-1 0 1]

[-1 -1 2]

sage: M.T(3).matrix()

[3 2 0]

[0 1 0]

[2 2 1]

sage: M.T(5).matrix()

[6 0 0]

[0 6 0]

[0 0 6]

sage: M.T(97).matrix()

[98 0 0]

[ 0 98 0]

[ 0 0 98]

In fact for p ≥ 5 we have Tp = p+ 1, since M2(Γ0(6)) is spanned by generalized
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Eisenstein series (see Chapter 5).

Example 3.2.12. We use SAGE to compute Hecke operators on M2(Γ0(39)):

sage: M = ModularSymbols(39, 2)

sage: T2 = M.T(2)

sage: T2.matrix()

[ 3 0 -1 0 0 1 1 -1 0]

[ 0 0 2 0 -1 1 0 1 -1]

[ 0 1 0 -1 1 1 0 1 -1]

[ 0 0 1 0 0 1 0 1 -1]

[ 0 -1 2 0 0 1 0 1 -1]

[ 0 0 1 1 0 1 1 -1 0]

[ 0 0 0 -1 0 1 1 2 0]

[ 0 0 0 1 0 0 2 0 1]

[ 0 0 -1 0 0 0 1 0 2]

sage: T2.charpoly()

x^9 - 7*x^8 + 4*x^7 + 68*x^6 - 142*x^5 - 78*x^4

+ 460*x^3 - 468*x^2 + 189*x - 27

sage: factor(T2.charpoly())

(x - 3)^3 * (x - 1)^2 * (x^2 + 2*x - 1)^2

Notice that the Hecke operators commute, so their eigenspace structure is sim-
ilar.

sage: T2 = M.T(2).matrix()

sage: T5 = M.T(5).matrix()

sage: T2*T5 - T5*T2 == 0

True

sage: T5.charpoly().factor()

(x - 6)^3 * (x - 2)^2 * (x^2 - 8)^2

The rational decomposition of T2 is a list of the kernels of (f e)(T2), where f
runs through the irreducible factors of the characteristic polynomial of T2 and
fe exactly divides this characteristic polynomial. Using SAGE we find them:
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sage: T2.decomposition()

[(Vector space of degree 9 and dimension 3 over Rational Field

Basis matrix:

[ 1 0 0 0 0 0 -1 -1 -1]

[ 0 1 4 0 1 0 -6 -2 -8]

[ 0 0 0 0 0 1 2 1 1],

False),

(Vector space of degree 9 and dimension 2 over Rational Field

Basis matrix:

[ 0 1 0 0 -1 0 0 0 0]

[ 0 0 0 0 0 1 0 -1 1],

False),

(Vector space of degree 9 and dimension 4 over Rational Field

Basis matrix:

[ 0 1 0 0 1 -1 0 -1 1]

[ 0 0 1 0 0 -1/2 0 -1/2 1/2]

[ 0 0 0 1 0 -1/2 0 -1/2 1/2]

[ 0 0 0 0 0 0 1 -1 0],

False)]

The space of modular symbols also decomposes under all Hecke operators (of
index coprime to 39) as follows:

sage: M.decomposition()

[Dimension 3 subspace of a modular symbols space of level 39,

Dimension 2 subspace of a modular symbols space of level 39,

Dimension 4 subspace of a modular symbols space of level 39]

3.3 Computing the boundary map

In Section 3.2 we defined a map M2(Γ0(N)) → B2(Γ0(N)) whose kernel S2(Γ0(N))
is called the space of cuspidal modular symbols. This kernel will be important
in computing cuspforms in Section 3.5 below.

To compute the boundary map on Manin symbols, note that [γ] = {γ(0), γ(∞)},
so if γ =

(

a b
c d

)

, then

δ([γ]) = {γ(∞)} − {γ(0)} = {a/c} − {b/d}.

Computing this boundary map would appear to first require an algorithm
to compute the set C(Γ0(N)) = Γ0(N)\P1(Q) of cusps for Γ0(N). In fact, there
is a trick to compute the set of cusps in the course of running the algorithm.
First, give an algorithm for deciding whether or not two elements of P1(Q) are
equivalent modulo the action of Γ0(N). Then simply construct C(Γ0(N)) in the
course of computing the boundary map, i.e., keep a list of cusps found so far,
and whenever a new cusp class is discovered add it to the list. The following
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proposition, which is proved in [Cre97a, Prop. 2.2.3], explains how to determine
whether two cusps are equivalent.

Proposition 3.3.1 (Cremona). Let (ci, di), i = 1, 2 be pairs of integers
with gcd(ci, di) = 1, and possibly di = 0. There exists g ∈ Γ0(N) such that
g(c1/d1) = c2/d2 in P1(Q) if and only if

s1d2 ≡ s2d1 (mod gcd(d1d2, N))

where sj satisfies cjsj ≡ 1 (mod dj).

In SAGE the command boundary map() computes the boundary map from
M2(Γ0(N)) to B2(Γ0(N)), and the cuspidal submodule() command computes
its kernel. For example, for level 2 the boundary map is given by the matrix
[1 − 1], and its kernel is the 0 space.

sage: M = ModularSymbols(2, 2)

sage: M.boundary_map()

Hecke module morphism boundary map defined by the matrix

[ 1 -1]

Domain: Full Modular Symbols space for Gamma_0(2) of weight 2 with sign ...

Codomain: Space of Boundary Modular Symbols for Gamma0(2) of weight 2 and ...

sage: M.cuspidal_submodule()

Dimension 0 subspace of a modular symbols space of level 2

The smallest level for which the boundary map has nontrivial kernel, i.e.,
for which S2(Γ0(N)) 6= 0 is N = 11.

sage: M = ModularSymbols(11, 2)

sage: M.boundary_map().matrix()

[ 1 -1]

[ 0 0]

[ 0 0]

sage: M.cuspidal_submodule()

Dimension 2 subspace of a modular symbols space of level 11

sage: S = M.cuspidal_submodule(); S

Dimension 2 subspace of a modular symbols space of level 11

sage: S.basis()

((1,8), (1,9))

The following illustrates that the Hecke operators preserve S2(Γ0(N)):
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sage: S.T(2).matrix()

[-2 0]

[ 0 -2]

sage: S.T(3).matrix()

[-1 0]

[ 0 -1]

sage: S.T(5).matrix()

[1 0]

[0 1]

A nontrivial fact (the Eichler-Shimura relation, etc.) is that for p prime the
eigenvalue of each of these matrices is the same as p+ 1 − #E(Fp), where E is
the elliptic curve X0(11) given by the equation

y2 + y = x3 − x2 − 10x− 20.

sage: E = EllipticCurve([0,-1,1,-10,-20])

sage: 2 + 1 - E.Np(2)

-2

sage: 3 + 1 - E.Np(3)

-1

sage: 5 + 1 - E.Np(5)

1

sage: print [S.T(p).matrix()[0,0] - (p+1-E.Np(p)) for p in primes(100)]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

3.4 Computing a basis for S2(Γ0(N))

In this section we explain a method for using what we know how to compute
using modular symbols to compute a basis for S2(Γ0(N)).

Let M2(Γ0(N); Q) and S2(Γ0(N); Q) denote modular symbols and cuspidal
modular symbols over Q. Before we begin, we describe a simple but crucial fact
about the relation between cusp forms and the Hecke algebra.

If f =
∑

bnq
n ∈ C[[q]] is a power series, let an(f) = bn be the n coefficient

of f . Notice that an is a linear map from C[[q]] to itself.

As explained in [Lan95, §VII.3], the Hecke operators Tn acts on elements of
M2(Γ0(N)) as follows:

Tn

( ∞
∑

m=0

amq
m

)

=





∑

1≤d | gcd(n,m)

ε(d) · d · amn/d2



 qm, (3.4.1)

where ε(d) = 1 if gcd(d,N) = 1 and ε(d) = 0 if gcd(d,N) 6= 1.
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Lemma 3.4.1. Suppose f is a modular form and n is a positive integer. Then

a1(Tn(f)) = an(f).

Proof. The coefficient of q in (3.4.1) is ε(1) · 1 · a1·n/12 = an.

Let T′ denote the image of the Hecke algebra in End(S2(Γ0(N))), and let
T′

C = T′ ⊗ C be the C-span of the Hecke operators.

Proposition 3.4.2. There is a perfect bilinear pairing of complex vector spaces

S2(Γ0(N)) × T′
C → C

given by
〈f, t〉 = a1(t(f)).

Proof. The pairing is bilinear since both t and a1 are linear. Suppose f ∈
S2(Γ0(N)) is such that 〈f, t〉 = 0 for all t ∈ T′

C. Then in particular 〈f, Tn〉 = 0
for each positive integer n. But by Lemma 3.4.1 we have

an(f) = a1(Tn(f)) = 0

for all n; thus f = 0.
Next suppose that t ∈ T′

C is such that 〈f, t〉 = 0 for all f ∈ S2(Γ0(N)).
Then a1(t(f)) = 0 for all f . For any n, the image Tn(f) is also a cuspform, so
a1(t(Tn(f))) = 0 for all n and f . Finally T′ is commutative and Lemma 3.4.1
together imply that for all n and f ,

0 = a1(t(Tn(f))) = a1(Tn(t(f))) = an(t(f)),

so t(f) = 0 for all f . Thus t is the 0 operator.

By Proposition 3.4.2 there is an isomorphism of vector spaces

Ψ : S2(Γ0(N))
∼=−−→ Hom(T′,C)

that sends f ∈ S2(Γ0(N)) to the homomorphism

t 7→ a1(t(f)).

For any linear map ϕ : T′
C → C, let

fϕ =

∞
∑

n=1

ϕ(Tn)q
n ∈ C[[q]].

By Lemma 3.4.1, we have

〈fϕ, Tn〉 = a1(Tn(fϕ)) = an(fϕ) = ϕ(Tn).

Thus fϕ must be the q-expansion of the modular form that corresponds to ϕ
under the isomorphism Ψ. In paritcular, fϕ ∈ S2(Γ0(N)), and the cuspforms
fϕ, as ϕ runs through a basis, form a basis for S2(Γ0(N)).
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We can compute S2(Γ0(N)) by computing Hom(T′,C), where we
compute T′ in any way we want, e.g., using a space that contains an
isomorphic copy of S2(Γ0(N)).

Algorithm 3.4.3 (Basis of Cuspforms). Given a positive integers N and B,
this algorithm computes a basis for S2(Γ0(N)) to precision O(qB).

1. Compute the modular symbols space M2(Γ0(N); Q) via the presentation
of Section 3.2.2.

2. Compute the subspace S2(Γ0(N); Q) of cuspidal modular symbols as in
Section 3.3.

3. Let d = 1
2 · dim S2(Γ0(N); Q). This is the dimension of S2(Γ0(N)).

4. Use the Hecke operators T2, T3, etc., of Section 3.2.3 to find the unique
subspace V of Hom(M2(Γ0(N); Q),Q) that is isomorphic to S2(Γ0(N); Q)
as a T-module. (The Hecke operators act via their transpose; find the
subspace V of the dual with the same characteristic polynomials.)

5. Let [Tn] denote the matrix of Tn acting on some fixed basis of V . For a
matrix A, let aij(A) denote the ij-th entry of A. For various integers i, j
with 0 ≤ i, j ≤ d− 1, compute formal q-expansions

fij(q) =

B−1
∑

n=1

aij([Tn])q
n +O(qB) ∈ Q[[q]]

until we find enough to span a space of dimension d (or exhaust all of them,
in which case B is too small). These fij then form a basis for S2(Γ0(N)).

3.4.1 Examples

In this section we use SAGE to demonstrate Algorithm 3.4.3 for computing
S2(Γ0(N)) for various N .

Example 3.4.4. The smallest N with S2(Γ0(N)) 6= 0 is N = 11.

sage: M = ModularSymbols(11)

sage: M.basis()

((1,0), (1,8), (1,9))

sage: S = M.cuspidal_subspace()

sage: S

Dimension 2 subspace of a modular symbols space of level 11

sage: S.basis()

((1,8), (1,9))

sage: d = S.dimension() // 2; d

1

The command dual free module computes the vector space V of Algorithm 3.4.3.
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sage: S.dual_free_module()

Vector space of degree 3 and dimension 2 over Rational Field

Basis matrix:

[1 0 5]

[0 1 0]

View each of the basis vectors (1, 0, 5) and (0, 1, 0) as defining a linear map (via
dot product) S2(Γ0(11)) → Q, where we view elements of S2(Γ0(11)) as linear
combinations of our fixed basis (1, 0), (1, 8), (1, 9) for M2(Γ0(11)).

The command dual hecke matrix computes the matrix of Tn on the above
basis for V .

sage: S.dual_hecke_matrix(1)

[1 0]

[0 1]

sage: S.dual_hecke_matrix(2)

[-2 0]

[ 0 -2]

sage: S.dual_hecke_matrix(3)

[-1 0]

[ 0 -1]

Thus

f0,0 = q − 2q2 − q3 + · · · ∈ S2(Γ0(11)).

Since dimS2(Γ0(11)) = 1, this form must be a basis.

Example 3.4.5. Next considerN = 23, where we have d = dimS2(Γ0(23)) = 2.
The command q expansion cuspforms computes V and the matrices [Tn]|V
and returns a function f such that f(i, j) is the q-expansion of fi,j to some
precision.

sage: M = ModularSymbols(23)

sage: S = M.cuspidal_subspace()

sage: S

Dimension 4 subspace of a modular symbols space of level 23

sage: f = S.q_expansion_cuspforms(6)

sage: f(0,0)

q - 2/3*q^2 + 1/3*q^3 - 1/3*q^4 - 4/3*q^5 + O(q^6)

sage: f(0,1)

O(q^6)

sage: f(1,0)

-1/3*q^2 + 2/3*q^3 + 1/3*q^4 - 2/3*q^5 + O(q^6)
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Thus a basis for S2(Γ0(23)) is

f0,0 = q − 2

3
q2 +

1

3
q3 − 1

3
q4 − 4

3
q5 + · · ·

f1,0 = −1

3
q2 +

2

3
q3 +

1

3
q4 − 2

3
q5 + · · ·

Or, in echelon form,

q − q3 − q4 + · · ·
q2 − 2q3 − q4 + 2q5 + · · ·

which we computed using

sage: S.q_expansion_basis(6)

[q - q^3 - q^4 + O(q^6),

q^2 - 2*q^3 - q^4 + 2*q^5 + O(q^6)]

3.5 Computing S2(Γ0(N)) using eigenvectors

In this section we describe how to use modular symbols to construct a basis of
S2(Γ0(N)) consisting of modular forms that are eigenvectors for every element
of the ring T′ generated by the Hecke operator Tp, with p - N . Such eigenvectors
are called eigenforms.

Suppose M is a positive integer that divides N . As explained in [Lan95,
VIII.1–2], for each divisor d of N/M there is a natural degeneracy map βM,d :
S2(M) → S2(Γ0(N)) given by βM,d(f(q)) = f(qd). The new subspace of
S2(Γ0(N)), denoted S2(Γ0(N))new, is the complementary T-submodule of the
T-module generated by the images of all maps βM,d, with M and d as above.
(It is a nontrivial fact that this complement is well defined; one possible proof
uses the Petersson inner product.)

The theory of Atkin and Lehner [AL70] (see Section 6.1.1) asserts that, as
a T′-module, S2(Γ0(N)) decomposes as follows:

S2(Γ0(N)) =
⊕

M |N, d|N/M
βM,d(S2(M)new).

To compute S2(Γ0(N)) it thus suffices to compute S2(M)new for each positive
divisor M of N .

We now turn to the problem of computing S2(Γ0(N))new. Atkin and Lehner
[AL70] also proved that S2(Γ0(N))new is spanned by eigenforms, each of which
occurs with multiplicity one in S2(Γ0(N))new. Moreover, if f ∈ S2(Γ0(N))new

is an eigenform then the coefficient of q in the q-expansion of f is nonzero, so
it is possible to normalize f so that coefficient of q is 1. With f so normalized,
if Tp(f) = apf , then the pth Fourier coefficient of f is ap. If f =

∑∞
n=1 anq

n is
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a normalized eigenvector for all Tp, then the an, with n composite, are deter-
mined by the ap, with p prime, by the following formulas: anm = anam when
n and m are relatively prime, and apr = apr−1ap − papr−2 for p - N prime.
When p | N , apr = arp. We conclude that in order to compute S2(Γ0(N))new,
it suffices to compute all systems of eigenvalues {a2, a3, a5, . . .} of the Hecke
operators T2, T3, T5, . . . acting on S2(Γ0(N))new. Given a system of eigenvalues,
the corresponding eigenform is f =

∑∞
n=1 anq

n, where the an, for n composite,
are determined by the recurrence given above.

In light of the pairing 〈 , 〉 introduced in Section 3.1, computing the above
systems of eigenvalues {a2, a3, a5, . . .} amounts to computing the systems of
eigenvalues of the Hecke operators Tp on the subspace V of S2(Γ0(N)) that
corresponds to the new subspace of S2(Γ0(N)). For each proper divisor M of N
and each divisor d of N/M , let φM,d : S2(Γ0(N)) → S2(Γ0(M)) be the map
sending x to ( d 0

0 1 )x. Then V is the intersection of the kernels of all maps φM,d.
The computation of the systems of eigenvalues of a collection of commuting

diagonalizable endomorphisms involves standard linear algebra techniques, such
as computation of characteristic polynomials and kernels of matrices. There
are, however, several tricks that greatly speed up this process, some of which
are described in Chapter 7.

Example 3.5.1. All forms in S2(Γ0(39)) are new. Up to Galois conjugacy,
the eigenvalues of the Hecke operators T2, T3, T5, and T7 on S2(Γ0(39)) are
{1,−1, 2,−4} and {a, 1,−2a − 2, 2a + 2}, where a2 + 2a − 1 = 0. Each of
these eigenvalues occur in S2(Γ0(39)) with multiplicity two; for example, the
characteristic polynomial of T2 on S2(Γ0(39)) is (x− 1)2 · (x2 + 2x− 1)2. Thus
S2(Γ0(39)) is spanned by

f1 = q + q2 − q3 − q4 + 2q5 − q6 − 4q7 + · · · ,
f2 = q + aq2 + q3 + (−2a− 1)q4 + (−2a− 2)q5 + aq6 + (2a+ 2)q7 + · · · ,

and the Galois conjugate of f2.

3.5.1 Summary

To compute the q-expansion, to some precision, of each eigenforms in S2(Γ0(N)),
we use the degeneracy maps so that we only have to solve the problem for
S2(Γ0(N))new. Here, using modular symbols, we compute all systems of eigen-
values {a2, a3, a5, . . .}, then write down each of the corresponding eigenforms
f = q + a2q

2 + a3q
3 + · · · .

3.6 Exercises

3.1 Let p be a prime.

(a) List representative elements of P1(Z/3Z).

(b) What is the cardinality of P1(Z/pZ) as a function of p?
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(c) Prove that there is a bijection between the right cosets of Γ0(p) in
SL2(Z) and the elements of P1(Z/pZ). (As mentioned in this chapter
this is also true for composite level; see [Cre97a, §2.2] for complete
details.)

3.2 Use the inductive proof of Proposition 3.2.5 to write {0, 4/7} in terms of
Manin symbols for Γ0(7).

3.3 Show that the Hecke operator T2 acts as multiplication by 3 on the space
M2(Γ0(3)) as follows:

(a) Write down right coset representatives for Γ0(3) in SL2(Z).

(b) List all 8 relations coming from 3.2.7.

(c) Find a single Manin symbols [ri] so that the three other Manin sym-
bols are a nonzero multiple of [ri] modulo the relations found in the
previous step.

(d) Use formula (3.2.2) to compute the image of your symbol [ri] un-
der T2. You will obtain a sum of four symbols. Using the relations
above, write this sum as a multiple of [ri]. (The multiple must be 3
or you made a mistake.)
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Chapter 4

Dirichlet Characters

In this chapter we develop a systematic theory for computing with Dirichlet
characters, which are extremely important to computations with modular forms
for (at least) two reasons:

• To compute the Eisenstein subspace Ek(Γ1(N)) of Mk(Γ1(N)) we explic-
itly write down Eisenstein series attached to pairs of Dirichlet characters
(see Chapter 5).

• To compute Sk(Γ1(N)), we instead compute a decomposition

Mk(Γ1(N)) =
⊕

Mk(Γ1(N), ε)

then compute each factor. Here the sum is over all Dirichlet characters ε
modulo N .

Example 4.0.1. Expanding on the second point, the spaces Mk(Γ1(N), ε) are
frequently much easier to compute with than the full Mk(Γ1(N)). As we will
see, if ε = 1 is the trivial character, then Mk(Γ1(N), 1) = Mk(Γ0(N)), which
has much smaller dimension than Mk(Γ1(N)). For example, M2(Γ1(100)) has
dimension 370, whereasM2(Γ1(100), 1) has dimension only 24, andM2(Γ1(389))
has dimension 6499, whereas M2(Γ1(389), 1) has dimension only 33.

sage: dimension_modular_forms(Gamma1(100),2)

370

sage: dimension_modular_forms(Gamma0(100),2)

24

sage: dimension_modular_forms(Gamma1(389),2)

6499

sage: dimension_modular_forms(Gamma0(389),2)

33

53
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4.1 The Definition

Fix an integral domain R and a root ζ of unity in R.

Definition 4.1.1 (Dirichlet Character). A Dirichlet character modulo N
over R is a map ε : Z → R such that there is a homomorphism f : (Z/NZ)∗ →
〈ζ〉 for which

ε(a) =

{

0 if (a,N) > 1,

f (a mod N) if (a,N) = 1.

We denote the group of such Dirichlet characters by D(N,R). Note that
elements of D(N,R) are in bijection with homomorphisms (Z/NZ)∗ → 〈ζ〉.

One familiar example of a Dirichlet characters is the Legendre symbol
(

a
p

)

that appears in quadratic reciprocity theory. It is a Dirichlet character mod-
ulo p that takes the value 1 on integers that are congruent to a nonzero square
modulo p, the value −1 on integers that are congruent to a nonzero non-square
modulo p, and 0 on integers divisible by p.

4.2 Dirichlet Characters in SAGE

To create a Dirichlet character in SAGE you first create the group D(N,R)
of Dirichlet characters, then obtain elements of that group. First we make
D(11,Q):

sage: G = DirichletGroup(11, RationalField())

sage: G

Group of Dirichlet characters of modulus 11 over Rational Field

A Dirichlet character prints as a matrix that gives the values of the character
on canonical generators of (Z/NZ)∗ (as discussed below).

sage: list(G)

[[1], [-1]]

sage: eps = G.0 # 0th generator for Dirichlet group

sage: eps

[-1]

The character takes the value −1 on the unit generator.

sage: G.unit_gens()

[2]

sage: eps(2)

-1

sage: eps(3)

1

It is 0 on any integer not coprime to 11:
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sage: eps(22)

0

We can also create groups of Dirichlet characters taking values in other rings
or fields. For example, we create the cyclotomic field Q(ζ4).

sage: R = CyclotomicField(4)

sage: CyclotomicField(4)

Cyclotomic Field of order 4 and degree 2

Then we define G = D(15,Q(ζ4).

sage: G = DirichletGroup(15, R)

sage: G

Group of Dirichlet characters of modulus 15 over Cyclotomic Field

of order 4 and degree 2

And we list each of its elements.

sage: list(G)

[[1, 1], [-1, 1], [1, zeta_4], [-1, zeta_4], [1, -1], [-1, -1],

[1, -zeta_4], [-1, -zeta_4]]

Now lets evaluate the second generator of G on various integers:

sage: e = G.1

sage: e(4)

-1

sage: e(-1)

-1

sage: e(5)

0

Finally we make a list of all the values of e.

sage: [e(n) for n in range(15)]

[0, 1, zeta_4, 0, -1, 0, 0, zeta_4, -zeta_4,

0, 0, 1, 0, -zeta_4, -1]

We can also compute with groups of Dirichlet characters with values in a
finite field.

sage: G = DirichletGroup(15, GF(5))

sage: G

Group of Dirichlet characters of modulus 15 over Finite field of size 5
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We list all the elements of G, again represented by matrices that give the images
of each unit generator, as an element of F5.

sage: list(G)

[[1, 1], [4, 1], [1, 2], [4, 2], [1, 4], [4, 4], [1, 3], [4, 3]]

We evaluate the second generator of G on several integers.

sage: e = G.1

sage: e(-1)

4

sage: e(2)

2

sage: e(5)

0

sage: print [e(n) for n in range(15)]

[0, 1, 2, 0, 4, 0, 0, 2, 3, 0, 0, 1, 0, 3, 4]

4.3 Representing Dirichlet Characters

Lemma 4.3.1. The groups (Z/NZ)∗ and D(N,C) are non-canonically isomor-
phic.

Proof. This follows from the more general fact that for any finite abelian groupG,
we have that G ≈ Hom(G,C∗). To prove that this latter non-canonical isomor-
phism exists, first reduce to the case when G is cyclic of order n, in which
case the statement follows because C∗ contains the nth root of unity e2πi/n, so
Hom(G,C∗) is also cyclic of order n.

Corollary 4.3.2. We have #D(N,R) | ϕ(N), with equality if and only if the
order of our choice of ζ ∈ R is a multiple of the exponent of the group (Z/NZ)∗.

Example 4.3.3. The groupD(5,C) has elements {[1], [i], [−1], [−i]}, so is cyclic
of order ϕ(5) = 4. In contrast, the group D(5,Q) has only the two elements
[1] and [−1] and order 2. In SAGE the command DirichletGroup(N) with
no second argument create the group of Dirichlet characters with values in the
cyclotomic field Q(ζn), where n is the exponent of the group (Z/NZ)∗. Every
element in D(N,C) takes values in Q(ζn), so D(N,Q(ζn)) ∼= D(N,C).

sage: list(DirichletGroup(5))

[[1], [zeta_4], [-1], [-zeta_4]]

sage: list(DirichletGroup(5, Q))

[[1], [-1]]

Fix a positive integer N , and write N =
∏n
i=0 p

ei

i where p0 < p1 < · · · < pn
are the prime divisors of N . By Exercise 4.1, each factor (Z/pei

i Z)∗ is a cyclic
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group Ci = 〈gi〉, except if p0 = 2 and e0 ≥ 3, in which case (Z/pe00 Z)∗ is a
product of the cyclic subgroup C0 = 〈−1〉 of order 2 with the cyclic subgroup
C1 = 〈5〉. In all cases we have

(Z/NZ)∗ ∼=
∏

0≤i≤n
Ci =

∏

0≤i≤n
〈gi〉.

For i such that pi > 2, choose the generator gi of Ci to be the element of
{2, 3, . . . , pei

i − 1} that is smallest and generates. Finally, use the Chinese Re-
mainder Theorem (see [Coh93, §1.3.3])) to lift each gi to an element in (Z/NZ)∗,
also denoted gi, that is 1 modulo each p

ej

j for j 6= i.

Algorithm 4.3.4 (Minimal generator for (Z/prZ)∗). Given an odd prime
power pr, this algorithm computes the minimal generator for (Z/prZ)∗.

1. [Factor Group Order] Factor n = φ(pr) = pr−1 ·2 · ((p−1)/2) as a product
∏

pei

i of primes. This is equivalent in difficulty to factoring (p − 1)/2.
(See, e.g., [Coh93, Ch.8, 10] for integer factorization algorithms.)

2. [Initialize] Set g = 2.

3. [Generator?] Using the binary powering algorithm (see [Coh93, §1.2]),
compute gn/pi (mod pr), for each prime divisor pi of n. If any of these
powers are 1, set g = g+ 1 and go to Step 2. If no powers are 1, output g
and terminate.

For the proof, see Exercise 4.2.

Example 4.3.5. A minimal generator for (Z/49Z)∗ is 3. We have n = ϕ(49) =
42 = 2 · 3 · 7, and

2n/2 ≡ 1, 2n/3 ≡ 18, 2n/7 ≡ 15 (mod 49).

so 2 is not a generator for (Z/49Z)∗. (We see this just from 2n/2 ≡ 1 (mod 49).)
However 3 is since

3n/2 ≡ 48, 3n/3 ≡ 30, 3n/7 ≡ 43 (mod 49).

Example 4.3.6. In this example we compute minimal generators for N = 25,
100, and 200:

1. The minimal generator for (Z/25Z)∗ is 2.

2. Minimal generators for (Z/100Z)∗, lifted to numbers modulo 100, are g0 =
51 and g1 = 77. Notice that g0 ≡ −1 (mod 4) and g0 ≡ 1 (mod 25), and
g1 ≡ 2 (mod 25) is the minimal generator modulo 25.

3. Minimal generators for (Z/200Z)∗, lifted to numbers modulo 200, are g0 =
151, g1 = 101, and g2 = 177. Note that g0 ≡ −1 (mod 4), that g1 ≡ 5
(mod 8), and g2 ≡ 2 (mod 25).
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The command Integers(N) creates Z/NZ.

sage: R = Integers(49)

sage: R

Ring of integers modulo 49

The unit gens() command computes the unit generators as defined above.

sage: R.unit_gens()

[3]

sage: Integers(25).unit_gens()

[2]

sage: Integers(100).unit_gens()

[51, 77]

sage: Integers(200).unit_gens()

[151, 101, 177]

sage: Integers(2005).unit_gens()

[402, 1206]

sage: Integers(200000000).unit_gens()

[174218751, 51562501, 187109377]

Fix an element ζ of finite multiplicative order in a ring R, and let D(N,R)
denote the group of Dirichlet characters modulo N over R, with image in 〈ζ〉 ∪
{0}. We specify an element ε ∈ D(N,R) by giving the list

[ε(g0), ε(g1), . . . , ε(gn)] (4.3.1)

of images of the generators of (Z/NZ)∗. (Note if N is even, the number of
elements of the list (4.3.1) does not depend on whether or not 8 | N—there are
always two factors corresponding to 2.) This representation completely deter-
mines ε and is convenient for arithmetic operations with Dirichlet characters. It
is analogous to representing a linear transformation by a matrix. See Section 4.7
for a discussion of alternative ways to represent Dirichlet characters.

4.4 Evaluation of Dirichlet Characters

This section is about how to compute ε(n), where ε is a Dirichlet character
and n is an integer. We begin with an example.

Example 4.4.1. If N = 200, then g0 = 151, g1 = 101 and g2 = 177, as we
saw in Example 4.3.6. The exponent of (Z/200Z)∗ is 20, since that is the least
common multiple of the exponents of 4 = #(Z/8Z)∗ and 20 = #(Z/25Z)∗. The
orders of g0, g1 and g2 are 2, 2, and 20. Let ζ = ζ20 be a primitive 20th root of
unity in C. Then the following are generators for D(200,C):

ε0 = [−1, 1, 1], ε1 = [1,−1, 1], ε2 = [1, 1, ζ],
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and ε = [1,−1, ζ5] is an example element of order 4. To evaluate ε(3), we write 3
in terms of g0, g1, and g2. First, reducing 3 modulo 8, we see that 3 ≡ g0 · g1
(mod 8). Next reducing 3 modulo 25, and trying powers of g2 = 2, we find that
e ≡ g7

2 (mod 25). Thus

ε(3) = ε(g0 · g1 · g7
2)

= ε(g0)ε(g1)ε(g2)
7

= 1 · (−1) · (ζ5)7

= −ζ35 = −ζ15.

We next illustrate the above computation of ε(3) in SAGE. First we make
the group D(200,Q(ζ8)), and list its generators.

sage: G = DirichletGroup(200)

sage: G

Group of Dirichlet characters of modulus 200 over Cyclotomic Field

of order 20 and degree 8

sage: G.exponent()

20

sage: G.gens()

[[-1, 1, 1], [1, -1, 1], [1, 1, zeta_20]]

Next we construct ε.

sage: K = G.base_ring()

sage: zeta = K.gen()

sage: eps = G([1,-1,zeta^5])

sage: eps

[1, -1, zeta_20^5]

Finally, we evaluate ε at 3.

sage: eps(3)

zeta_20^5

sage: -zeta^15

zeta_20^5

Example 4.4.1 illustrates that if ε is represented using a list as described
above, evaluation of ε on an arbitrary integer is inefficient without extra infor-
mation; it requires solving the discrete log problem in (Z/NZ)∗. In fact, for a
general character ε calculation of ε will probably be at least as hard as finding
discrete logarithms no matter what representation we use (quadratic characters
are easier—see Algorithm 4.4.5).
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Algorithm 4.4.2 (Evaluate ε). Given a Dirichlet character ε modulo N ,
represented by a list [ε(g0), ε(g1), . . . , ε(gn)], and an integer a, this algorithm
computes ε(a).

1. [GCD] Compute g = gcd(a,N). If g > 1, output 0 and terminate.

2. [Discrete Log] For each i, write a (mod pei

i ) as a power mi of gi using some
algorithm for solving the discrete log problem (see below). (If pi = 2, write
a (mod pei

i ) as (−1)m0 · 5m1 .) This step is analogous to writing a vector
in terms of a basis.

3. [Multiply] Compute and output
∏

ε(gi)
mi as an element of R, and termi-

nate. This is analogous to multiplying a matrix times a vector.

By Exercise 4.3 we have an isomorphism of groups

(1 + pn−1(Z/pnZ), ×) ∼= (Z/pZ, +),

so one sees by induction that Step 2 is “about as difficult” as finding a discrete
log in (Z/pZ)∗. There is an algorithm called “baby-step giant-step”, which
solves the discrete log problem in (Z/pZ)∗ in time O(

√
`), where ` is the largest

prime factor of p−1 = #(Z/pZ)∗ (note that the discrete log problem in (Z/pZ)∗

reduces to a series of discrete log problems in each prime order cyclic factor).
This is unfortunately still exponential in the number of digits of `.

Algorithm 4.4.3 (Baby-Step Giant Step Discrete Log). Given a prime
p, a generator g of (Z/pZ)∗, and an element a ∈ (Z/pZ)∗, this algorithm finds
an n such that gn = a. (Note that this algorithm works in any cyclic group, not
just (Z/pZ)∗.)

1. [Make Lists] Let m = d√pe be the ceiling of
√
p, and construct two lists

g, gm, . . . , g(m−1)m, gm
2

(giant steps)

and
ag, ag2, . . . , agm−1, agm (baby steps).

2. [Find Match] Sort the two lists and find a match gim = agj . Then a =
gim−j .

Proof. We prove that there will always be a match. Since we know that a = gk

for some k with 0 ≤ k ≤ p− 1 and any such k can be written in the form im− j
for 0 ≤ i, j ≤ m− 1, we will find such a match.

Algorithm 4.4.3 uses nothing special about (Z/pZ)∗, so it works in a generic
group. It is a theorem that there is no faster algorithm to find discrete logs
in a “generic group” (see [Sho97, Nec94]). Fortunately there are much better
subexponential algorithms for solving the discrete log problem in (Z/pZ)∗, which
use the special structure of this group. They use the number field sieve (see
e.g., [Gor93]), which is also the best known algorithm for factoring integers.
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This class of algorithms has been very well studied by cryptographers; though
sub-exponential, solving discrete log problems when p is large is still extremely
difficult. For a more in-depth survey see [Gor04].

The specific applications of Dirichlet characters in this book involve com-
puting modular forms, and for these applications N will be fairly small, e.g.,
N < 106. Also we will evaluate ε on a huge number of random elements, inside
inner loops of algorithms. Thus for our purposes it will often be better to make
a table of all values of ε, so that evaluation of ε is extremely fast. The following
algorithm computes a table of all values of ε, and it does not require computing
any discrete logs since we are computing all values.

Algorithm 4.4.4 (Values of ε). Given a Dirichlet character ε represented by
the list of values of ε on the minimal generators gi of (Z/NZ)∗, this algorithm
creates a list of all the values of ε.

1. [Initialize] For each minimal generator gi, set ai = 0. Let n =
∏

gai

i , and
set z = 1. Create a list v of N values, all initially set equal to 0. When
this algorithm terminates the list v will have the property that

v [x (mod N)] = ε(x).

Notice that we index v starting at 0.

2. [Add Value to Table] Set v[n] = z.

3. [Finished?] If each ai is one less than the order of gi, output v and
terminate.

4. [Increment] Set a0 = a0 + 1, n = n · g0 (mod N), and z = z · ε(g0). If
a0 ≥ ord(g0), set a0 → 0, then set a1 = a1 + 1, n = n · g1 (mod N), and
z = z · ε(g1). If a1 ≥ ord(g1), do what you just did with a0, but with all
subscripts replaced by 1. Etc. (Imagine a car odometer.) Go to Step 2.

Frequently people describe quadratic characters in terms of the Kronecker
symbol. The following algorithm gives a way to go between the two representa-
tions.

Algorithm 4.4.5 (Kronecker Symbol). Given an integer N , this algorithm
computes a representation of the Kronecker symbol

(

a
N

)

as a Dirichlet character.

1. Compute the minimal generators gi of (Z/NZ)∗ using Algorithm 4.3.4.

2. Compute
(

gi

N

)

for each gi using one of the algorithms of [Coh93, §1.1.4].

Remark 4.4.6. The algorithms in [Coh93, §1.1.4] for computing the Kronecker
symbol run in time quadratic in the number of digits of the input, so they do

not require computing discrete logarithms. (They use, e.g., that
(

a
p

)

≡ a(p−1)/2

(mod p), when p is an odd prime.) If N is very large and we are only interested
in evaluating ε(a) =

(

a
N

)

for a few a, then viewing ε as a Dirichlet character in
the sense of this chapter leads to a less efficient way to compute with ε. The
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algorithmic discussion of characters in this chapter is most useful for working
with the full group of characters, and characters that cannot be expressed in
terms of Kronecker characters.

Example 4.4.7. We compute the Dirichlet character associated to the Kro-
necker symbol

(

a
200

)

. We find that
(

gi

200

)

, for i = 0, 1, 2, where the gi are as in
Example 4.4.1:

sage: kronecker(151,200)

1

sage: kronecker(101,200)

-1

sage: kronecker(177,200)

1

Thus the corresponding character is defined by [1,−1, 1].

Remark 4.4.8 (Elkies). Jacobi reciprocity must be used to efficiently compute
the Jacobi symbol

(

m
n

)

. It’s faster than computing a(p−1)/2 when p is prime,

but more significantly it makes it possible to compute Jacobi symbols
(

m
n

)

for
all m,n without knowing the factorization of n—which of course would be a
computation much longer than quadratic.

Example 4.4.9. We compute the character associated to
(

a
420

)

. We have
420 = 4 · 3 · 5 · 7, and minimal generators are

g0 = 211, g1 = 1, g2 = 281, g3 = 337, g4 = 241.

We have g0 ≡ −1 (mod 4), g2 ≡ 2 (mod 3), g3 ≡ 2 (mod 5) and g4 ≡ 3
(mod 7). Using PARI again we find

(

g0
420

)

=
(

g1
420

)

= 1 and
(

g2
420

)

=
(

g3
420

)

=
(

g4
420

)

= −1, so the corresponding character is [1, 1,−1,−1,−1].

4.5 Conductors of Dirichlet Characters

The following algorithm for computing the order of ε reduces the problem to
computing the orders of powers of ζ in R.

Algorithm 4.5.1 (Order of Character). This algorithm computes the order
of a Dirichlet character ε ∈ D(N,R).

1. Compute the order ri of each ε(gi), for each minimal generator gi of
(Z/NZ)∗. Since the order of ε(gi) is divisor of n = #(Z/pei

i Z)∗, we can
compute its order by factoring n and considering the divisors of n.

2. Compute and output the least commmon multiple of the integers ri.

Remark 4.5.2. Computing the order of ε(gi) ∈ R is potentially difficult and
tedious. Using a different (simultaneous) representation of Dirichlet characters
avoids having to compute the order of elements of R. See Section 4.7.
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The next algorithm factors ε as a product of “local” characters, one for
each prime divisor of N . It is useful for other algorithms, and also for explicit
computations with the Hijikita trace formula (see [Hij74]). This factorization is
easy to compute because of how we represent ε.

Algorithm 4.5.3 (Factorization of Character). Given a Dirichlet charac-
ter ε ∈ D(N,R), with N =

∏

pei

i , this algorithm finds Dirichlet characters εi
modulo pei

i , such that for all a ∈ (Z/NZ)∗, we have ε(a) =
∏

εi(a(mod pei

i )).
If 2 | N , the steps are as follows:

1. Let gi be the minimal generators of (Z/NZ)∗, so ε is given by a list

[ε(g0), . . . , ε(gn)].

2. For i = 2, . . . , n, let εi be the element of D(pei

i , R) defined by the singleton
list [ε(gi)].

3. Let ε1 be the element of D(2e1 , R) defined by the list [ε(g0), ε(g1)] of
length 2. Output the εi and terminate.

If 2 - N , then omit Step 3, and include all i in Step 2.

The factorization of Algorithm 4.5.3 is unique since each εi is determined by
the image of the canonical map (Z/pei

i Z)∗ in (Z/NZ)∗, which sends a (mod pei

i )
to the element of (Z/NZ)∗ that is a (mod pei

i ) and 1 (mod p
ej

j ) for j 6= i.

Example 4.5.4. If ε = [1,−1, ζ5] ∈ D(200,C), then ε1 = [1,−1] ∈ D(8,C) and
ε2 = [ζ5] ∈ D(25,C).

Definition 4.5.5 (Conductor). The conductor of a Dirichlet character ε ∈
D(N,R) is the smallest positive divisor c | N such that there is a character
ε′ ∈ D(c,R) for which ε(a) = ε′(a) for all a ∈ Z with (a,N) = 1. A Dirichlet
character is primitive if its modulus equals its conductor. The character ε′

associated to ε with modulus equal to the conductor of ε is called the primitive
character associated to ε.

We will be interested in conductors later, when computing new subspaces of
spaces of modular forms with character. Also certain formulas for special values
of L functions are only valid for primitive characters.

Algorithm 4.5.6 (Conductor). This algorithm computes the conductor of a
Dirichlet character ε ∈ D(N,R).

1. [Factor Character] Using Algorithm 4.5.3, find characters εi whose product
is ε.

2. [Compute Orders] Using Algorithm 4.5.1, compute the orders ri of each εi.

3. [Conductors of Factors] For each i, either set ci → 1 if εi is the trivial

character (i.e., of order 1), or set ci = p
ordpi

(ri)+1

i , where ordp(n) is the
largest power of p that divides n.
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4. [Adjust at 2?] If p1 = 2 and ε1(5) 6= 1, set c1 = 2c1.

5. [Finished] Output c =
∏

ci and terminate.

Proof. Let εi be the local factors of ε, as in Step 1. We first show that the
product of the conductors fi of the εi is the conductor f of ε. Since εi factors
through (Z/fiZ)∗, the product ε of the εi factors through (Z/

∏

fiZ)∗, so the
conductor of ε divides

∏

fi. Conversely, if ordpi
(f) < ordpi

(fi) for some i, then
we could factor ε as a product of local (prime power) characters differently,
which contradicts that this factorization is unique.

It remains to prove that if ε is a nontrivial character modulo pn, where p is
a prime, and r is the order of ε, then the conductor of ε is pordp(r)+1, except
possibly if 8 | pn. Since the order and conductor of ε and of the associated
primitive character ε′ are the same, we may assume ε is primitive, i.e., that pn

is the conductor of ε; note that that n > 0, since ε is nontrivial.

First suppose p is odd. Then the abelian group D(pn, R) splits as a direct
sum D(p,R) ⊕ D(pn, R)′, where D(pn, R)′ is the p-power torsion subgroup of
D(pn, R). Also ε has order u · pm, where u, which is coprime to p, is the order
of the image of ε in D(p,R) and pm is the order of the image in D(pn, R)′. If
m = 0, then the order of ε is coprime to p, so ε is in D(p,R), which means
that n = 1, so n = m + 1, as required. If m > 0, then ζ ∈ R must have order
divisible by p, so R has characteristic not equal to p. The conductor of ε does
not change if we adjoin roots of unity to R, so in light of Lemma 4.3.1 we may
assume that D(N,R) ≈ (Z/NZ)∗. It follows that for each n′ ≤ n, the p-power
subgroup D(pn

′

, R)′ of D(pn
′

, R) is the pn
′−1-torsion subgroup of D(pn, R)′.

Thus m = n− 1, since D(pn, R)′ is by assumption the smallest such group that
contains the projection of ε. This proves the formula of Step 3. We leave the
argument when p = 2 as an exercise (see Exercise 4.4).

Example 4.5.7. If ε = [1,−1, ζ5] ∈ D(200,C), then as we saw in Exam-
ple 4.5.4, ε is the product of ε1 = [1,−1] and ε2 = [ζ5]. Because ε1(5) = −1,
the conductor of ε1 is 8. The order of ε2 is 4 (since ζ is a 20th root of unity),
so the conductor of ε2 is 5. Thus the conductor of ε is 40 = 8 · 5.

4.6 Restriction, Extension, and Galois Orbits

The following two algorithms restrict and extend characters to a compatible
modulus. Using them it is easy to define multiplication of two characters ε ∈
D(N,R) and ε′ ∈ D(N ′, R′), as long as R and R′ are subrings of a common
ring. To carry out the multiplication, just extend bother characters to characters
modulo lcm(N,N ′), then multiply.

Algorithm 4.6.1 (Restriction of Character). Given a Dirichlet character
ε ∈ D(N,R) and a divisor N ′ of N that is a multiple of the conductor of ε, this
algorithm finds a characters ε′ ∈ D(N ′, R), such that ε′(a) = ε(a), for all a ∈ Z
with (a,N) = 1.
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1. [Conductor] Compute the conductor of ε using Algorithm 4.5.6, and verify
that indeed N ′ is divisible by the conductor and divides N .

2. [Minimal Generators] Compute the minimal generators gi for (Z/N ′Z)∗.

3. [Values of Restriction] For each i, compute ε′(gi) as follows. Find a mul-
tiple aN ′ of N ′ such that (gi + aN ′, N) = 1; then ε′(gi) = ε(gi + aN ′).

4. [Output Character] Output the Dirichlet character modulo N ′ defined by
[ε′(g0), . . . , ε′(gn)].

Proof. The only part that is not clear is that in Step 3 there is an a such that
(gi+aN ′, N) = 1. If we write N = N1 ·N2, with (N1, N2) = 1, and N1 divisible
by all primes that divide N ′, then (gi, N1) = 1 since (gi, N

′) = 1. By the
Chinese Remainder Theorem, there is an x ∈ Z such that x ≡ gi (mod N1) and
x ≡ 1 (mod N2). Then x = gi + bN1 = gi + (bN1/N

′) · N ′ and (x,N) = 1,
which completes the proof.

Algorithm 4.6.2 (Extension of Character). Given a Dirichlet character
ε ∈ D(N,R) and a multiple N ′ of N , this algorithm finds a characters ε′ ∈
D(N ′, R), such that ε′(a) = ε(a), for all a ∈ Z with (a,N ′) = 1.

1. [Minimal Generators] Compute the minimal generators gi for (Z/N ′Z)∗.

2. [Evaluate] Compute ε(gi) for each i. Since (gi, N
′) = 1, we also have

(gi, N) = 1.

3. [Output Character] Output the character defined by [ε(g0), . . . , ε(gn)].

We finish with an algorithm that computes the Galois orbit of an element
in D(N,R). This can be used to divide D(N,R) up into Galois orbits, which is
useful for modular forms computations, because, e.g., the spaces Mk(Γ1(N))(ε)
and Mk(Γ1(N))(ε′) are canonically isomorphic if ε and ε′ are conjugate.

Algorithm 4.6.3 (Galois Orbit). Given a Dirichlet character ε ∈ D(N,R),
this algorithm computes the orbit of ε under the action of G = Gal(F/F ),
where F is the prime subfield of Frac(R), so F = Fp or Q.

1. [Order of ζ] Let n be the order of the chosen root ζ ∈ R.

2. [Nontrivial Automorphisms] If char(R) = 0, let

A = {a : 2 ≤ a < n and (a, n) = 1}.

If char(R) = p > 0, compute the multiplicative order r of p modulo n,
and let

A = {pm : 1 ≤ m < r}.

3. [Compute Orbit] Compute and output the set of unique elements εa for
each a ∈ A (there could be repeats, so we output unique elements only).
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Proof. We prove that the nontrivial automorphisms of 〈ζ〉 in characteristic p
are as in Step 2. It is well-known that every automorphism in characteristic p
on ζ ∈ Fp is of the form x 7→ xp

s

, for some s. The images of ζ under such
automorphisms are

ζ, ζp, ζp
2

, . . . .

Suppose r > 0 is minimal such that ζ = ζp
r

. Then the orbit of ζ is ζ, . . . , ζp
r−1

.
Also pr ≡ 1 (mod n), where n is the multiplicative order of ζ, so r is the
multiplicative order of p modulo n, which completes the proof.

Example 4.6.4. The Galois orbits of characters in D(20,C∗) are as follows:

G0 = {[1, 1, 1]},
G1 = {[−1, 1, 1]},
G2 = {[1, 1, ζ4], [1, 1,−ζ4]}
G3 = {[−1, 1, ζ4], [−1, 1,−ζ4]}
G4 = {[1, 1,−1]},
G5 = {[−1, 1,−1]}

The conductors of the characters in orbit G0 are 1, in order G1 are 4, in orbit G2

they are 5, in G3 they are 20, in G4 the conductor is 5, and in G5 the conductor
is 20. (You should verify this.)

4.7 Alternative Representations of Characters

Let N be a positive integer and R an integral domain, with fixed root of unity ζ
order n, and let D(N,R) = D(N,R, ζ). As in the rest of this chapter, write
N =

∏

pei

i , and let Ci = 〈gi〉 be the corresponding cyclic factors of (Z/NZ)∗.
In this section we discuss other ways to represent elements ε ∈ D(N,R). Each
representation has advantages and disadvantages, and no single representation is
best. It emerged while writing this chapter that simultaneously using more than
one representation of elements of D(N,R) would be best. It is easy to convert
between them, and some algorithms are much easier using one representation,
than when using another. In this section we present two other representations,
each which has advantages and disadvantages. But, we emphasize that there is
frequently no reason to restrict to only one representation!

We could represent ε by giving a list [b0, . . . , bn], where each bi ∈ Z/nZ and
ε(gi) = ζbi . Then arithmetic in D(N,R) is arithmetic in (Z/nZ)n+1, which
is very efficient. A drawback to this approach is that it is easy to accidently
consider sequences that do not actually correspond to elements of D(N,R),
though it is not really any easier to do this than with the representation we use
elsewhere in this chapter. Also the choice of ζ is less clear, which can cause
confusion. Finally, the orders of the local factors is more opaque, e.g., compare
[−1, ζ40] with [20, 1]. Overall this representation is not too bad, and is more like
representing a linear transformation by a matrix. It has the advantage over
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the representation discussed earlier in this chapter that arithmetic in D(N,R) is
very efficient, and doesn’t require any operations in the ring R; such operations
could be quite slow, e.g., if R were a large cyclotomic field.

Another way to represent ε would be to give a list [b0, . . . , bn] of integers,
but this time with bi ∈ Z/ gcd(si, n)Z, where si is the order of gi. Then

ε(gi) = ζbi·n/(gcd(si,n)),

which is already complicated enough to ring warning bells. With this represen-
tation we set up an identification

D(N,R) ∼=
⊕

i

Z/ gcd(si, n)Z,

and arithmetic is efficient. This approach is seductive because every sequence
of integers determines a character, and the sizes of the integers in the sequence
nicely indicate the local orders of the character. However, giving analogues of
many of the algorithms discussed in this chapter that operate on characters
represented this way is tricky. For example, the representation depends very
much on the order of ζ, so it is difficult to correctly compute natural maps
D(N,R) → D(N,S), for R ⊂ S rings, whereas for the representation elsewhere
in this chapter such maps are trivial to compute. This was the representation
the author (Stein) implemented in MAGMA.

The PARI documentation says the following (where we have preserved the
incorrect typesetting):

“A character on the Abelian group ⊕(Z/NiZ)gi is given by a row
vector χ = [a1, . . . , an] such that χ(

∏

gni

i ) = exp(2iπ
∑

aini/Ni).”

This means that the abelian group has independent generators gi of order Ni.
This definition says that, e.g., the value of the character on g1 is

χ(g1) = (e2πi/N1)a1 .

Thus the integers ai are integers modulo Ni, and this representation is basically
the same as the one we described in the previous paragraph (and which the
author does not like).

4.8 Exercises

4.1 This exercise is about the structure of the units of Z/pnZ.

(a) If p is odd and n is a positive integer, prove that (Z/pnZ)∗ is cyclic.

(b) If n ≥ 3 prove that (Z/2nZ)∗ is a direct sum of the cylclic subgroups
〈−1〉 and 〈5〉, of orders 2 and 2n−2, respectively.

4.2 Prove that Algorithm 4.3.4 works, i.e., that if g ∈ (Z/prZ)∗ and gn/pi 6= 1
for all pi | n = ϕ(n), then g is a generator of (Z/prZ)∗.
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4.3 Let p be an odd prime and n ≥ 2 an integer, and prove that

(1 + pn−1(Z/pnZ), ×) ∼= (Z/pZ, +).

Use this to show that solving the discrete log problem in (Z/pnZ)∗ is “not
much harder” than solving the discrete log problem in (Z/pZ)∗.

4.4 Suppose ε is a nontrivial Dirichlet character modulo 2n of order r over the
complex numbers C. Prove that the conductor of ε is

c =

{

2ord2(r)+1 if ε(5) = 1

2ord2(r)+2 if ε(5) 6= 1.

4.5 (a) Find an irreducible quadratic polynomial f over F5.

(b) Then F25 = F5[x]/(f). Find an element with multiplicative order 5
in F25.

(c) Make a list of all Dirichlet characters in D(25,F25, ζ).

(d) Divide these characters up into orbits for the action of Gal(F5/F5).



Chapter 5

Eisenstein Series

We introduce generalized Bernoulli numbers attached to Dirichlet characters,
and give an algorithm to enumerate the Eisenstein series in Mk(N, ε). We will
wait until Chapter 8 for an algorithm to compute all cusp forms in Mk(N, ε).

5.1 Generalized Bernoulli Numbers

Suppose ε is a Dirichlet character modulo N over C.

Definition 5.1.1 (Generalized Bernoulli Number). Define the generalized
Bernoulli numbers Bk,ε attached to ε by the following identity of infinite series:

N−1
∑

a=1

ε(a) · x · eax
eNx − 1

=
∞
∑

k=0

Bk,ε ·
xk

k!
.

If ε is the trivial character of modulus 1 and Bk are as in Section 2.1,
then Bk,ε = Bk, except when k = 1, in which case B1,ε = −B1 = 1/2 (see
Exercise 5.5).

Let Q(ε) denote the field generated by the values of the character ε, so Q(ε)
is the cyclotomic extension Q(ζn), where n is the order of ε.

Algorithm 5.1.2 (Bernoulli Numbers). Given an integer k ≥ 0 and any
Dirichlet character ε with modulus N , this algorithm computes the generalized
Bernoulli numbers Bj,ε, for j ≤ k.

1. Compute g = x/(eNx − 1) ∈ Q[[x]] to precision O(xk+1) by computing
eNx−1 =

∑

n≥1N
nxn/n! to precision O(xk+2), and computing the inverse

x/(eNx − 1). For completeness, note that if f = a0 + a1x + a2x
2 + · · · ,

then we have the following recursive formula for the coefficients bn of the
expansion of 1/f :

bn = − b0
a0

· (bn−1a1 + bn−2a2 + · · · + b0an).

69
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2. For each a = 1, . . . , N , compute fa = g ·eax ∈ Q[[x]], to precision O(xk+1).
This requires computing eax =

∑

n≥0 a
nxn/n! to precision O(xk+1). (One

can omit computation of eNx if N > 1.)

3. Then for j ≤ k, we have

Bj,ε = j! ·
N
∑

a=1

ε(a) · cj(fa),

where cj(fa) is the coefficient of xj in fa.

Note that in Steps 1 and 2 we compute the power series doing arithmetic
only in Q[[x]], not in Q(ε)[[x]], which could be much less efficient if ε has large
order. One could also write down a recurrence formula for Bj,ε, but this would
simply encode arithmetic in power series rings and the definitions in a formula.

Example 5.1.3. Let ε be the nontrivial character with modulus 4. Thus ε has
order 2 and takes values in Q. Then the Bernoulli numbers Bk,ε for k even are
all 0 and for k odd they are

B1,ε = −1/2

B3,ε = 3/2

B5,ε = −25/2

B7,ε = 427/2

B9,ε = −12465/2

B11,ε = 555731/2

B13,ε = −35135945/2

B15,ε = 2990414715/2

B17,ε = −329655706465/2

B19,ε = 45692713833379/2.

These Bernoulli numbers can be divisible by large primes. For example, B17,ε =
5 · 172 · 228135437/2.

Example 5.1.4. This examples illustrates that the generalized Bernoulli num-
bers need not be rational numbers. Suppose ε is the mod 5 character such that
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ε(2) = i =
√
−1. Then Bk,ε = 0 for k even and

B1,ε =
−i− 3

5

B3,ε =
6i+ 12

5

B5,ε =
−86i− 148

5

B7,ε =
2366i+ 3892

5

B9,ε =
−108846i− 176868

5

B11,ε =
7599526i+ 12309572

5

B13,ε =
−751182406i− 1215768788

5

B15,ε =
99909993486i+ 161668772052

5

B17,ε =
−17209733596766i− 27846408467908

5

Proposition 5.1.5. If ε(−1) 6= (−1)k, then Bk,ε = 0.

5.2 Explicit Basis for the Eisenstein Subspace

Suppose χ and ψ are primitive Dirichlet characters with conductors L and M ,
respectively. Let

Ek,χ,ψ(q) = c0 +
∑

m≥1





∑

n|m
ψ(n) · χ(m/n) · nk−1



 qm ∈ Q(χ, ψ)[[q]], (5.2.1)

where

c0 =







0 if L > 1,

−Bk,ψ
2k

if L = 1.

Note that when χ = ψ = 1 and k ≥ 4, then Ek,χ,ψ = Ek, where Ek is from
Chapter 1.

Miyake proves statements that imply the following theorems in [Miy89,
Ch. 7]. We will not prove them in this book since developing the theory needed
to prove them would take us far afield from our goal, which is to compute
Mk(N, ε).

Theorem 5.2.1. Suppose t is a positive integer and χ, ψ are as above, and
that k is a positive integer such that χ(−1)ψ(−1) = (−1)k. Except when
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k = 2 and χ = ψ = 1, the power series Ek,χ,ψ(qt) defines an element of
Mk(MLt, χ/ψ). If χ = ψ = 1, k = 2, t > 1, and E2 = Ek,χ,ψ, then
E2(q) − tE2(q

t) is a modular form in M2(Γ0(t)).

Theorem 5.2.2. The Eisenstein series in Mk(N, ε) coming from Theorem 5.2.1
form a basis for the Eisenstein subspace Ek(N, ε).

Theorem 5.2.3. The Eisenstein series Ek,χ,ψ(q) ∈ Mk(ML) defined above is
an eigenvector for all Hecke operators Tn. Also E2(q) − tE2(q

t), for t > 1, is
an eigenform.

Since Ek,χ,ψ(q) is normalizes so the coefficient of q is 1, the eigenvalue of Tm
is

∑

n|m
ψ(n) · χ(m/n) · nk−1.

Also for f = E2(q) − tE2(q
t) with t > 1 prime, the coefficient of q is 1, and

Tm(f) = σ1(m) · f for (m, t) = 1, and Tt(f) = ((t+ 1) − t)f = f .

Algorithm 5.2.4 (Enumerating Eisenstein Series). Given a weight k and
a Dirichlet character ε of modulus N , this algorithm computes a basis for the
Eisenstein subspace Ek(N, ε) of Mk(N, ε) to precision O(qr).

1. [Weight 2 Trivial Character?] If k = 2 and ε = 1, output the Eisenstein
series E2(q) − tE2(q

t), for each divisor t | N with t 6= 1, then terminate.

2. [Compute Dirichlet Group] Let G = D(N,Q(ζn)) be the group of Dirichlet
characters with values in Q(ζn), where n is the exponent fo (Z/NZ)∗.

3. [Compute Conductors] Compute the conductor of every element of G
(which just involves computing the orders of the local components of each
character).

4. [List Characters χ] Form a list V all Dirichlet characters χ ∈ G such that
cond(χ) · cond(χ/ε) divides N .

5. [Compute Eisenstein Series] For each character χ in V , let ψ = χ/ε, and
compute Ek,χ,ψ(qt) (mod qr) for each divisor t of N/(cond(χ) · cond(ψ)).
We compute Ek,χ,ψ(qt) (mod qr) using (5.2.1) and Algorithm 5.1.2.

Remark 5.2.5. Algorithm 5.2.4 is what I currently use in my programs. It
might be better to first reduce to the prime power case by writing all characters
as product of local characters and combine Steps 3 and 4 into a single step
that involves orders. However, this might make things more complicated and
obscure.

Example 5.2.6. The following is a basis of Eisenstein seriesE2,χ,ψ for E2(Γ1(13)).
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f1 = 1/2 + q + 3*q^2 + 4*q^3 + O(q^4)

f2 = (-7/13*zeta_12^2 - 11/13) + q + (2*zeta_12^2 + 1)*q^2

+ (-3*zeta_12^2 + 1)*q^3 + O(q^4)

f3 = q + (zeta_12^2 + 2)*q^2 + (-1*zeta_12^2 + 3)*q^3 + O(q^4)

f4 = (-1*zeta_12^2) + q + (2*zeta_12^2 - 1)*q^2

+ (3*zeta_12^2 - 2)*q^3 + O(q^4)

f5 = q + (zeta_12^2 + 1)*q^2 + (zeta_12^2 + 2)*q^3 + O(q^4)

f6 = (-1) + q + (-1)*q^2 + 4*q^3 + O(q^4)

f7 = q + q^2 + 4*q^3 + O(q^4)

f8 = (zeta_12^2 - 1) + q + (-2*zeta_12^2 + 1)*q^2

+ (-3*zeta_12^2 + 1)*q^3 + O(q^4)

f9 = q + (-1*zeta_12^2 + 2)*q^2 + (-1*zeta_12^2 + 3)*q^3 + O(q^4)

f10 = (7/13*zeta_12^2 - 18/13) + q + (-2*zeta_12^2 + 3)*q^2

+ (3*zeta_12^2 - 2)*q^3 + O(q^4)

f11 = q + (-1*zeta_12^2 + 3)*q^2 + (zeta_12^2 + 2)*q^3 + O(q^4)

5.3 Exercises

5.1 Suppose γ ∈ SL2(Z) and N is a positive integer. Prove that there is a
positive integer h such that ( 1 h

0 1 ) ∈ γ−1Γ1(N)γ.

5.2 Prove that the map SL2(Z) → SL2(Z/NZ) is surjective. (Hint: There
is a proof of a more general result near the beginning of Shimura’s book
[Shi94].)

5.3 Prove that Mk(N, 1) = Mk(Γ0(N)).

5.4 Suppose A and B are diagonalizable linear transformations of a finite-
dimensional vector space V and that both A and B are diagonalizable.
Prove there is a basis for V so that the matrices of A and B with respect
to that both are simultaneously diagonal.

5.5 If ε is the trivial character of modulus 1 and Bk are as in Section 2.1, then
Bk,ε = Bk, except when k = 1, in which case B1,ε = −B1 = 1/2.

5.6 Prove that if n > 1 is odd, then the Bernoulli number Bn is 0.
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Chapter 6

Dimensions Formulas

When computing with spaces of modular forms, it is helpful to have easy-to-
compute formulas for dimensions of these spaces, and certain of their subspaces.
For example, they provide a double-check on the output of the algorithms from
Chapter 8 that compute explicit bases for spaces of modular forms. Alterna-
tively, dimension formulas can be used to improve the efficiency of some of the
algorithms in Chapter 8, since we can use them to determine the ranks of certain
matrices without having to explicitly compute them. If we know the dimension
of Mk(N, ε), and we have a process for computing q-expansions of elements of
Mk(N, ε), e.g., multiplying together q-expansions of certain forms of smaller
weight or searching for θ-series attached to quadratic forms, then we can tell
when we are done generating Mk(N, ε).

This chapter contains formulas the author knows for computing dimensions
of spaces of modular forms, along with some hints about how to compute them,
when this isn’t obvious. In several cases we give dimension formulas for spaces
that haven’t yet been defined in this book, so we define them in this chapter (e.g.,
we will discuss newforms and oldforms further). We also give many examples,
which were computed using the modular symbols algorithms from Chapter 8.

Many of the dimension formulas and algorithms we give below grew out of a
program that Bruce Caskel wrote (around 1996) in PARI, which Kevin Buzzard
extended. Their program codified dimension formulas that Buzzard and Caskel
found or extracted from the literature (mainly [Shi94, §2.6]). The algorithm
for dimensions of spaces with nontrivial character are from [CO77], with some
slight refinements from Kevin Buzzard.

For the rest of this chapter, N denotes a positive integer and k ≥ 2 is an inte-
ger. We give no formulas for dimensions of spaces of weight 1 modular forms,
because it is an open problem to give such formulas; the geometric methods used
to derive the formulas below do not apply in the case k = 1. If k = 0, the only
modular forms are the constants, and for k < 0 the dimension of Mk(N, ε) is 0.

For a nonzero integer N and a prime p, let vp(N) be the largest e such that
pe | N . In the formulas below, p always denotes a prime number. Let Mk(N, ε)
be the space of modular forms of level N weight k and character ε, and Sk(N, ε)
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and Ek(N, ε) the cuspidal and Eisenstein subspaces.
The dimension formulas below for Sk(Γ0(N)), Sk(Γ1(N)), Ek(Γ0(N)) and

Ek(Γ1(N)) below are almost straight from [Shi94, §2.6] (see also [Miy89, §2.5]),
and they are derived using the Riemann-Roch Theorem applied to the covering
X0(N) → X0(1) or X1(N) → X1(1) and appropriately chosen divisors. It
would be natural to give a sample argument along these lines at this point,
but I will not since it easy to find such arguments in other books and survey
papers (see, e.g., [DI95]). So you will not learn much about how to derive
dimension formulas from this chapter. What you will learn is what is known
about dimension formulas and what some of the obscure references are.

6.1 Modular Forms for Γ0(N)

Define functions of a positive integer N by the following formulas:

µ0(N) =
∏

p|N

(

pvp(N) + pvp(N)−1
)

µ0,2(N) =

{

0 if 4 | N ,
∏

p|N

(

1 +
(

−4
p

))

otherwise.

µ0,3(N) =

{

0 if 2 | N or 9 | N ,
∏

p|N

(

1 +
(

−3
p

))

otherwise.

c0(N) =
∑

d|N
ϕ(gcd(d,N/d))

g0(N) = 1 +
µ0(N)

12
− µ0,2(N)

4
− µ0,3(N)

3
− c0(N)

2

Note that µ0(N) is the index of Γ0(N) in SL2(Z). Also g0(N) is the genus of
the modular curve X0(N), and c0(N) is the number of cusps of X0(N).

Proposition 6.1.1. We have dimS2(Γ0(N)) = g0(N), and for k ≥ 4 even,

dimSk(Γ0(N)) = (k − 1) · (g0(N) − 1) +

(

k

2
− 1

)

· c0(N) +

µ0,2(N) ·
⌊

k

4

⌋

+ µ0,3(N) ·
⌊

k

3

⌋

.

The dimension of the Eisenstein subspace is as follows:

dimEk(Γ0(N)) =

{

c0(N) if k 6= 2,

c0(N) − 1 if k = 2.

The following table contains the dimension of Sk(Γ0(N)) for some sample
values of N and k:
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N dimS2(Γ0(N)) dimS4(Γ0(N)) dimS6(Γ0(N)) dimS24(Γ0(N))
1 0 0 0 2
10 0 3 5 33
11 1 2 4 22
100 7 36 66 336
389 32 97 161 747
1000 131 430 730 3430
2004 331 1002 1674 7722
100000 14801 44800 74800 344800

6.1.1 New and Old Subspaces

For each divisor N ′ of N , there are natural maps

αd : Mk(Γ0(N
′)) →Mk(Γ0(N)),

corresponding to the divisors d of N/N ′, and maps

βd : Mk(Γ0(N)) →Mk(Γ0(N
′)).

such that βd ◦ αd is multiplication by a nonzero scalar. On q-expansions,
αd(f(q)) = f(qd), and the definition of βd is a more complicated “trace map”
(see, e.g., [Lan95]).

The space Mk(Γ0(N)) decomposes as a direct sum

Mk(Γ0(N)) = Mk(Γ0(N))old ⊕Mk(Γ0(N))new,

where Mk(Γ0(N))old is the subspace generated by all images αd(Mk(Γ0(N
′))

where N ′ runs through proper divisors of N and d runs through all divisors
of N/N ′. The new subspace Mk(Γ0(N))new can be defined as either the inter-
section of the kernels of all maps βd to lower level, or the largest Hecke-stable
complement of Mk(Γ0(N))old.

Atkin and Lehner [AL70] proved that the space Sk(Γ0(N)) is built out of
new subspaces, in the following sense.

Theorem 6.1.2 (Atkin-Lehner). We have an isomorphism

Sk(Γ0(N)) =
∑

M |N

∑

d|N/M
αd(Sk(Γ0(M))new).

This is an isomorphism of T′ modules, where T′ is the anemic Hecke algebra,
i.e., the subring generated by Hecke operators Tn with gcd(n,N) = 1.

This theorem reduces the problem of computing Sk(Γ0(N)) to that of com-
puting Sk(Γ0(M))new for divisors M of N , a fact that will be central later in
this book. Atkin and Lehner also prove that one can completely determine
Sk(Γ0(M))new just from the information of how the Hecke operators act on it
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(their “multiplicity one” theory). Atkin and Lehner’s work was generalized to
fairly arbitrary congruence subgroups of SL2(Z) by Winnie Li in her Berkeley
Ph.D. thesis under A. Ogg (see [Li75]).

If N ′′ | N ′ | N , then the maps αd from Mk(Γ0(N
′′)) to Mk(Γ0(N)) factor

throughMk(Γ0(N
′)). Thus in the definition ofMk(Γ0(N))old andMk(Γ0(N))new,

it would suffice to consider only proper divisorsN ′ ofN such thatN/N ′ is prime.

Warning: For a fixed N ′ = N/p, the images of α1 and αp need not always be
linearly independent (see Example 6.1.4 below). However, the images of the new
subspace Sk(Γ0(N

′))new are linearly independent, as asserted by Theorem 6.1.2.

Proposition 6.1.3. The dimension of the new subspace is

dimSk(Γ0(N))new =
∑

M |N
µ(N/M) · dimSk(Γ0(M)),

where the sum is over the positive divisors of N , and for an integer R,

µ(R) =











0 if p3 | R for some p
∏

p||R
−2 otherwise,

where the product is over primes that exactly divide n. (Note that µ is not the
Moebius function, but is similar to it.)

Let f(n) = dimSk(Γ0(n)) and g(n) = dimSk(Γ0(n))new. Theorem 6.1.2
implies that

f(N) =
∑

M |N
σ0(N/M)g(M), (6.1.1)

where σ0(N/M) is the number of divisors of N/M . Presumably there is an
analogue of Moebius inversion, but for functions with the property in (6.1.1),
which involves the function µ.

Example 6.1.4. The space M2(Γ0(45)) has dimension 10 and basis

1 + 12*q^15 + O(q^20),

q + q^7 + 3*q^16 + 6*q^19 + O(q^20),

q^2 + 4*q^11 + 3*q^14 + q^17 + O(q^20),

q^3 + q^12 + q^15 + 3*q^18 + O(q^20),

q^4 + q^7 + 2*q^13 + 4*q^16 + 2*q^19 + O(q^20),

q^5 + O(q^20),

q^6 + 2*q^12 + 2*q^15 - q^18 + O(q^20),

q^8 + q^14 + q^17 + O(q^20),

q^9 - 2*q^15 + 3*q^18 + O(q^20),

q^10 + O(q^20)

The new subspace is spanned by the single cusp form
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q + q^2 - q^4 - q^5 - 3*q^8 - q^10 + 4*q^11 - 2*q^13 + O(q^14)

First consider N ′ = 45/3 = 15. The space M2(Γ0(15)) has basis

1 + 12*q^5 + O(q^8),

q + q^4 + q^5 + 3*q^6 + 2*q^7 + O(q^8),

q^2 + 2*q^4 + 2*q^5 - q^6 + 2*q^7 + O(q^8),

q^3 - 2*q^5 + 3*q^6 + O(q^8)

There are two maps α1 and α3 from M2(Γ0(15)) to M2(Γ0(45)). The one dimen-
sion space M2(Γ0(5)) embeds in M2(Γ0(15)) via f(q) 7→ f(q) and f(q) 7→ f(q3).
We have a commutative diagram

M2(Γ0(15))

α3

''OOOOOOOOOOO

M2(Γ0(5))

α1

77ooooooooooo

α3

''OOOOOOOOOOO
M2(Γ0(45)).

M2(Γ0(15))

α1

77ooooooooooo

This diagram illustrates that the intersection of the two images of M2(Γ0(15))
has dimension at least 1. In fact, the sum of the images of the two maps from
M2(Γ0(15)) is a 7-dimensional subspace of M2(Γ0(45)).

Next consider N ′ = 45/5 = 9, where the space M2(Γ0(9)) = E2(Γ0(9)) has
as basis the three forms

1 + 12*q^3 + 36*q^6 + O(q^8),

q + 7*q^4 + 8*q^7 + O(q^8),

q^2 + 2*q^5 + O(q^8)

There are two maps α1 and α5 from M2(Γ0(9)) to M2(Γ0(45)). The images of
these two maps span a space of dimension 6, and this space intersects the span
of the images of M2(Γ0(15)) in a space of dimension 4. Thus the old subspace
M2(Γ0(45))

old has dimension 9, and the new subspace has dimension 1. The
new subspace is spanned by the single cusp form

q + q^2 - q^4 - q^5 - 3*q^8 - q^10 + 4*q^11 + O(q^12)

Remark 6.1.5. Csirik, Wetherell, and Zieve prove in [CWZ01] that a random
positive integer has probability 0 of being a value of g0(N) = dimS2(Γ0(N)),
and give bounds on the size of the set of values of g0(N) below some given x. For
example, they show that 150, 180, 210, 286, 304, 312, . . . are the first few integers
that are not of the form g0(N) for some N .
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6.2 Modular Forms for Γ1(N)

This section follows Section 6.1 closely, but with suitable modifications with
Γ0(N) replaced by Γ1(N). The notion of new and old subspaces for Γ1(N) is
exactly the same as for Γ0(N); simply replace Γ0(N) by Γ1(N) in the discussion
of new and old forms in Section 6.1.

Define functions of a positive integer N by the following formulas:

µ1(N) =







µ0(N) if N = 1, 2,
φ(N) · µ0(N)

2
otherwise.

µ1,2(N) =

{

0 if N ≥ 4,

µ0,2(N) otherwise.

µ1,3(N) =

{

0 if N ≥ 4,

µ0,3(N) otherwise.

c1(N) =



















c0(N) if N = 1, 2,

3 if N = 4,
∑

d|N

φ(d)φ(N/d)

2
otherwise.

g1(N) = 1 +
µ1(N)

12
− µ1,2(N)

4
− µ1,3(N)

3
− c1(N)

2

Note that g1(N) is the genus of the modular curve X1(N), and c1(N) is the
number of cusps of X1(N). [[TODO: Make sure this is right for N ≤ 5.]]

Proposition 6.2.1. We have dimS2(Γ1(N)) = g1(N). If N ≤ 2, then

dimSk(Γ1(N)) = dimSk(Γ0(N)),

where dimSk(Γ0(N)) is given by the formula of Proposition 6.1.1. If k ≥ 3, let

a = (k − 1)(g1(N) − 1) +

(

k

2
− 1

)

· c1(N).

Then for N ≥ 3,

dimSk(Γ1(N)) =











a+ 1/2 if N = 4 and 2 - k,

a+ bk/3c if N = 3,

a otherwise.

The dimension of the Eisenstein subspace is as follows:

dimEk(Γ1(N)) =

{

c1(N) if k 6= 2,

c1(N) − 1 if k = 2.
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The dimension of the new subspace of Mk(Γ1(N)) is

dimSk(Γ1(N))new =
∑

M |N
µ(N/M) · dimSk(Γ1(M)),

where µ is as in the statement of Proposition 6.1.3.

Remark 6.2.2. Since Mk = Sk ⊕ Ek, the formulas above also give a formula
for the dimension of Mk.

The following table contains the dimension of Sk(Γ1(N)) for some sample
values of N and k:

N dimS2(Γ1(N)) dimS3(Γ1(N)) dimS4(Γ1(N)) dimS24(Γ1(N))
1 0 0 0 2
10 0 2 5 65
11 1 5 10 110
100 231 530 830 6830
389 6112 12416 18721 144821
1000 28921 58920 88920 688920
2004 109893 221444 332996 2564036
100000 299792001 599792000 899792000 6899792000

6.3 Modular Forms with Character

Fix a Dirichlet character ε modulo N , and let c be the conductor of ε (we do
not assume that ε is primitive). Assume that ε 6= 1, since otherwise Mk(N, ε) =
Mk(Γ0(N)) and the formulas of Section 6.1 apply. Also, assume that ε(−1) =
(−1)k, since otherwise dimMk(Γ0(N)) = 0. In this section we discuss formulas
for certain subspaces of Mk(N, ε).

In [CO77], Cohen and Oesterle assert (without proof, see Remark 6.3.2 be-
low) that for any k ∈ Z and N , ε as above, that

dimSk(N, ε) − dimM2−k(N, ε)

=
k − 1

12
· µ0(N) − 1

2
·
∏

p|N
λ(p,N, vp(c))

+ γ4(k) ·
∑

x∈A4(N)

ε(x) + γ3(k) ·
∑

x∈A3(N)

ε(x)

where µ0(N) is as in Section 6.1, A4(N) = {x ∈ Z/NZ : x2 + 1 = 0} and
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A3(N) = {x ∈ Z/NZ : x2 + x+ 1 = 0}, and γ3, γ4 are:

γ4(k) =











−1/4 if k ≡ 2 (mod 4)

1/4 if k ≡ 0 (mod 4)

0 if k is odd

γ3(k) =











−1/3 if k ≡ 2 (mod 3)

1/3 if k ≡ 0 (mod 3)

0 if k ≡ 1 (mod 3)

It remains to define λ. Fix a prime divisor p | N and let r = vp(N). Then

λ(p,N, vp(c)) =











p
r
2 + p

r
2
−1 if 2 · vp(c) ≤ r and 2 | r,

2 · p r−1

2 if 2 · vp(c) ≤ r and 2 - r,

2 · pr−vp(c) if 2 · vp(c) > r

The formula can be used to compute dimMk(N, ε), dimSk(N, ε), and dimEk(N, ε)
for any N , ε, k 6= 1, by using that

dimSk(N, ε) = 0 if k ≤ 0

dimMk(N, ε) = 0 if k < 0

dimM0(N, ε) = 1 if k = 0

One thing that is not straightforward when implementing an algorithm to
compute the above dimension formulas is how to efficiently compute the sets
A4(N) and A6(N). Kevin Buzzard suggested the following two algorithms to
the author. Note that if k is odd, then γ4(k) = 0, so the sum over A4(N) is
only needed when k is even.

Algorithm 6.3.1 (Compute Sum over A4(N)). INPUT: A positive integer
N and an even Dirichlet character ε modulo N .
OUTPUT: The sum

∑

x∈A4(N) ε(x).

1. [Factor N ] Compute the prime factorization pe11 · · · pen
n of N .

2. [Initialize] Set t = 1 and i = 0.

3. [Loop over prime divisors] Set i = i+ 1. If i > n, return t. Otherwise set
p = pi and e = ei.

(a) If p ≡ 3 (mod 4), return 0.

(b) If p = 2 and e > 1, return 0.

(c) If p = 2 and e = 1, go to Step 3.

(d) Compute a generator a ∈ (Z/pZ)∗ using Algorithm 4.3.4.

(e) Compute ω = a(p−1)/4.

(f) Using the Chinese Remainder Theorem to find x ∈ Z/NZ such that
x ≡ a (mod p) and x ≡ 1 (mod N/pe).
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(g) Set x = xp
r−1

.

(h) Set s = ε(x).

(i) If s = 1, set t = 2t and go to Step 3.

(j) If s = −1, set t = −2t and go to Step 3.

Proof. Note that ε(−x) = ε(x), since ε is even. By the chinese remainder theo-
rem, the set A4(N) is empty if and only if there is no square root of −1 modulo
some prime power divisor of p. If A4(N) is empty, the algorithm correctly de-
tects this fact in steps 3a–3b. Thus assume A4(N) is non-empty. For each prime
power pei

i that exactly divides N , let xi ∈ Z/NZ be such that x2
i = −1 and

xi ≡ 1 (mod p
ej

j ) for i 6= j. This is the value of x computed in steps 3d–3g (as
one can see using elementary number theory).

The next key observation is that

∏

i

(ε(xi) + ε(−xi)) =
∑

x∈A4(N)

ε(x), (6.3.1)

since by the chinese remainder theorem the elements of A4(N) are in bijection
with the choices for a square root of −1 modulo each prime power divisors of N .
The observation (6.3.1) is a huge gain from an efficiency point of view—if N
had r prime factors, then A4(N) would have size 2r, which could be prohibitive,
where the product involves only r factors. To finish the proof, just note that
Steps 3h–3j compute the local factors ε(xi) + ε(−xi) = 2ε(xi), where again
we use that ε is even. (Note, e.g., that a solution of x2 + 1 ≡ 0 (mod p) lifts
uniquely to a solution mod pn for any n, because the kernel of the natural
homomorphism (Z/pnZ)∗ → (Z/pZ)∗ is a group of p-power order.

The algorithm for computing the sum over A3(N) is similar, but we omit it.
The following table contains the dimension of Sk(N, ε) for some sample val-

ues of N and k. In each case, ε is the product of characters εp of maximal
order corresponding to the prime power factors of N (i.e., the product of the
generators of D(N,C∗)).

N dimS2(N, ε) dimS3(N, ε) dimS4(N, ε) dimS24(N, ε)
1 0 0 0 2
10 0 1 0 0
11 0 1 0 0
100 13 0 43 343
389 0 64 0 0
1000 148 0 448 3448
2004 0 668 0 0

Remark 6.3.2. Cohen and Oesterle also give dimension formulas for spaces of
half-integral weight modular forms, which we do not give in this chapter. Also
[CO77] does not contain any proofs that their claimed formulas are correct, but
instead say only that “Les formules qui les donnent sont connues de beaucoup
de gens et il existe plusieurs méthodes permettant de les obtenir (théorème
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de Riemann-Roch, application des formules de trace données par Shimura).”
(The formulas that we give here are well known and there exist many methods
to prove them, e.g., the Riemann-Roch theorem and applications of the trace
formula of Shimura.)

6.4 Exercises

6.1 Fill in the elementary number theory details of the proof of Algorithm 6.3.1.

6.2 Track this down the analogue of Moebius inversion for µ and give a quick
presentation on it.

6.3 Implement in your favorite computer language an algorithm to compute
dimSk(Γ0(N)).



Chapter 7

Linear Algebra

This chapter is about exact matrix algebra with over the rational numbers and
cyclotomic fields. Algorithms for linear algebra over exact fields are necessary
in order to implement the modular symbols algorithms that we will describe in
Chapter 7.

This chapter partly overlaps with [Coh93, §2.1–2.4].

7.1 Echelon Forms of Matrices

Definition 7.1.1 (Reduced Row Echelon Form). A matrix is in row echelon
form if each row in the matrix starts with more zeros than the row above it.
A matrix is in reduced row echelon form if it is in row echelon form, the first
nonzero entry of any row is 1, and the first nonzero entry of any row is the only
nonzero value in its column.

Given a matrix A, there is another matrix B such that B is obtained from A
by left multiplication by an invertible matrix and B is in reduced row echelon
form. This matrix B is called the reduced row echelon form of A. It is unique.

A pivot column of A is one such that the reduced row echelon form of A
contains a leading 1.

Example 7.1.2. The following matrix is in row echelon form, but not reduced
row echelon form:

[ 14, 2, 7, 228, -224;

0, 0, 3, 78, -70;

0, 0, 0, -405, 381]

The reduced row echelon form of the above matrix is

85
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[1, 1/7, 0, 0, -1174/945;

0, 0, 1, 0, 152/135;

0, 0, 0, 1, -127/135]

Notice that the entries of the reduced row echelon form can easily be messy.
Another example is the simple looking matrix

[ -9, 6, 7, 3, 1, 0, 0, 0;

-10, 3, 8, 2, 0, 1, 0, 0;

3, -6, 2, 8, 0, 0, 1, 0;

-8, -6, -8, 6, 0, 0, 0, 1]

whose echelon form is

[1, 0, 0, 0, 42/1025, -92/1025, 1/25, -9/205;

0, 1, 0, 0, 716/3075, -641/3075, -2/75, -7/615;

0, 0, 1, 0, -83/1025, 133/1025, 1/25, -23/410;

0, 0, 0, 1, 184/1025, -159/1025, 2/25, 9/410]

One learns in a basic linear algebra course that two matrices A and B have
the same reduced row echelon form if and only if there is an invertible matrix E
such that EA = B. Also, many standard operations in linear algebra, e.g.,
computation of the kernel of a linear map, intersection of subspaces, membership
checking, etc., can be encoded as a question about computing the echelon form
of a matrix.

The following is a naive algorithm for computing the echelon form of a
matrix.

Algorithm 7.1.3 (Gauss Elimination). INPUT: An m×n matrix A over a
field.
OUTPUT: The reduced row echelon form of A.
We write A[i,j] for the i, j entry of A, where 0 ≤ i ≤ m−1 and 0 ≤ j ≤ n−1.
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def echelon(A):

start_row = 0

nr = A.nrows # The number of rows of A

nc = A.ncols # The number of columns of A

for c in range(nc): # for c = 0, 1, 2, ..., nc-1

for r in range(nr):

a = A[r,c]

# if a is nonzero

if a != 0:

# Rescale row r of A by 1/a.

A.scale_row(r, 1/a)

# Swap row r with the start_row row.

A.swap_rows(r, start_row)

# Clear the c-th column

for i in range(nr):

if i != start_row:

if A[i,c] != 0:

# Add -A[i,c] times start_row to the i-th row

# in order to clear the leading entry of

# the i-th row.

A.add_multiple_of_row(start_row, -A[i,c], i)

# Increment the start_row

start_row = start_row + 1

# The following break means that we skip the rest

# of the for loop over r in range(nr), and

# increase c and start a new for loop over r.

break

This algorithm takes O(mn2) arithmetic operation in the base field, where A
is an m × n matrix. If the base field is Q, the entries can become huge and
arithmetic operations can be increasingly expensive. See Section 7.2 for ways
to mitigate this problem.

To conclude this section we mention how to convert a few standard problems
into questions about reduced row echelon forms of matrices. Note that one can
also phrase some of these answers in terms of the echelon form, which might
be easier to compute, or an LUP decomposition (lower triangular times upper
triangular times permutation matrix), which the numerical analysts use.

1. Kernel of A: Since passing to the reduced row echelon form of A is
the same as multiplying on the left by an invertible matrix, the kernel
of the reduce row echelon form is the same as the kernel of A. Thus we
may assume A is in reduced row echelon form. There is a basis vector of
ker(A) that corresponds to each non-pivot column of A. That vector has
a 1 at the non-pivot column, 0’s at all other non-pivot columns, and for
each pivot column, the negative of the entry of A at the non-pivot column
in the row with that pivot element.
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2. Intersection of Subspaces: Suppose W1 and W2 are subspace of a
finite-dimensional vector space V . Let A1 and A2 be matrices whose
columns form a basis for W1 and W2, respectively. Let A = [A1|A2] be
the augmented matrix formed from A1 and A2. Let K be the kernel
of the linear transformation defined by A. Then K is isomorphic to the
desired intersection. To write down the intersection explicitly, suppose
that dim(V ) ≤ dim(W ) and do the following: For each b in a basis for K,
write down the linear combination of a basis for V got by taking the first
dim(V ) entries of the vector b. The fact that b is in Ker(A) implies that
the vector we just wrote down is also in W . We took V to have smaller
dimension just so that the linear combinations in the intersection could
be written down slightly more quickly.

7.2 Echelon Forms over Q

A major difficulty with computation of the echelon form of a dense matrix over
the rational numbers is that arithmetic with large rational numbers is very
time consuming, since each addition potentially requires a gcd and numerous
additions and multiplications of integers. Moreover, the entries of A during
intermediate steps of Algorithm 7.1.3 can be huge even though the entries of A
and the answer are small. For example, suppose A is an invertible square matrix.
Then the echelon form of A is the identity matrix, but during intermediate steps
the entries of A could be quite large. One technique for mitigating this problem
is to compute the echelon form using a multi-modular method. The following is
a sketch of such a multi-modular method (we will give a more precise version;
see Algorithm 7.2.3):

1. By clearing denominators, we may assume that the entries of A are inte-
gers.

2. Compute the echelon forms Bp of the reduction A (mod p) of A modulo
several primes P = {p, . . .}, using some variant of Algorithm 7.1.3. (Note
that arithmetic modulo p for a “machine size” prime p is very fast.)

3. Use the Chinese Remainder Theorem to find a matrix B with integer
entries such that B ≡ Bp (mod p) for all p ∈ P .

4. Use rational reconstruction (see below) to find a matrix C whose coeffi-
cients are rational numbers n/r such that |n|, r ≤

√

m/2, where m is the
product of the primes in P , and C ≡ Bp (mod p) for each prime p.

5. Use height bounds to verify that C is the reduced row echelon form of A.

Rational reconstruction is a process that allows one to sometimes lift an
integer modulo m uniquely to a bounded rational number.

Algorithm 7.2.1 (Rational Reconstruction). INPUT: An integer a ≥ 0
and an integer m ≥ 1.
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OUTPUT: The numerator and denominator n, d of the unique rational number
n/d, if it exists, with

|n|, d ≤
√

m

2
and n ≡ ad (mod m),

or returns n = d = 0, if no such rational number exists.

def rational_reconstruction(a, m):

# Reduce a modulo m

a = a % m

# Trivial special cases

if a == 0: return (0,1)

if a == 1: return (1,1)

# Let bnd be the integer part of the square root of m/2.

bnd = sqrt(m/2.0)

# Initialize Euclidean algorithm.

u = m

v = a

# Perform the extended Euclidean algorithm, but terminate

# when V[2] is <= bnd.

U = (1,0,u)

V = (0,1,v)

while abs(V[2]) > bnd:

q = U[2]//V[2] # // means divide and take the integer part

tmp = (U[0]-q*V[0], U[1]-q*V[1], U[2]-q*V[2])

U = V

V = tmp

d = abs(V[1])

n = V[2]

if V[1] < 0: n = n * (-1)

if d <= bnd and gcd(n,d) == 1:

return (n,d)

return (0,0)

Remark 7.2.2 (Technical Python Remarks). In Python, use the sqrt

function from the gmpy GMP library, not the one from math. With Python
integers, a/b also means divide and take the floor, i.e., what we denote by
a//b above. Finally, gcd is not included with Python. Use, e.g., the gmpy.gcd

function.

Algorithm 7.2.1 for rational reconstruction is described (with a complete
nontrivial proof) in [Knu, pg.656–657] as the solution to exercise 51 on page
379. See in particular the paragraph right in the middle of page 657, which
describes the algorithm. Knuth says this rational reconstruction algorithm is
due to Wang, Kornerup, and Gregory from around 1983.

We now give an indication of why Algorithm 7.2.1 computes the rational re-
construction of a (mod m), leaving the precise details and uniqueness to [Knu,
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pg.656–657]. At each step in Algorithm 7.2.1, the 3-tuple V = (v0, v1, v2) satis-
fies

m · v0 + a · v1 = v2, (7.2.1)

and similarly for U . When computing the usual extended gcd, at the end v2 =
gcd(a,m) and v0, v1 give a representation of the v2 as a Z-linear combination
of m and a. In Algorithm 7.2.1, we are instead interested in finding a rational
number n/d such that n ≡ a ·d (mod m). If we set n = v2 and d = v1 in (7.2.1)
and rearrange, we obtain

n = a · d+m · v0.
Thus at every step of the algorithm we find a rational number n/d such that
n ≡ ad (mod m). The problem at intermediate steps is that, e.g., v0 could be
0, or n or d could be too large.

If A is a matrix with rational entries, let H(A) be the height of A, which is
the maximum of the absolute values of the numerators and denominators of all
entries of A.

Algorithm 7.2.3 (Modular Algorithm for Computing Echelon Form).
INPUT: An m× n matrix A with entries in Q.
OUTPUT: The reduced row echelon form of A.

1. Rescale the input matrix A to have integer entries. This does not change
the echelon form and makes reduction modulo many primes easier. Hence-
forth we assume A has integer entries.

2. Let c be a guess for the height of the echelon form.

3. List successive primes p1, p2, . . . such that the product of the pi is bigger
than n · c ·H(A) + 1, where n is the number of columns of A.

4. Compute the echelon forms Bi of the reduction A (mod pi) using, e.g.,
Algorithm 7.1.3 or something similar.

5. Discard any Bi whose pivot column list is not maximal among pivot lists
of all Bj found so far. (The pivot list associated to Bi is the ordered
list of integers k such that the kth column of Bj is a pivot column. We
mean maximal with respect to the following ordering on integer sequences:
shorter integer sequences are smaller, and if two sequences have the same
length, then order in reverse lexicographic order. Thus [1, 2] is smaller
than [1, 2, 3], and [1, 2, 7] is smaller than [1, 2, 5]. Think of maximal as
“optimal”, i.e., best possible pivot columns.)

6. Use the Chinese Remainder Theorem to find a matrix B with integer
entries such that B ≡ Bi (mod pi) for all pi.

7. Use rational reconstruction (Algorithm 7.2.1) to try to find a matrix C
whose coefficients are rational numbers n/r such that |n|, r ≤

√

M/2,
where M =

∏

pi, and C ≡ Bi (mod pi) for each prime p. If rational
reconstruction fails, compute a few more echelon forms mod the next few
primes (using the above steps), and attempt rational reconstruction again.
Let E be the matrix over Q so obtained.
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8. Compute the denominator d of E, i.e., the smallest positive integer such
that dE has integer entries. If

H(dE) ·H(A) · n ≤
∏

pi, (7.2.2)

then E is the reduced row echelon form of A. If not, repeat the above
steps with a few more primes.

Proof. We prove that if the bound (7.2.2) is satisfied, then the matrix E com-
puted by the algorithm really is the reduced row echelon form R of A. The set
of pivot columns of all matrices Bi used to construct E are the same, so the
pivot columns of E are the same as those of any Bi. Thus E is in reduced row
echelon form.

Recall from the end of Section 7.1 that a matrix whose columns are a basis
for the kernel of A can be obtained from the reduced row echelon form of R. Let
K be the matrix whose columns are the vectors in the kernel algorithm applied
to E, so EK = 0. Since the reduced row echelon form is got by left multiplying
by an invertible matrix, for each i, there is an invertible matrices Ci mod pi
such that A = CiBi so

A · dK ≡ dCiBiK ≡ Ci · dE ·K ≡ 0 (mod pi).

Since dK and A are integer matrices,

A · dK ≡ 0 (mod
∏

pi).

The integer entries of A · dK are all at most H(A) ·H(dK) · n, where n is the
number of columns of A. Since H(K) ≤ H(E), the bound (7.2.2) implies that
A · dK = 0. Thus AK = 0, so Ker(E) ⊂ Ker(A). On the other hand, the rank
of E equals the rank of each Bi (since the pivot columns are the same), so

rank(E) = rank(Bi) = rank(A (mod pi)) ≤ rank(A).

Thus dim(Ker(A)) ≤ dim(Ker(E)), and combining this with the bound obtained
above we see that Ker(E) = Ker(A). This implies that E is the reduced row
echelon form of A, since two matrices have the same kernel if and only if they
have the same reduced row echelon form (the echelon form is an invariant of the
row space, and the kernel is the orthogonal complement of the row space).

The reason for Step 5 is that the matrices Bi need not be the reduction of
R modulo pi, and indeed this reduction might not even be defined, e.g., if pi
divides the denominator of some element of R, then this reduction makes no
sense. For example, set p = pi and suppose A =

(

p 1
0 0

)

. Then R =
(

1 1/p
0 0

)

, which
has no reduction modulo p; also, the reduction of A modulo Bi is Bi = ( 0 1

0 0 )
(mod p), which is already in reduced row echelon form. However if we were to
combine Bi with the echelon form of A modulo another prime, the result could
never be lifted using rational reconstruction. Thus the reason we exclude all Bi
with non-maximal pivot column sequence is so that a rational reconstruction
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will exist. There are only finitely many primes that divide denominators of
entries of R, so eventually all Bi will have maximal pivot column sequences,
i.e., are the reduction of the true reduced row echelon form R, so the algorithm
terminates.

Remark 7.2.4.

1. I learned about rational reconstruction in the context of computing echelon
forms from Allan Steel, who is one of the developers of Magma. I learned
from Allan that Magma does not use the above algorithm; instead it uses
a Strassen “divide and conquer” echelon procedure that involves random
permuting of rows, etc., and takes advantage of asymptotically fast matrix
multiplication algorithms. The matrix multiplies are done using a modular
CRT technique. This is probably better in many cases, especially for dense
matrices.

2. I have tested an implementation of Algorithm 7.2.3 against MAGMA
V2.11-8. For large square matrices over Q, e.g., over a hundred rows,
(a case of importance when cutting out eigenspaces for Hecke operators),
Algorithm 7.2.3 is much more efficient (both in time and memory usage)
than MAGMA. In contrast, for matrices with more columns than rows
(an important case, e.g., when intersecting subspaces), MAGMA is often
an order of magnitude faster. Thus an optimal package should proba-
bly implement both Algorithm 7.2.3 for square matrices and a divide and
conquer echelon strategy for non-square matrices.

3. I have never seen Algorithm 7.2.3 anywhere else, and found the details
and proof myself. I have seen the idea of using a multi-modular method
for linear algebra problems hinted out or explicitly suggested many times;
I’ve just never seen a discussion of computing reduced row echelon forms
this way.

4. There is also an iterative p-adic method for lifting solutions modulo p to
an equation Ax = v to characteristic 0. This is supposed to be faster for a
single solution, but slower for lifting many solutions. See http://magma.

maths.usyd.edu.au/users/allan/gb/faugere_f4.ps.gz for a discus-
sion.

5. Algorithm 7.2.3, with all matrices sparse, seems to work very well in
practice. A simple but helpful modification to Algorithm 7.1.3 in the
sparse case is to clear each column using a row with a minimal number
of nonzero entries, so as to reduce the amount of “fill in” (denseness) of
the matrix. There are more sophisticated methods along these lines called
“intelligent Gauss elimination”. (Cryptographers are interested in linear
algebra with huge sparse linear, since they come up in factor basis attacks
on the discrete log problem or integer factorization.)



7.3. POLYNOMIALS 93

One can likely adapt Algorithm 7.2.3 to computation of reduced row echelon
forms of matrices A over cyclotomic fields Q(ζn). Assume A has denominator 1.
Let p be a prime that splits completely in Q(ζn). Compute the homomorphisms
fi : Zp[ζn] → Fp by finding the elements of order n in F∗

p. Then compute the
mod p matrix fi(A) for each i, and find its reduced row echelon form. Taken
together, the maps fi together induce an isomorphism Ψ : Fp[X]/Φn(X) ∼=
Fdp, where Φn(X) is the nth cyclotomic polynomial and d is its degree. It’s
easy to compute Ψ(f(x)) by evaluating f(x) at each element of order n in
Fp. To compute Ψ−1 simply use linear algebra over Fp to invert a matrix that
represents Ψ. Use Ψ−1 to compute the the reduced row echelon form of A
(mod p), where (p) is the non-prime ideal in Z[ζn] generated by p. Do this
for several primes p, and use rational reconstruction on each coefficient of each
power of ζn, to recover the echelon form of A. Problems: What is the analogue
of (7.2.2)?

7.3 Polynomials

There are several linear algebra algorithms that involve polynomials and are
important to modular forms algorithms.

Computation of characteristic polynomials of matrices is crucial to modular
forms computations. There are many approaches to this problems: compute
det(xI − A) symbolically (bad), compute the traces of the powers of A (bad),
or compute the Hessenberg form modulo many primes and use CRT (not so
bad, see [Coh93, §2.2.4]). Another more sophisticated method is to compute
the rational canonical form of A using Giesbrecht’s algorithms, which involve
computing Krylov subspaces (i.e., cyclic spaces spanned by a single vector),
and building up the whole space on which A acts. This latter method may
be viewed as a generalization of Wiedemann’s algorithm for computing minimal
polynomials (see Section 7.4.1), but with more structure. The algorithm used in
Magma is similar to Giesbrecht’s (probably independently discovered). PARI
uses only Lagrange interpolation (?) and Hessenberg form.

Factorization of polynomials in Z[X] is an important step in computing an
explicit basis of newforms for a space of modular forms. The best algorithm
is the van Hoeij method, which uses LLL in a novel way to solve the sort
of optimization problems that come up in trying to lift factorizations mod p
to Z. It has aparently been generalized to number fields and is included in new
versions of PARI, Magma, and NTL. For more details, see van Hoeij’s web
page: http://www.math.fsu.edu/~hoeij/papers.html.

7.4 Decomposing Spaces

Fix a weight k, integer N , and Dirichlet character ε modulo N . Let

V = Sk(Γ1(N), ε)+ new
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be the new subspace of the +1 quotient of cuspidal modular symbols, viewed
as a K = Q(ε) vector space. In this section we will describe an algorithm to
write V as a direct sum of simple T-submodules. It is a consequence of Atkin-
Lehner-Li theory and the isomorphism between cusp forms and certain modular
symbols that V is a direct sum of distinct simple modules, and that the Hecke
operators Tn all act diagonalizably on V .

Let R denote the image of T⊗K in End(V ), and let n = dim(V ). Since R is
semisimple and finite dimensional over a field, R is a product

∏

Ki of number
fields, so a random Hecke operator T will, with high probability, generate R as a
K-algebra. (The elements that don’t generate lie in proper K-subalgebras of R,
and those subalgebras are direct sums of subsets of the Ki.) If T generates R
as an algebra, then the minimal polynomial f of T has degree n, so it equals
the characteristic polynomial of T . Also since T is diagonalizable, the minimal
polynomial of T is square free. Thus we are led to the following problem:

Problem 7.4.1. Suppose T is an n× n matrix with entries in K and that the
minimal polynomial of T is square free and has degree n. View T as acting
on V = Kn. Find the (unique up to order) simple module decomposition
W0 ⊕ · · · ⊕ Wm of V as a direct sum of simple K[T ]-modules. Equivalently,
find an invertible matrix A such that A−1TA is a block direct sum of matrices
T0, . . . , Tm such that the minimal polynomial of each Ti is irreducible.

Remark 7.4.2. A natural generalization of Problem 7.4.1 to arbitrary matrices
is to find the rational Jordan form of T . This form is like the usual Jordan
form, but the summands corresponding to eigenvalues are replaced by certain
matrices with minimal polynomials the minimal polynomials of the eigenvalues.
The rational Jordan form was extensively studied by Geisbrecht in his Ph.D.
thesis and many successive papers, where he carefully analyzes the complexity
of his algorithms in terms of bit operations, and observes that the limiting
step is factoring polynomials over K. The reason is that given a polynomial
f ∈ K[x], one can easily write down a matrix T such that one can can read
off the factorization of f from the rational Jordan form of T . See also Allan
Steel’s related paper (A New Algorithm for the Computation of Canonical Forms
of Matrices over Fields, J. Symbolic Computation (1997) 24, 409–432). The
author would also like to thank Allan Steel for discussions related to this chapter.

7.4.1 Wiedemann’s Minimal Polynomial Algorithm

In this section we describe an algorithm due to Wiedemann for computing the
minimal polynomial of an n× n matrix A over a field.

Choose a random vector v and compute the iterates

v0 = v, v1 = A(v), v2 = A2(v), . . . , v2n−1 = A2n−1(v).

If f = xm + cm−1x
m−1 + · · · + c1x+ c0 is the minimal polynomial of A, then

Am + cm−1A
m−1 + · · · + c0In = 0,
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where In is the n×n identity matrix. For any k ≥ 0, by multiplying both sides
on the right by Akv, we see that

Am+kv + cm−1A
m−1+kv + · · · + c0A

kv = 0,

hence

vm+k + cm−1vm−1+k + · · · + c0vk = 0, all k ≥ 0.

Wiedemann’s clever idea is to observe that any single component of the
vectors v0, . . . , v2n−1 satisfies a linear recurrence with coefficients 1, cm−1, . . . , c0.
There is an algorithm (see Algorithm 7.4.4 below) called the Berlekamp-Massey
algorithm (which was introduced in the 1960s in the context of coding theory)
that finds the minimal polynomial of a linear recurrence sequence {ar}. The
minimal polynomial of this linear recurrence is by definition the unique monic
polynomial g, such that if {ar} satisfies a linear recurrence aj+k+ bj−1aj−1+k+

· · ·+ b0ak = 0 (for all k ≥ 0), then g divides the polynomial xj +
∑j−1
i=0 bix

i. In
particular, if we apply Berlekamp-Massey to the top coordinates of the vi, we
obtain a polynomial g0, which divides f . We then apply it to the second to the
top coordinates and find a polynomial g1 that divides f , etc., Taking the least
common multiple of the first few gi, we find a divisor of the minimal polynomial
of f . One can show that with “high probability” one quickly finds f , instead of
just a proper divisor of f .

Remark 7.4.3. In the literature, techniques that involve iterating a vector are
often called Krylov methods. The subspace generated by the iterates of a vector
under a matrix is called a Krylov subspace.

In the context of decomposing spaces of modular forms, we will start with a
matrix for which it is likely that the degree of the minimal polynomial f equals
the number of rows of A.

Here’s the Berlekamp-Massey algorithm.

Algorithm 7.4.4 (Berlekamp-Massey). INPUT: The first 2n terms a0, . . . , a2n−1

of a linear sequence that satisfies a linear recurrence of degree at most n.
OUTPUT: The minimal polynomial f of the sequence.

1. Let R0 = x2n, R1 =
∑2n−1
i=0 aix

i, V0 = 0, V1 = 1.

2. While deg(R1) ≥ n do the following:

(a) Compute Q and R such that R0 = QR1 +R.

(b) Let (V0, V1, R0, R1) = (V1, V0 −QV1, R1, R).

3. Let d = max(deg(V1), 1 + deg(R1)) and set P = xdV1(1/x).

4. Let c be the leading coefficient of P and output f = P/c.
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For a fresh viewpoint on Berlekamp-Massey and some ideas for improvement,
see The Berlekamp-Massey Algorithm revisited by Atti, Diaz-Toca, and Lom-
bardi (see http://hlombardi.free.fr/publis/ABMAvar.html) (Note: I essen-
tially copied the above description of the Berlekamp-Massey algorithm from loc.
cit.; my point is only to illustrate that the Berlekamp-Massey is basically just
the Euclidean algorithm, i.e., it’s not something really complicated.)

Now suppose T is an n×n matrix as in Problem 7.4.1. We find the minimal
polynomial of T by computing the minimal polynomial of T (mod ℘), using
Wiedemann’s algorithm, for many primes ℘ and using the Chinese remainder
theorem. (One has to bound the number of primes that must be considered;
see, e.g., [Coh93].)

One can also compute the characteristic polynomial of T directly from the
Hessenberg form of T , which can be computed in O(n4) field operations, as
described in [Coh93]. This is simple, but slow. Also, the T we consider will
often be sparse, and Wiedemann is particularly good when T is sparse.

Example 7.4.5. We compute the minimal polynomial of the Hecke operator
A = T2 on M2(Γ0(23))

+ using Wiedemann’s algorithm. We have

A =





3 0 0
0 0 2
−1 1/2 −1





Let v = (1, 0, 0)t. Then

v = (1, 0, 0)t, Av = (3, 0,−1)t, A2v = (9,−2,−2)t,

A3v = (27,−4,−8)t, A4v = (81,−16,−21)t, A5v = (243,−42,−68)t.

The linear recurrence sequence coming from the first entries is

1, 3, 9, 27, 81, 243.

This sequence satisfies the linear recurrence

ak+1 − 3ak = 0, all k > 0

so its minimal polynomial is x− 3. This implies that x− 3 divides the minimal
polynomial of the matrix A. Next we use the sequence of second coordinates of
the iterates of v, which is

0, 0,−2,−4,−16,−42.

The recurrence that this sequence satisfies is slightly less obvious, so we apply
the Berlekamp-Massey algorithm to find it, with n = 3.

1. We have R0 = x6, R1 = −42x5 − 16x4 − 4x3 − 2x2, V0 = 0, V1 = 1.

2. (a) Dividing R0 by R1, we find

R0 = R1

(

− 1

42
x+

4

441

)

+

(

22

441
x4 − 5

441
x3 +

8

441
x2

)
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(b) The new V0, V1, R0, R1 are

V0 = 1

V1 =
1

42
x− 4

441

R0 = −42x5 − 16x4 − 4x3 − 2x2

R1 =
22

441
x4 − 5

441
x3 +

8

441
x2

Since deg(R1) ≥ n = 3, we have to do the above three steps again.

3. We repeat the preceeding three steps.

(a) Dividing R0 by R1, we find

R0 = R1

(

−9261

11
x− 123921

242

)

+

(

1323

242
x3 +

882

121
x2

)

(b) The new V0, V1, R0, R1 are [I’m running out of \frac steam.]

V0 = 1/42x− 4/441

V1 = 441/22x2 + 2205/484x+ 441/121

R0 = 22/441x4 − 5/441x3 + 8/441x2

R1 = 1323/242x3 + 882/121x2

4. Unfortunately we have to repeat the steps yet again. We get

V0 = 441/22x2 + 2205/484x+ 441/121

V1 = −242/1323x3 + 968/3969x2 + 484/3969x− 242/3969

R0 = 1323/242x3 + 882/121x2

R1 = 484/3969x2

5. We have d = 3, so P = −242/3969x3+484/3969x2+968/3969x−242/1323.

6. Multiply through by −3969/242 and output

x3 − 2x2 − 4x+ 3 = (x− 3)(x2 + x− 1).

The minimal polynomial of T2 is (x−3)(x2+x−1), since the minimal polynomial
has degree at most 3 and is divisible by (x− 3)(x2 + x− 1).
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7.4.2 Polynomial Factorization

There is a new algorithm due to Hoeij, which has been refined by Belebas,
Klüners, and Steel, for factoring polynomials over number fields (and more gen-
eral global fields). It involves factoring modulo many primes, lifting p-adically,
and cleverly using LLL to solve a certain “knapsack problem” that reduces the
number of subsets of factors that need to be considered. We will say nothing
more about it here, except that it is rumored to be “very fast”, and it is the
algorithm to know about. [After a quick reading of Belebas, Hoeij, Klüners, and
Steel, the O complexity is unclear to me.]

7.4.3 Decomposition Using Kernels

We now know enough to give an algorithm to solve Problem 7.4.1.

Algorithm 7.4.6 (Decomposition Using Kernels). INPUT: An n×n ma-
trix T over a field K as in Problem 7.4.1.
OUTPUT: Decomposition of V as a direct sum of simple K[T ] modules.

1. [Minimal Polynomial] Compute the minimal polynomial f of T , e.g., using
the multi-modular Wiedemann algorithm.

2. [Factorization] Factor f using the Belebas, Hoeij, Klüners, and Steel al-
gorithm.

3. [Compute Kernels] For each irreducible factor gi of f :

(a) Compute the matrix Ai = gi(T ). (This is difficult, and A will have
huge coefficients.)

(b) Compute Wi = ker(Ai) using, e.g., a multi-modular kernel algorithm.

4. [Output Answer] Then V = ⊕Wi.

Remark 7.4.7. In the worst case, perhaps Step 2 is most difficult step. In
practice Step 3 is very time consuming. As mentioned in Remark 7.4.2, if
one can compute such decompositions V = ⊕Wi, then one can easily factor
polynomials f , hence the difficulty of polynomial factorization is a lower bound
on the complexity of writing V as a direct sum of simples.

7.4.4 Multi-Modular Decomposition Algorithm

The following algorithm is a modification of Algorithm 7.4.6, which improves
upon the difficult Step 3.

Algorithm 7.4.8 (Decomposition Algorithm II). INPUT: An n× n ma-
trix T over a field K as in Problem 7.4.1.
OUTPUT: Decomposition of V as a direct sum of simple K[T ] modules.

1. [Minimal Polynomial] Compute the minimal polynomial f of T , e.g., using
the multi-modular Wiedemann algorithm.
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2. [Factorization] Factor f =
∏

gi using the Belebas, Hoeij, Klüners, and
Steel algorithm.

3. [Cofactors] For each i, let hi = f/gi.

4. [Find Kernels] For several primes ℘ (how many?), compute reduced row
echelon forms for basis of all the kernels W i = ker(gi(T )) as follows:

(a) Choose a random vector v ∈ V .

(b) Compute the iterates

v0 = v, v1 = Tv, . . . , vn−1 = T
n−1

v.

(c) For each i do the following:

i. Compute w = hi(T )v ∈ ker(gi(T )) by taking the linear combina-
tion of the vi given by the coefficients of hi.

ii. Generate a subspace of ker(gi(T )) using w, Tw, . . . , T
i
w, keeping

the subspace basis in Echelon form at each step. If this subspace
does not equal the full ker(gi(T )), repeat the above steps with an-
other v, and add the resulting iterates of the new w to this sub-
space. Repeat this process until we obtain a basis for ker(gi(T )),
in reduced row echelon form.

5. [Lift] Using the Chinese remainder theorem and rational reconstruction,
lift the W i to K-vector spaces Wi such that V = ⊕Wi is the desired
decomposition. (WARNING: It is probably necessary to throw away “bad”
primes, just as we did in the multi-modular echelon algorithm.)
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Chapter 8

Modular Symbols of any

Weight and Level

In this chapter we explain how to generalize the notion of modular symbols from
Chapter 3 to compute most classical modular forms.

Modular symbols are a formalism that make it fairly easy and elementary to
compute with homology or cohomology related to certain Kuga-Sato varieties
(these are E ×X · · · ×X E , where X is a modular curve and E is the univeral
elliptic curve over it). It is not necessary to know anything about these Kuga-
Sato varieties in order to compute with modular symbols.

This chapter is about spaces of modular symbols and how to compute with
them. It is by far the most important chapter in this book. The algorithms that
build on the theory in this chapter are central to all the computations we will
do later in the book. We will start with the basics, in that the intended reader
of this chapter is not assumed to have ever seen a modular symbol before.

Much of this chapter follows Loic Merel’s paper [Mer94] very closely. First
we define modular symbols of weight k ≥ 2. Then we define the corresponding
Manin symbols, and state a theorem of Merel-Shokurov, which gives all relations
between Manin symbols. (The proof of the Merel-Shokurov theorem is beyond
the scope of this book.) Next we describe how the Hecke operators act on both
modular and Manin symbols, and how to compute trace and inclusion maps
between spaces of modular symbols of different levels. We close the chapter
with a discussion of computations with modular symbols over finite fields.

In this book we will view modular symbols primarily as a formalism that
generates algorithms for computing with modular forms. I.e., we view modular
symbols as modular forms for computers. However, modular symbols have also
been used to prove theoretical results about modular forms. For example, cer-
tain technical calculations with modular symbols are used in Loic Merel’s proof
of the uniform boundedness conjecture for torsion points on elliptic curves over
number fields; modular symbols arise, e.g., in order to understand linear inde-
pendence of Hecke operators. Another example is Grigor Grigorov’s in-progress

101
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Ph.D. thesis, which distills hypotheses about Kato’s Euler system in K2 of
modular curves to a simple formula involving modular symbols (when the hy-
potheses are satisfied, one obtains a lower bound on the Shafarevich-Tate group
of an elliptic curve).

8.1 Modular Symbols

We begin by defining a free abelian group M of modular symbols, which you
should think of as the homology of the extended upper half plane h∗ = h∪P1(Q)
relative to the cusps. This is the free abelian group on symbols {α, β} with

α, β ∈ P1(Q) = Q ∪ {∞}

subject to the relations

{α, β} + {β, γ} + {γ, α} = 0,

for all α, β, γ ∈ P1(Q). More precisely, M = (F/R)/(F/R)tor, where F is the
free abelian group on all pairs (α, β) and R is the subgroup generated by all
elements of the form (α, β) + (β, γ) + (γ, α). Note that M is a huge free abelian
group of countable rank.

Remark 8.1.1 (Warning!). The {α, β} satisfy the relations {α, β} = −{β, α},
since {α, β}+{β, α}+{α, α} = 0. Thus the order matters. The notation {α, β}
looks like the set containing two elements, which strongly (and incorrectly)
suggests that the order does not matter. This is annoying, but it is the standard
notation, and we will stick with it.

Now fix an integer k ≥ 2. Let Zk−2[X,Y ] be the abelian group of homo-
geneous polynomials of degree k − 2 in two variables X,Y (so Zk−2[X,Y ] is
isomorphic to Symk−2(Z) as a group, but certain natural actions are different).
Set

Mk = Zk−2[X,Y ] ⊗Z M,

which is a torsion-free abelian group whose elements are sums of expressions of
the form XiY k−2−i ⊗ {α, β}. For example,

X3 ⊗ {0, 1/2} − 17XY 2 ⊗ {∞, 1/7} ∈ M5.

Fix a finite index subgroup G of SL2(Z). Define a left action of G on
Zk−2[X,Y ] as follows. If g =

(

a b
c d

)

∈ G and P (X,Y ) ∈ Zk−2[X,Y ], let

(g.P )(X,Y ) = P (dX − bY,−cX + aY ).

Note that if we think of z = (X,Y ) as a column vector, then

(g.P )(z) = P (g−1z),
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since g−1 =
(

d −b
−c a

)

, since det(g) = 1. The reason for the inverse is so that this
is a left action instead of a right action, which is what function pre-composition
always is. As further explanation, observe that if g, h ∈ G, then

((gh).P )(z) = P ((gh)−1z) = P (h−1g−1z) = (h.P )(g−1z) = (g.(h.P ))(z).

Let G act on the left on M by

g.{α, β} = {g(α), g(β)}.

Here G is acting via linear fractional transformations, so if g =
(

a b
c d

)

, then

g(α) =
aα+ b

cα+ d
.

For example, useful special cases to remember are that if g =
(

a b
c d

)

then

g(0) =
b

d
and g(∞) =

a

c
.

We now combine these two actions to obtain a left action of G on Mk−2,
which is given by

g.(P ⊗ {α, β}) = (g.P ) ⊗ {g(α), g(β)}.

For example,

(

1 2
−2 −3

)

.(X3 ⊗ {0, 1/2}) = (−3X − 2Y )3 ⊗
{

−2

3
,−5

8

}

= (−27X3 − 54X2Y − 36XY 2 − 8Y 3) ⊗
{

−2

3
,−5

8

}

.

We will often write P (X,Y ){α, β} for P (X,Y ) ⊗ {α, β}.

Definition 8.1.2 (Modular Symbols). Let k ≥ 2 be an integer and let G
be a finite index subgroup of SL2(Z). The space Mk(G) of weight k modular
symbols for G is the quotient of Mk by all relations g.x− x for x ∈ Mk and by
any torsion.

Note that Mk is a torsion free abelian group, and it is a nontrivial fact that
Mk has finite rank. We denote modular symbols for G in exactly the same way
we denote elements of Mk, but with surrounding text that hopefully makes the
group G clear. Thus X3{0, 1/2} is an example element of M5(Γ0(8)), because I
say so. In practice this does not cause confusion.

The space of modular symbols over a ring R is

Mk(G,R) = Mk(G) ⊗Z R.

In Section ?? we will discuss computing Mk(G,R) when R is a finite field.
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8.2 Manin Symbols

At this point you are probably wondering how one could possibly ever program
a computer to compute Mk(G) for any specific k and G. As defined above,
Mk(G) is the quotient of one infinitely generated abelian group by another one.
This section is about Manin symbols, which are simply a distinguished subset
of the elements of Mk(G) that lead to a finite presentation for Mk(G). Also,
it has emerged that formulas written in terms of Manin symbols are frequently
much easier to compute using a computer than formulas in terms of modular
symbols.

The Manin symbol associated to g ∈ SL2(Z) and P ∈ Zk−2[X,Y ] is

[P, g] = g.(P{0,∞}) ∈ Mk(G).

Notice that if Gg = Gh, then [P, g] = [P, h], since the symbol g.(P{0,∞}) is
invariant by the action of G on the left (by definition, since it is a modular
symbols for G). Thus we can also write [P,Gg], and since G has finite index
in SL2(Z), the abelian group generated by Manin symbols is of finite rank,
generated by

{

[Xk−2−iY i, Ggj ] : i = 0, . . . , k − 2, and j = 0, . . . , r
}

,

where g0, . . . , gr run through representatives for the right cosets G\SL2(Z).

The great thing about Manin symbols is that every modular symbols can
be written as a Z-linear combination of them, so they generate all Mk(G). The
proof of this fact is known as “Manin’s trick”.

Proposition 8.2.1. The Manin symbols generate Mk(G).

Proof. Suppose that we are given a modular symbol P{α, β} and wish to rep-
resent it as a sum of Manin symbols. Because

P{a/b, c/d} = P{a/b, 0} + P{0, c/d},

it suffices to write P{0, a/b} in terms of Manin symbols. Let

0 =
p−2

q−2
=

0

1
,
p−1

q−1
=

1

0
,
p0

1
=
p0

q0
,
p1

q1
,
p2

q2
, . . . ,

pr
qr

=
a

b

denote the continued fraction convergents of the rational number a/b. Then

pjqj−1 − pj−1qj = (−1)j−1 for − 1 ≤ j ≤ r.
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If we let gj =

(

(−1)j−1pj pj−1

(−1)j−1qj qj−1

)

, then gj ∈ SL2(Z) and

P{0, a/b} = P
r
∑

j=−1

{

pj−1

qj−1
,
pj
qj

}

=
r
∑

j=−1

gj((g
−1
j P ){0,∞})

=

r
∑

j=−1

[g−1
j P, gj ].

Since gj ∈ SL2(Z) and P has integer coefficients, the polynomial g−1
j P also has

integer coefficients, so we introduce no denominators.

As is well known, the continued fraction expansion [c1, c2, . . . , cn] of the
rational number a/b can be computed using the Euclidean algorithm. The first
term c1 is the “quotient”: a = bc1 + r, with 0 ≤ r < b. Let a′ = b, b′ = r and
compute c2 as a′ = b′c2 + r′, etc., terminating when the remainder is 0. For
example, the expansion of 5/13 is [0, 2, 1, 1, 2]. The numbers

di = c1 +
1

c2 +
1

c3 + · · ·

will then be the (finite) convergents. For example if a/b = 5/13, then the
convergents are

0/1, 1/0, d1 = 0, d2 =
1

2
, d3 =

1

3
, d4 =

2

5
, d5 =

5

13
.

Remark 8.2.2. One can prove Proposition 8.2.1 inductively without introduc-
ing continued fractions, but that proof is essentially the same one used to prove
the existence of continued fractions of integers. (I think I saw this in [MTT86],
but I can’t seem to find the exact location in that paper right now.)

Now that we know the Manin symbols generate Mk(G), the next question is
what are the relations between Manin symbols. Fortunately the answer is fairly
simple (though the proof is not). Let

σ =

(

0 −1
1 0

)

, τ =

(

0 −1
1 −1

)

, J =

(

−1 0
0 −1

)

.

Define a right action of SL2(Z) on Manin symbols as follows. If h ∈ SL2(Z), let

[P, g].h = [h−1.P, gh].

This is a right action because P.h = h−1P is a right action, and right multipli-
cation g 7→ gh is also a right action.
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Theorem 8.2.3. If x is a Manin symbol, then

x+ x.σ = 0 (8.2.1)

x+ x.τ + x.τ2 = 0 (8.2.2)

x− x.J = 0. (8.2.3)

Moreover, these are all the relations between Manin symbols, in the sense that
the space Mk(G) of modular symbols is isomorphic to the quotient of the free
abelian group on the finitely many symbols [X iY k−2−i, Gg] (for i = 0, . . . , k−2,
and Gg ∈ G\SL2(Z)) by the above relations and any torsion.

Proof. We will only prove the easy “half” of the theorem here. The proof
of the difficult half, i.e., that the above relations are all the relations is more
complicated. Merel remarks in [Mer94, §1.3] that the quotient of Manin symbols
by the above relations and torsion is isomorphic to a space of Šokurov symbols,
which is in turn isomorphic to Mk(G). He cites [Šok80] for most of the proof.
See also [Ste03] for an exposition of Manin’s proof from [Man72] when k = 2,
which involves triangulating the Riemann surface G\h.

For the proof of the easy half, i.e., that the expressions above are in fact
relations, we follow Merel’s proof from [Mer94, §1.2]. Note that

σ(0) = σ2(∞) = ∞ and τ(1) = τ2(0) = ∞.

Write x = [P, g], we have

[P, g] + [P, g].σ = [P, g] + [σ−1.P, gσ]

= g.(P{0,∞}) + gσ.(σ−1.P{0,∞})
= (g.P ){g(0), g(∞)} + (gσ).(σ−1.P ){gσ(0), gσ(∞)}
= (g.P ){g(0), g(∞)} + (g.P ){g(∞), g(0)}
= (g.P )({g(0), g(∞)} + {g(∞), g(0)})
= 0.

Also,

[P, g] + [P, g].τ + [P, g].τ 2 = [P, g] + [τ−1.P, gτ ] + [τ−2.P, gτ2]

= g.(P{0,∞}) + gτ.(τ−1.P{0,∞}) + gτ2.(τ−2.P{0,∞})
= (g.P ){g(0), g(∞)} + (g.P ){gτ(0), gτ(∞)}) + (g.P ){gτ 2(0), τ2(∞)})
= (g.P ){g(0), g(∞)} + (g.P ){g(1), g(0)}) + (g.P ){g(∞), g(1)})
= (g.P )({g(0), g(∞)} + {g(∞), g(1)} + {g(1), g(0)})
= 0

Finally,

[P, g] + [P, g].J = g.(P{0,∞}) − gJ.(J−1P{gJ(0), gJ(∞)}
= (g.P ){g(0), g(∞)} − (g.P ){g(0), g(∞)}
= 0,

where we use that J acts trivially via linear fractional transformations.



8.2. MANIN SYMBOLS 107

If G is a finite-index subgroup and we have an algorithm to enumerate the
right cosets G\SL2(Z), and to decide which coset an arbitrary element of SL2(Z)
belongs to, then Theorem 8.2.3 and the algorithms of Chapter 7 yield an algo-
rithm to compute Mk(G,Q). We will defer further discussion about precise
details of algorithms to compute modular symbols until Chapter ??). Note that
if J ∈ G, then the relation x− x.J = 0 is automatic. Also note the matrices σ
and τ do not commute, so one can not first quotient out by the two-term σ re-
lations, then quotient out only the remaining free generators by the τ relations,
and get the right answer in general.

8.2.1 Coset Representatives and Manin Symbols

Proposition 8.2.4. The right cosets Γ1(N)\SL2(Z) are in bijection with pairs
(c, d) where c, d ∈ Z/NZ and gcd(c, d,N) = 1. The coset containing a matrix
(

a b
c d

)

corresponds (c, d).

Proof. This proof is copied from [Cre92, pg. 203], except in that paper Cremona
works with the analogue of Γ1(N) in PSL2(Z), so his result is slightly different.
Suppose γi =

(

ai bi

ci di

)

∈ SL2(Z), for i = 1, 2. We have

γ1γ
−1
2 =

(

a1 b1
c1 d1

)(

d2 −b2
−c2 a2

)

=

(

a1d2 − b1c2 ∗
c1d2 − d1c2 a2d1 − b2c1

)

,

which is in Γ1(N) if and only if

c1d2 − d1c2 ≡ 0 (mod N) (8.2.4)

and

a2d1 − b2c1 ≡ a1d2 − b1c2 ≡ 1 (mod N). (8.2.5)

Since the γi have determinant 1, if (c1, d1) = (c2, d2) (mod N), then the con-
gruences (8.2.4–8.2.5) hold. Conversely, if (8.2.4–8.2.5) hold, then

c2 ≡ a2d1c2 − b2c1c2

≡ a2d2c1 − b2c2c1 since d1c2 ≡ d2c1 (mod N)

≡ c1 since a2d2 − b2c2 = 1,

and likewise

d2 ≡ a2d1d2 − b2c1d2 ≡ a2d1d2 − b2d1c2 ≡ d1 (mod N).

Thus we may view weight k Manin symbols for Γ1(N) as triples of integers
(i, c, d), where 0 ≤ i ≤ k − 2 and c, d ∈ Z/NZ with gcd(c, d,N) = 1. Here
(i, c, d) corresponds to the Manin symbol [X iY k−2−i,

(

a b
c′ d′

)

], where c′ and d′
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lift c, d. The relations of Theorem 8.2.3 become

(i, c, d) + (−1)i(k − 2 − i, d,−c) = 0,

(i, c, d) + (−1)k−2
k−2−i
∑

j=0

(−1)j
(

k − 2 − i

j

)

(j, d,−c− d)

+ (−1)k−2−i
i
∑

j=0

(−1)j
(

i

j

)

(k − 2 − i+ j, −c− d, c) = 0,

(i, c, d) − (−1)k−2(i, −c,−d) = 0.

There is a similar description of cosets for Γ0(N):

Proposition 8.2.5. The right cosets Γ0(N)\SL2(Z) are in bijection with the
elements of P1(Z/NZ). The coset containing a matrix

(

a b
c d

)

corresponds to the
point (c : d) ∈ P1(Z/NZ).

For a proof, see [Cre97a, §2.2].

8.2.2 Modular Symbols With Character

Suppose now that G = Γ1(N) ⊂ SL2(Z). Merel defines an action of diamond
bracket operators 〈d〉, with gcd(d,N) = 1, on modular and Manin symbols. On
Manin symbols the action is given by

〈n〉([P, (c, d)]) = [P, (nc, nd)] .

Let
ε : (Z/NZ)∗ → Q(ζ)∗

be a Dirichlet character, where ζ is an nth root of unity and n is the order of ε.
Let Mk(Γ1(N), ε) be the quotient of Mk(Γ1(N),Z[ζ]) by the relations (given in
terms of Manin symbols)

〈d〉x− ε(d)x = 0,

for all x ∈ Mk(Γ1(N),Z[ζ]), and by any torsion. Thus Mk(Γ1(N), ε) is a torsion
free Z[ε]-module.

Remark 8.2.6. I do not know whether or not Mk(Γ1(N), ε) is necessarily free
as a Z[ε]-module.

8.3 Hecke Operators

Just as for modular forms, there is a Hecke algebra T = Z[T1, T2, . . .] of Hecke
operators that act on Mk(Γ0(N)). Let

Rp =

{(

1 r
0 p

)

: r = 0, 1, . . . , p− 1

}

∪
{(

p 0
0 1

)}

,
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where we omit
(

p 0
0 1

)

if p | N . Then the Hecke operator Tp on Mk(Γ0(N)) is
given by

Tp(x) =
∑

g∈R
g.x.

Notice when p - N , that Tp is defined by summing over p + 1 matrices that
correspond to the p+ 1 sublattices of Z × Z if index p. This is exactly how we
defined Tp on modular forms.

You might think at this point that we’ve just formally defined a computable
abelian group, and defined operators formally on it that look something like
the usual Hecke operators, but perhaps there’s no real connection. As it turns
out, the ring generated by all the Hecke operators on modular symbols is com-
mutative, and Mk(Γ1(N),R) is non-canonically isomorphic as a T-module to
Mk(Γ1(N)). Note that Mk(Γ1(N),R) is a real vector space and Mk(Γ1(N)) is
a complex vector space, so this should be viewed also as an isomorphism of R-
vector spaces. In fact there is an extra conjugation structure on Mk(Γ1(N),R),
which we will discuss later.

8.3.1 General Definition of Hecke Operators

Let Γ be a finite index subgroup of SL2(Z) and suppose

∆ ⊂ GL2(Q)

is a set such that Γ∆ = ∆Γ = ∆ and Γ\∆ is finite. For example, ∆ = Γ trivially
satisfies this condition. Also, if Γ = Γ1(N), then for any positive integer n, the
set

∆n =

{(

a b
c d

)

∈M2(Z) : ad− bc = n, and

(

a b
c d

)

≡
(

1 ∗
0 n

)

(mod N)

}

also satisfies this condition, as we will now prove.

Lemma 8.3.1. We have

Γ1(N) · ∆n = ∆n · Γ1(N) = ∆n

and

∆n =
⋃

a,b

Γ1(N) · σa
(

a b
0 n/a

)

,

where σa ≡
(

1/a 0
0 a

)

(mod N), the union is disjoint and 1 ≤ a ≤ n with a | n,
gcd(a,N) = 1, and 0 ≤ b < n/a. In particular, the set of cosets Γ1(N)\∆n is
finite.

Proof. If γ ∈ Γ1(N) and δ ∈ ∆n, then

(

1 ∗
0 1

)

·
(

1 ∗
0 n

)

≡
(

1 ∗
0 n

)

·
(

1 ∗
0 1

)

≡
(

1 ∗
0 n

)

(mod N).
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Thus Γ1(N)∆n ⊂ ∆n, and since Γ1(N) is a group Γ1(N)∆n = ∆n; likewise
∆nΓ1(N) = ∆n.

For the coset decomposition, we first prove the statement for N = 1, i.e., for
Γ1(N) = SL2(Z). IfA is an arbitrary element ofM2(Z) with determinant n, then
using row operators on the left with determinant 1, i.e., left multiplication by

elements of SL2(Z), we can transform A into the form
(

a b
0 n/a

)

, with 1 ≤ a ≤ n

and 0 ≤ b < n. (Just imagine applying the Euclidean algorithm to the two
entries in the first column of A. Then a is the gcd of the two entries in the
first column, and the lower left entry is 0. Next subtract n/a from b until
0 ≤ b < n/a.)

Next suppose N is arbitrary. Let g1, . . . , gr be such that

g1Γ1(N) ∪ · · · ∪ grΓ1(N) = SL2(Z)

is a disjoint union. If A ∈ ∆n is arbitrary, then as we showed above, there is

some γ ∈ SL2(Z), so that γ · A =
(

a b
0 n/a

)

, with 1 ≤ a ≤ n and 0 ≤ b < n/a,

and a | n. Write γ = gi · α, with α ∈ Γ1(N). Then

α ·A = g−1
i ·

(

a b
0 n/a

)

≡
(

1 ∗
0 n

)

(mod N).

It follows that

g−1
i ≡

(

1 ∗
0 n

)

·
(

a b
0 n/a

)−1

≡
(

1/a ∗
0 a

)

(mod N).

Since ( 1 1
0 1 ) ∈ Γ1(N) and gcd(a,N) = 1, there is γ′ ∈ Γ1(N) such that

γ′g−1
i ≡

(

1/a 0
0 a

)

(mod N).

We may then choose σa = γ′g−1
i . Thus every A ∈ ∆n is of the form γσa

(

a b
0 n/a

)

,

with γ ∈ Γ1(N) and a, b suitably bounded. This proves the second claim.

Let any element δ =
(

a b
c d

)

∈ GL2(Q) act on the left on modular symbols
Mk by

δ(P{α, β}) = P (dX − bY,−cX + aY ){δ(α), δ(β)}.
(Until now we had only defined an action of SL2(Z) on modular symbols.) For
g =

(

a b
c d

)

∈ GL2(Q), let

g̃ =

(

d −b
−c a

)

= det(g) · g−1. (8.3.1)

Note that ˜̃g = g. Also, δ.P (X,Y ) = (P ◦ g̃)(X,Y ), where we set

g̃(X,Y ) = (dX − bY,−cX + aY ).
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Suppose Γ and ∆ are as above. Fix a finite set R of representatives for Γ\∆.
Let

T∆ : Mk(Γ) → Mk(Γ)

be the linear map

T∆(x) =
∑

δ∈R
δ · x,

This map is well defined because if γ ∈ Γ and x ∈ Mk(Γ), then

∑

δ∈R
δγ · x =

∑

certain δ′

γδ′ · x =
∑

certain δ′

δ′ · x =
∑

δ∈R
δ · x,

where we have used that ∆Γ = Γ∆, and Γ acts trivially on Mk(Γ).
Let Γ = Γ1(N) and ∆ = ∆n. Then the nth Hecke operator Tn is T∆n

, and
by Lemma 8.3.1,

Tn(x) =
∑

a,b

σa

(

a b
0 n/a

)

· x,

where a, b are as in Lemma 8.3.1.
Given this definition, we can compute the Hecke operators on Mk(Γ1(N))

as follows. Write x as a modular symbol P{α, β}, compute Tn(x) as a modular
symbol, then convert back to Manin symbols using (many!) continued fractions
expansions. This is extremely inefficient, and fortunately Löıc Merel found a
much better way, which we now describe (see also [Mer94] and also [Maz73]).

8.3.2 Hecke Operators on Manin Symbols

If S is a subset of GL2(Q), let

S̃ = {g̃ : g ∈ S}.

Also, for any ring R and any subset S ⊂ M2(Z), let R[S] denote the free R-
module with basis the elements of S, so the elements of R[S] are the finite
R-linear combinations of the elements of S.

One of the main theorems of [Mer94] is that for any Γ,∆ as above, if one
can find

∑

uMM ∈ C[M2(Z)] and a map

φ : ∆̃ SL2(Z) → SL2(Z)

that satisfies a complicated list of conditions, then for any Manin symbol [P, g] ∈
Mk(Γ), we have

T∆([P, g]) =
∑

gM∈∆̃ SL2(Z) with M∈SL2(Z)

uM [M̃ · P, φ(gM)].

Merel devotes substantial work to giving examples of φ and
∑

uMM ∈ C[M2(Z)]
that satisfy all his conditions.
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When Γ = Γ1(N), the complicated list of conditions becomes simpler. Let
M2(Z)n be the set of 2 × 2 matrices with determinant n. An element

h =
∑

uM [M ] ∈ C[M2(Z)n]

satisfies condition Cn if for every K ∈M2(Z)n/SL2(Z), we have that
∑

M∈K
uM ([M∞] − [M0]) = [∞] − [0] ∈ C[P 1(Q)]. (8.3.2)

If h satisfies condition Cn, then for any Manin symbol [P, g] ∈ Mk(Γ1(N)),
Merel proves that

Tn([P, (u, v)]) =
∑

M

uM [P (aX + bY, cX + dY ), (u, v)M ]. (8.3.3)

Here (u, v) ∈ (Z/NZ)2 corresponds to a coset of Γ1(N) in SL2(Z), as in Propo-
sition 8.2.4, and if (u′, v′) = (u, v)M ∈ (Z/NZ)2, and gcd(u′, v′, N) 6= 1, then
we omit the corresponding summand.

For example, we will now check directly that the element

h2 =

[(

2 0
0 1

)]

+

[(

1 0
0 2

)]

+

[(

2 1
0 1

)]

+

[(

1 0
1 2

)]

satisfies condition C2. We have, as in the proof of Lemma 8.3.1, but using
elementary column operations, that

M2(Z)2/SL2(Z) =

{(

a 0
b 2/a

)

SL2(Z) : a = 1, 2 and 0 ≤ b < 2/a

}

=

{(

1 0
0 2

)

SL2(Z),

(

1 0
1 2

)

SL2(Z),

(

2 0
0 1

)

SL2(Z)

}

.

To verify condition C2, we consider each of the three elements ofM2(Z)2/SL2(Z)
and check that (8.3.2) holds. We have that

(

1 0
0 2

)

∈
(

1 0
0 2

)

SL2(Z),

(

2 1
0 1

)

,

(

1 0
1 2

)

∈
(

1 0
1 2

)

SL2(Z),

and
(

2 0
0 1

)

∈
(

2 0
0 1

)

SL2(Z).

Thus if K = ( 1 0
0 2 ) SL2(Z), the left sum of (8.3.2) is [( 1 0

0 2 ) (∞)] − [( 1 0
0 2 ) (0)] =

[∞] − [0], as required. If K = ( 1 0
1 2 ) SL2(Z), then the left side of (8.3.2) is

[( 2 1
0 1 ) (∞)]−[( 2 1

0 1 ) (0)]+[( 1 0
1 2 ) (∞)]−[( 1 0

1 2 ) (0)] = [∞]−[1]+[1]−[0] = [∞]−[0].

Finally, for K = ( 2 0
0 1 ) SL2(Z) we also have [( 2 0

0 1 ) (∞)] − [( 2 0
0 1 ) (0)] = [∞] − [0],

as required. Thus by (8.3.3) we can compute T2 on any Manin symbol, by
summing over the action of the four matrices ( 2 0

0 1 ) , ( 1 0
0 2 ) , ( 2 1

0 1 ) , ( 1 0
1 2 ).
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Proposition 8.3.2 (Merel). The element

∑

a>b≥0
d>c≥0
ad−bc=n

[(

a b
c d

)]

∈ Z[M2(Z)n]

satisfies condition Cn.

Merel’s proof isn’t too difficult, but takes two pages.

Remark 8.3.3. In [Cre97a, §2.4], Cremona discusses the work of Merel and
Mazur on Heilbronn matrices in the special cases Γ = Γ0(N) and weight 2.
He gives a fairly simple proof that the action of Tp on Manin symbols can be
computed by summing the action of some set Rp of matrices of determinant p.
He then describes the set Rp, and gives an efficient continued fractions algorithm
for computing it (but he does not seem to prove that his description of Rp is
correct). (Note: My experience is that Cremona’s set Rp is significantly smaller
than the sets appearing in Merel’s paper, but when I’ve tried to use Rp to do
certain more general higher-weight computations that are correct using Merel’s
sets, they do not work.)

8.3.3 Remarks on Complexity

Merel also gives another family Sn of matrices that satisfy condition Cn, and
he proves that as n→ ∞,

#Sn ∼ 12 log(2)

π2
· σ1(n) log(n),

where σ1(n) is the sum of the divisors of n. Thus for a fixed space Mk(Γ) of
modular symbols, one can compute the Hecke operator Tn using O(σ1(n) log(n))
arithmetic operations in the base field. Note that we’ve fixed Mk(Γ), so we
ignore the linear algebra involved in computation of a presentation; also, adding
elements takes a bounded number of field operations when the space is fixed.
Thus using Manin symbols the complexity of computing Tp, for p prime, is
O((p + 1) log(p)) field operations, which is exponential in the number of digits
of p.

There is a trick of Basmaji (see [Bas96]) for computing a matrix of Tn on
Mk(Γ), when n is very large, and it is more efficient than one might naively
expect. Basmaji’s trick doesn’t improve the big-oh complexity for a fixed space,
but does improve the complexity by a constant factor of the dimension of
Mk(Γ,Q). Suppose we are interested in computing the matrix for Tn for some
massive integer n, and that Mk(Γ,Q) as has fairly large dimension. The trick
is as follows. Choose, a list

x1 = [P1, g1], . . . , xr = [Pr, gr] ∈ V = Mk(Γ,Q)

of Manin symbols such that the map Ψ : T → V r given by

t 7→ (tx1, . . . , txr)
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is injective. In practice, it is often possible to do this with r “very small”. Also,
we emphasize that V r is a Q-vector space of dimension r · dim(V ).

Next find Hecke operators Ti, with i small, whose images form a basis for
the image of Ψ. Now with the above data precomputed, which only required
working with Hecke operators Ti for small i, we are ready to compute Tn with n
huge. Compute yi = Tn(xi), for each i = 1, . . . , r, which we can compute using
Heilbronn matrices since each xi = [Pi, gi] is a Manin symbol. We thus obtain
Ψ(Tn) ∈ V r. Since we have precomputed Hecke operators Tj such that Ψ(Tj)
generate V r, we can find aj such that

∑

ajΨ(Tj) = Ψ(Tn). Then since Ψ is
injective, we have Tn =

∑

ajTj , which gives the full matrix of Tn on Mk(Γ,Q).

8.4 Cuspidal Modular Symbols

Let B be the free abelian group on symbols {α}, for α ∈ P1(Q), and set

Bk = Zk−2[X,Y ] ⊗ B.

Define a left action of SL2(Z) on Bk by

g.(P{α}) = (g.P ){g(α)},

for g ∈ SL2(Z). For any finite index subgroup Γ ⊂ SL2(Z), let Bk(Γ) be the
quotient of Bk by the relations x − g.x for all g ∈ Γ and by any torsion. Thus
Bk(Γ) is a torsion free abelian group.

The boundary map is the map

b : Mk(Γ) → Bk(Γ)

given by extending the map

b(P{α, β}) = P{β} − P{α}

linearly. The space Sk(Γ) of cuspidal modular symbols is the kernel

Sk(Γ) = ker(Mk(Γ) → Bk(Γ)),

so we have an exact sequence

0 → Sk(Γ) → Mk(Γ) → Bk(Γ).

One can prove that when k > 2 then this sequence is exact on the right.
Also, there is a presentation of Bk(Γ) in terms of “boundary Manin symbols”.
[[TODO: Add this later to the book. It is crucial to add this, since
this is something nontrivial that I have in my thesis, and it’s very
important to know when implementing.]]
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8.5 The Pairing Between Modular Symbols and

Modular Forms

In this section we define a pairing between modular symbols and modular forms,
and prove that the Hecke operators respect this pairing. We also define an
involution on modular symbols, and study its relationship with the pairing.
This pairing is crucial in much that follows, because it gives rise to period maps
from modular symbols to certain complex vector spaces.

Fix an integer weight k ≥ 2 and a finite-index subgroup Γ of SL2(Z). Let
Mk(Γ) denote the space of holomorphic modular forms of weight k for Γ, and
Sk(Γ) its cuspidal subspace. Following [Mer94, §1.5], let

Sk(Γ) = {f : f ∈ Sk(Γ)}
denote the space of antiholomorphic cuspforms. Here f is the function on h∗

given by f(z) = f(z).
Define a pairing

(Sk(Γ) ⊕ Sk(Γ)) × Mk(Γ) → C (8.5.1)

by

〈(f1, f2), P{α, β}〉 =

∫ β

α

f1(z)P (z, 1)dz +

∫ β

α

f2(z)P (z, 1)dz,

and extending linearly. Here the integral is a complex path integral along a
great circle (or vertical line) from α to β (so, e.g., write z(t) = x(t) + iy(t),
where (x(t), y(t)) traces out the path, and consider two real integrals; see any
introductory book on complex analysis for more details).

The integration pairing is well defined, which means that if we replace
P{α, β} by an equivalent modular symbols (equivalent modulo the left action
of Γ), then the integral is the same. This follows from the change of variables
formulas for integration and the fact that f1 ∈ Sk(Γ) and f2 ∈ Sk(Γ). For
example, if k = 2, g ∈ Γ and f ∈ Sk(Γ), then

〈f, g{α, β}〉 = 〈f, {g(α), g(β)}〉

=

∫ g(β)

g(α)

f(z)dz

=

∫ β

α

f(g(z))dg(z)

=

∫ β

α

f(z)dz = 〈f, {α, β}〉,

where in the last step we use that f is a weight 2 modular form.

Remark 8.5.1. The integration pairing is related to special values of L-functions.
The L-function attached to a cusp form f =

∑

anq
n ∈ Sk(Γ1(N)) is

L(f, s) = (2π)sΓ(s)−1

∫ ∞

0

f(it)ts
dt

t
(8.5.2)
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Note that one can show that L(f, s) =
∑∞
n=1

an

ns by switching the order of
summation and integration, which is justified using standard estimates on |an|
(see, e.g., [Kna92, §VIII.5]).

For each integer j with 1 ≤ j ≤ k− 1, we have setting s = j and making the
change of variables t 7→ −it in (8.5.2), that

L(f, j) =
(−2πi)j

(j − 1)!
·
〈

f, Xj−1Y k−2−(j−1){0,∞}
〉

. (8.5.3)

The integers j as above are called critical integers, and when f is an eigenform,
they have deep conjectural significance. We will discuss tricks to efficiently
compute L(f, j) later in this book.

Theorem 8.5.2 (Shokoruv). The pairing 〈· , ·〉 is nondegenerate when re-
stricted to cuspidal modular symbols:

〈· , ·〉 : (Sk(Γ) ⊕ Sk(Γ)) × Sk(Γ) → C.

The pairing is also compatible with Hecke operators. Before proving this,
we define an action of Hecke operators on Mk(Γ1(N)) and on Sk(Γ1(N)). The
definition is very similar to the one we gave in Section 2.4 for modular forms
of level 1. For a positive integer n, let Rn be a set of coset representatives
for Γ1(N)\∆n from Lemma 8.3.1. For any γ =

(

a b
c d

)

∈ GL2(Q) and f ∈
Mk(Γ1(N)) set

f |[γ]k = det(γ)k−1(cz + d)−kf(γ(z)).

Also, for f ∈ Sk(Γ1(N)), set

f |[γ]′k = det(γ)k−1(cz + d)−kf(γ(z)).

Then for f ∈Mk(Γ1(N)),

Tn(f) =
∑

γ∈Rn

f |[γ]k

and for f ∈ Sk(Γ1(N)),

Tn(f) =
∑

γ∈Rn

f |[γ]′k.

This agrees with the definition from 2.4 when N = 1.

Remark 8.5.3. If Γ is an arbitrary finite index subgroup of SL2(Z), then we
can define operators T∆ on Mk(Γ) for any ∆ with ∆Γ = Γ∆ = ∆ and Γ\∆
finite. For concreteness we do not do the general case here or in the theorem
below, but the proof is exactly the same (see [Mer94, §1.5]).

Finally we prove the promised Hecke compatibility of the pairing. This proof
should convince you that the definition of modular symbols is sensible, in that
they are “natural” expressions to integrate against modular forms.



8.5. THE PAIRING BETWEEN MODULAR SYMBOLS AND MODULAR FORMS117

Theorem 8.5.4. If f = (f1, f2) ∈ Sk(Γ1(N))⊕Sk(Γ1(N)) and x ∈ Mk(Γ1(N)),
then for any n,

〈Tn(f), x〉 = 〈f, Tn(x)〉.
Proof. We exactly follow [Mer94, §2.1], and will only prove the theorem when
f = f1 ∈ Sk(Γ1(N)), the proof in the general case being the same.

Let α, β ∈ P1(Q), P ∈ Zk−2[X,Y ], and for g =
(

a b
c d

)

∈ GL2(Q), set j(g, z) =
(cz+d). Let n be any positive integer, and let Rn be a set of coset representatives
for Γ1(N)\∆n from Lemma 8.3.1.

We have

〈Tn(f), P{α, β}〉 =

∫ β

α

Tn(f)P (z, 1)dz

=
∑

δ∈R

∫ β

α

det(δ)k−1f(δ(z))j(δ, z)−kP (z, 1)dz.

Now for each summand corresponding to the δ ∈ R, make the change of variables
u = δz. Thus we make #R change of variables. Also, recall the notation from
(8.3.1), which we will use below.

〈Tn(f), P{α, β}〉 =
∑

δ∈R

∫ δ(β)

δ(α)

det(δ)k−1f(u)j(δ, δ−1(u))−kP (δ−1(u), 1)d(δ−1(u))

=
∑

δ∈R

∫ δ(β)

δ(α)

det(δ)k−1f(u)j(δ̃, u)k det(δ)−kP (δ̃(u), 1)
det(δ)du

j(δ̃, u)2

=
∑

δ∈R

∫ δ(β)

δ(α)

f(u)j(δ̃, u)k−2P (δ̃(u), 1)du

=
∑

δ∈R

∫ δ(β)

δ(α)

f(u) · ((δ.P )(u, 1))du

= 〈f, Tn(P{α, β})〉.

The second equality is the trickiest. First, note that δ−1(u) = δ̃(u), since a
linear fractional transformation is unchanged by a nonzero rescaling of a matrix
that induces it. Thus by the quotient rule, using that δ̃ has determinant det(δ),
we see that

d(δ−1(u)) =
det(δ)du

j(δ̃, u)2
.

The other part of the second equality asserts that

j(δ, δ−1(u))−kP (δ−1(u), 1) = j(δ̃, u)k det(δ)−kP (δ̃(u), 1). (8.5.4)

From the definitions, and again using that δ−1(u) = δ̃(u), we see that

j(δ, δ−1(u)) =
det(δ)

j(δ̃, u)
,
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which proves that (8.5.4) holds. In the third equality, we use that

(δ.P )(u, 1) = j(δ̃, u)k−2P (δ̃(u), 1).

To see this, note that P (X,Y ) = P (X/Y, 1) · Y k−2. Using this we see that

(δ.P )(X,Y ) = (P ◦ δ̃)(X,Y )

= P

(

δ̃

(

X

Y

)

, 1

)

·
(

−c · X
Y

+ a

)k−2

· Y k−2.

Now substituting (u, 1) for (X, 1), we see that

(δ.P )(u, 1) = P (δ̃(u), 1) · (−cu+ a)k−2,

as required.

Remark 8.5.5. The theorem is true more generally for any Γ and any operator
T∆, via the same proof.

Suppose that Γ is finite index subgroup of SL2(Z) such that if η =
(−1 0

0 1

)

,
then

ηΓη = Γ.

For example, Γ = Γ1(N) satisfies this condition. There is an involution ι∗ on
Mk(Γ) given by

ι∗(P (X,Y ){α, β}) = −P (X,−Y ){−α,−β}, (8.5.5)

which we call the star involution. On Manin symbols, ι∗ it is

ι∗[P, (u, v)] = −[P (−X,Y ), (−u, v)].
Let Sk(Γ)+ be the +1 eigenspace for ι∗ and Sk(Γ)− the −1 eigenspace. There
is also a map ι on modular forms, which is adjoint to ι∗.

Remark 8.5.6 (WARNING). Notice the − sign in front of −P (X,−Y ){−α,−β}
in (8.5.5). This sign is missing in [Cre97a], which confused me. Thus the +1
quotient in MAGMA is the quotient where η acts as −1. (This is a mistake.)

We now state the final result about the pairing, which explains how modular
symbols and modular forms are related.

Theorem 8.5.7. The pairing 〈· , ·〉 restricts to give nondegenerate Hecke com-
patible bilinear pairings

Sk(Γ)+ × Sk(Γ) → C and Sk(Γ)− × Sk(Γ) → C.

In light of the Peterson inner product, the above theorem implies that there
is a canonical isomorphism of T′-modules

Sk(Γ,C)+ ∼= Sk(Γ),

where T′ is the anemic Hecke algebra, i.e., the subring of T generated by Hecke
operators Tn with gcd(n,N) = 1. In fact, one can prove, e.g., using Eichler-
Shimura cohomology, that there is a non-canonical isomorphism over the full
Hecke algebra

Mk(Γ,C) ∼= Mk(Γ) ⊕ Sk(Γ).
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8.6 Explicitly Computing Mk(Γ0(N)

In this section we explicitly compute Mk(Γ0(N)) for various k and N . We
represent Manin symbols for Γ0(N) as triples (i, u, v), where (u, v) ∈ P1(Z/NZ),
and (i, u, v) corresponds to [X iY k−2−i, (u, v)] in the usual notation. Also, recall
that (u, v) corresponds to the right coset in Γ0(N)\SL2(Z) that contains a
matrix

(

a b
c d

)

with (u, v) ≡ (c, d) as elements of P1(Z/NZ), i.e., up to rescaling
by an element of (Z/NZ)∗.

8.6.1 Computing P1(Z/NZ)

In this section we give an algorithm to compute a canonical representative for
each element of P1(Z/NZ). This algorithm is extremely important because
modular symbols implementations call a huge number of times. A more naive
approach would be to store all pairs (u, v) ∈ (Z/NZ)2, and a fixed reduced
representative, but this wastes a huge amount of memory. For example, if
N = 105, we would have to store an array of

(105 · 105)/106 = 10000 million integers,

which is many terabytes.
Another approach to enumerating P1(Z/NZ) is described at the end of

[Cre97a, §2.2]. We use that it is easy to test whether two pairs (u0, v0), (u1, v1)
define the same element of P1(Z/NZ); they do if and only if we have equal-
ity of cross terms u0v1 = v0u1 (mod N) (see [Cre97a, Prop. 2.2.1]). So we
list elements (1, a) for a = 0, 1, . . . , N − 1, then elements (d, a) for d | N and
a = 1, . . . , N − 1, but checking each time we add a new element to our list
whether we have already seen it. Unfortunately, given a random pair (u, v),
which is something we encounter very frequently in practice, we have to compare
(u, v) with each element of the list to find our chosen equivalent representative
in P1(Z/NZ). This is very expensive, since it requires a linear search through
the list, hence takes time at least O(n), where n is the number of elements
of P1(Z/NZ). To get around this Cremona says he “used a simple ’hashing’
system, so that given any particular symbole (c, d) we could quickly determine
to which symbol in our standard list it is equivalent.” (He doesn’t say what
hashing system he uses.)

Instead of either of the above methods, we use the following algorithm,
which finds a canonical representative for each element of P1(Z/NZ). With
this algorithm in hand, given an arbitrary (u, v), we first find the canonical
equivalent elements (u′, v′), then search a sorted lists of all canonical pairs,
which takes time O(log(n)), where n = #P1(Z/NZ).

Algorithm 8.6.1 (Reduce). INPUT: Integers u and v, and a positive integer N .
OUTPUT: If possible, this algorithm outputs a pair u0, v0 such that (u, v) ≡ (u0, v0)
as elements of P1(Z/NZ) and s ∈ Z such that (u, v) = (su0, sv0) (mod Z/nZ).
Moreover, the element (u0, v0) does not depend on the class of (u, v), i.e., for
any s with gcd(N, s) = 1 the input (su, sv) also outputs (u0, v0). If (u, v) is not
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in P1(Z/NZ), this algorithm outputs (0, 0), 0.

THE ALGORITHM: In the following algorithm, a%N denotes the residue of a mod-
ulo N that satisfies 0 ≤ a < N .

1. Reduce both u and v modulo N :

u = u % N; v = v % N

2. Deal with the easy special case when u = 0, using that (0, v) ∈ P1(Z/NZ) if
and only if gcd(v,N) = 1:

if u == 0:

u0 = 0

if gcd(v,N) == 1:

v0 = 1

else:

v0 = 0

s = v

return (u0,v0), s

3. Compute g = gcd(u,N) and s, t ∈ Z such that g = su+ tN :

g, s, t = XGCD(u, N)

s = s % N

4. We have gcd(u, v,N) = gcd(g, v), so if gcd(g, v) > 1, then (u, v) 6∈ P1(Z/NZ).

if gcd(g, v) != 1:

return (0,0), 0

5. Now g = su+ tN , so we may think of s as “pseudo-inverse” of u (mod N),
in the sense that su is as close as possible to being 1 modulo N . Note that
since g | u, changing s modulo N/g does not change su (mod N). We can
adjust s modulo N/g so it is coprime to N . (This is because 1 = su/g+tN/g,
so s is a unit mod N/g, and the map (Z/NZ)∗ → (Z/(N/g)Z)∗ is surjective,
e.g., as we saw in the proof of Algorithm 4.6.1.)

if g != 1:

d = N/g

while gcd(s,N) != 1:

s = (s+d) % N
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6. Multiply (u, v) by s, replacing (u, v) by the equivalent element (g, sv) of
P1(Z/NZ).

u = g

v = (s*v) % N

7. Next we find the unique pair (g, v′) equivalent to (g, v) that minimizes v.
To do this, we note that if 1 6= t ∈ (Z/NZ)∗ and tg ≡ g (mod N), then
(t − 1)g ≡ 0 (mod N), so t − 1 = kN/g for some k with 1 ≤ k ≤ g − 1.
Then for t = 1+kN/g coprime to N , we have (gt, vt) = (g, v+kvN/g). The
following part of the algorithm computes all (g, v + kvN/g) pairs and picks
out the one that minimizes the least nonnegative residue of vt modulo N :

min_v = v; min_t = 1

if g != 1:

Ng = N/g

vNg = (v*Ng) % N

t = 1

for k in xrange(1,g): # for k satisfying 1<=k<g.

v = (v + vNg) % N

t = (t + Ng) % N

if v < min_v and gcd(t,N) == 1:

min_v = v; min_t = t

s = s * min_t

8. The s that we have computed in the above steps multiples the input (u, v)
to give the output (u0, v0). Thus we have to invert it, since the output scalar
is supposed to multiply (u0, v0) to give (u, v).

s = inverse_mod(s, N)

return (u,min_v), s

Remark 8.6.2. Allan Steel and the author jointly came up with Algorithm 8.6.1.

Remark 8.6.3. There might be an even better algorithm that uses that

P1(Z/NZ) ∼=
∏

p|N
P1(Z/pνpZ).

This would also use that it is relatively easy to enumerate the elements of
P1(Z/pnZ) for a prime power pn. I have not thought this through.

Algorithm 8.6.4 (List P1(Z/NZ)). This algorithm makes a sorted list of the
distinct canonical representatives of P1(Z/NZ), as output by Algorithm 8.6.1.
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INPUT: An integer N > 1.

OUTPUT: Sorted list of canonical representatives for P1(Z/NZ).

1. First we make a list of the canonical representatives of enough pairs (c, d)
to fill up P1(Z/NZ). In the following code, we name Algorithm 8.6.1
p1 normalize.

lst = [(0,1), (1,0)]

for c in range(1,N): # iterate c such that 1 <= c < N:

lst.append((1,c))

g = gcd(c,N)

if g > 1:

u, v, s = p1_normalize(c, 1, N)

lst.append((u,v))

if g == c: # so c is a divisor

for d in xrange(2,N): # 2 <= d < N

if gcd(d,N) > 1 and gcd(d,c) == 1:

u,v,s = p1_normalize(c, d, N)

lst.append((u,v))

2. Next we sort the list of canonical pairs, then with one pass through the list
delete any duplicates (or use the following Python code, which is slightly
different).

lst = list(set(lst)) # Python trick remove duplicates.

lst.sort()

8.6.2 Examples of Computation of Mk(Γ0(N))

In this section, we compute Mk(Γ0(N)) explicitly in a few cases.

Example 8.6.5. We compute V = M4(Γ0(1)). Because Sk(Γ0(1)) = 0, and
Mk(Γ0(1)) = CE4, we expect V to have dimension 1, and for the Hecke operator
Tn to have eigenvalues the sum σ3(n) of the cubes of positive divisors of n.

The Manin symbols are

x0 = (0, 0, 0), x1 = (1, 0, 0), x2 = (2, 0, 0).

The relation matrix is












1 0 1
0 0 0
2 − 2 2
1 − 1 1
2 − 2 2













,
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where the first 2 rows correspond to S relations and the second two to T rela-
tions. Note that we don’t include all S relations, since it is obvious that some
are redundant, e.g., x + xS = 0 and (xS) + (xS)S = xS + x = 0 are the same
since S has order 2. (It’s not clear to me what is going on with T relations when
k > 2, though in this example two of the three T relations are redundant.)

The echelon form of the relation matrix is
(

1 0 1
0 1 0

)

,

where we’ve deleted the zero rows from the bottom. Thus we may replace the
above complicated list of relations with the following simpler list of relations:

x0 + x2 = 0

x1 = 0

from which we immediately read off that the second generator x1 is 0 and
x0 = −x2. Thus M4(Γ0(1)) has dimension 1, with basis the equivalence class of
x2 (or of x0).

Next we compute the Hecke operator T2 on M4(Γ0(1)). The Heilbronn ma-
trices of determinant 2 from Proposition 8.3.2 are

h0 =

(

1 0
0 2

)

, h1 =

(

1 0
1 2

)

, h2 =

(

2 0
0 1

)

, h3 =

(

2 1
0 1

)

,

To compute T2, we apply each of these matrices to x0, then reduce modulo the
relations. We have

x2.

(

1 0
0 2

)

= [X2, (0, 0)].

(

1 0
0 2

)

x2

x2.

(

1 0
1 2

)

= [X2, (0, 0)] = x2

x2.

(

2 0
0 1

)

= [(2X)2, (0, 0)] = 4x2

x2.

(

2 1
0 1

)

= [(2X + 1)2, (0, 0)] = x0 + 4x1 + 4x2 ∼ 3x2

Summing we see that T2(x2) ∼ 9x2 in M4(Γ0(1)). Notice that

9 = 13 + 23 = σ3(2).

The Merel Heilbronn matrices of determinant 3 from Proposition 8.3.2 are

h0 =

(

1 0
0 3

)

, h1 =

(

1 0
1 3

)

, h2 =

(

1 0
2 3

)

, h3 =

(

2 1
1 2

)

,

h4 =

(

3 0
0 1

)

, h5 =

(

3 1
0 1

)

, h6 =

(

3 2
0 1

)

.
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We have

x2.

(

1 0
0 3

)

= [X2, (0, 0)].

(

1 0
0 3

)

= x2

x2.

(

1 0
1 3

)

= [X2, (0, 0)] = x2

x2.

(

1 0
2 3

)

= [X2, (0, 0)] = x2

x2.

(

2 1
2 2

)

= [(2X + 1)2, (0, 0)] = x0 + 4x1 + 4x2 ∼ 3x2

x2.

(

3 0
0 1

)

= [(3X)2, (0, 0)] = 9x2

x2.

(

3 1
0 1

)

= [(3X + 1)2, (0, 0)] = x0 + 6x1 + 9x2 ∼ 8x2

x2.

(

3 2
0 1

)

= [(3X + 2)2, (0, 0)] = 4x0 + 12x1 + 9x2 ∼ 5x2

Summing we see that

T3(x2) ∼ x2 + x2 + x2 + 3x2 + 9x2 + 8x2 + 5x2 = 28x2.

Notice that

28 = 13 + 33 = σ3(3).

Example 8.6.6. Next we compute M2(Γ0(11)) explicitly. The Manin symbol
generators are

x0 = (0, 1), x1 = (1, 0), x2 = (1, 1), x3 = (1, 2), x4 = (1, 3), x5 = (1, 4),

x6 = (1, 5), x7 = (1, 6), x8 = (1, 7), x9 = (1, 8), x10 = (1, 9), x11 = (1, 10).

The relation matrix is as follows, where the S relations are above the line, and
the T relations are below it.

































1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0
1 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 1 0 0
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In weight 2, two out of three T -relations are redundant, so we do not include
them. The reduced row echelon form of the relation matrix is

































1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 1 −1 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

































From the echelon form we immediaely see that every symbol is equivalent to a
combination of x1 = (1, 0), x9 = (1, 8), and x10 = (1, 9). (Notice that columns
1, 9, and 10 are the pivot columns, where we index columns starting at 0.)
Explicitly, if (a, b, c) is the ith row of the following matrix, then xi = ax1 +
bx9 + cx10:









































−1 0 0
1 0 0
0 0 0
0 0 1
0 −1 1
0 −1 0
0 0 −1
0 0 −1
0 1 −1
0 1 0
0 0 1
0 0 0









































To compute T2, we apply each of the Heilbronn matrices of determinant 2
from Proposition 8.3.2 to x1, then to x9, and finally to x10. The matrices are
as in Example 8.6.5 above. We have

T2(x1) = 3(1, 0) + (1, 6) ∼ 3x1 − x10.

Applying T2 to x9 = (1, 8), we get

T2(x9) = (1, 3) + (1, 4) + (1, 5) + (1, 10) ∼ −2x9

Applying T2 to x10 = (1, 9), we get

T2(x10) = (1, 4) + (1, 5) + (1, 7) + (1, 10) ∼ −x1 − 2x10.

Thus the matrix of T2 with respect to this basis is

T2 =





3 0 0
0 −2 0
−1 0 −2



 ,
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where we write the matrix as an operator on the left on vectors written in terms
of x1, x9, and x10. The matrix T2 has characteristic polynomial

(x− 3)(x+ 2)2.

The (x− 3) factor corresponds to the weight 2 Eisenstein series, and the x+ 2
factor corresponds to the elliptic curve E = X0(11), which has

a2 = −2 = 2 + 1 − #E(F2).

We have

T3(x1) = 4(1, 0) + (1, 4) + (1, 6) + (1, 8) ∼ 4x1 − x10

T3(x9) = (1, 2) + (1, 3) + (1, 4) + (1, 5) + (1, 7) + 2(1, 10) ∼ −x9

T3(x10) = (0, 1) + (1, 0) + (1, 2) + (1, 3) + (1, 5) + (1, 6) + (1, 7) ∼ −x10,

so

T3 =





4 0 0
0 −1 0
−1 0 −1



 .

The characteristic polynomial of T3 is (x− 4)(x+ 1)2.

Example 8.6.7. In this example, we compute M6(Γ0(3)), which illustrates
both big weight and nontrivial level. We have the following generating Manin
symbols:

x0 = [XY 4, (0, 1)], x1 = [XY 4, (1, 0)]

x2 = [XY 4, (1, 1)], x3 = [XY 4, (1, 2)]

x4 = [XY 3, (0, 1)], x5 = [XY 3, (1, 0)]

x6 = [XY 3, (1, 1)], x7 = [XY 3, (1, 2)]

x8 = [X2Y 2, (0, 1)], x9 = [X2Y 2, (1, 0)]

x10 = [X2Y 2, (1, 1)], x11 = [X2Y 2, (1, 2)]

x12 = [X3Y, (0, 1)], x13 = [X3Y, (1, 0)]

x14 = [X3Y, (1, 1)], x15 = [X3Y, (1, 2)]

x16 = [X4Y, (0, 1)], x17 = [X4Y, (1, 0)]

x18 = [X4Y, (1, 1)], x19 = [X4Y, (1, 2)]

The relation matrix is already very large for M6(Γ0(3)) follows, where the S
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relations are before the line and the T relations after it:
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 −4 0 0 0 6 0 0 0 −4 0 1 0 1

1 1 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 1 0 0 1

0 0 2 0 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 2 0

0 1 0 1 0 −4 0 0 0 6 0 0 0 −4 0 0 1 1 0 0

0 0 0 1 1 0 0 −3 0 0 0 3 0 −1 0 −1 0 1 0 0

1 0 0 0 −3 1 0 0 3 0 0 0 −1 0 0 −1 0 0 0 1

0 0 1 0 0 0 −2 0 0 0 3 0 0 0 −2 0 0 0 1 0

0 1 0 0 0 −3 0 1 0 3 0 0 −1 −1 0 0 1 0 0 0

0 0 0 1 0 0 0 −2 1 1 0 1 0 −2 0 0 0 1 0 0

1 0 0 0 −2 0 0 0 1 1 0 1 0 0 0 −2 0 0 0 1

0 0 1 0 0 0 −2 0 0 0 3 0 0 0 −2 0 0 0 1 0

0 1 0 0 0 −2 0 0 1 1 0 1 −2 0 0 0 1 0 0 0

0 0 0 1 0 −1 0 −1 0 3 0 0 1 −3 0 0 0 1 0 0

1 0 0 0 −1 0 0 −1 0 0 0 3 0 1 0 −3 0 0 0 1

0 0 1 0 0 0 −2 0 0 0 3 0 0 0 −2 0 0 0 1 0

0 1 0 0 −1 −1 0 0 3 0 0 0 −3 0 0 1 1 0 0 0

0 1 0 1 0 −4 0 0 0 6 0 0 0 −4 0 0 1 1 0 0

1 0 0 1 0 0 0 −4 0 0 0 6 0 0 0 −4 0 1 0 1

0 0 2 0 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 2 0

1 1 0 0 −4 0 0 0 6 0 0 0 −4 0 0 0 1 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The reduced row echelon form of the relations matrix, with zero rows removed:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3/16 −3/16

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1/16 1/16

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1/2 −5/16 −3/16

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1/2 3/16 5/16

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1/6 1/12 1/12

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/6 −1/12 −1/12

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1/4 −1/4

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1/4 1/4

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1/16 1/16

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3/16 −3/16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1/2 3/16 5/16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1/2 −5/16 −3/16

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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Since these relations are equivalent to the original relations, we see quite clearly
how x0, . . . , x15 can be expressed in terms of x16, x17, x18, and x19. Thus
M6(Γ0(3)) has dimension 4. For example,

x15 ∼ 1

2
x17 −

5

16
x18 −

3

16
x19.

Notice that the number of relations is already quite large. It is perhaps
surprisingy how complicated the presentation is for M6(Γ0(3)). Because there
are denominators in the relations, the above calculation is only a computation
of M6(Γ0(3),Q). Computing M6(Γ0(3),Z) requires computation of a Z-basis for
the kernel of the relation matrix, which could be accomplished via, e.g., Hermite
normal form or LLL reduction.

As before, we find that with respect to the basis x16, x17, x18, and x19, that

T2 =









33 0 0 0
3 6 12 12

−3/2 27/2 15/2 27/2
−3/2 27/2 27/2 15/2









Notice that there are denominators in the matrix for T2 with respect to this
basis. It is clear from the definition of T2 acting on Manin symbols that T2

preserves the Z-module M6(Γ0(3)), so there is some basis for M6(Γ0(3)) such
that T2 is given by an integer matrix. Thus the characteristic polynomial f2 of
T2 will have integer coefficients; indeed,

f2 = (x− 33)2 · (x+ 6)2.

Note the factor of 33, which comes from the two images of the Eisenstein series
E4 of level 1. The factor x+ 6 comes from a cusp form

g = q − 6q2 + · · · ∈ S6(Γ0(3)).

By computing more Hecke operators Tn, we can find more coefficients of g. For
example, the charpoly of T3 is (x− 1)(x− 243)(x− 9)2, and the matrix of T5 is

T5 =









3126 0 0 0
240 966 960 960
−120 1080 1086 1080
−120 1080 1080 1086









,

which has characteristic polynomial

f5 = (x− 3126)2(x− 6)2.

The matrix of T7 is

T7 =









16808 0 0 0
1296 5144 5184 5184
−648 5832 5792 5832
−648 5832 5832 5792









,
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with characteristic polynomial

f7 = (x− 16808)2(x+ 40)2.

One can put this information together to deduce that

g = q − 6q2 + 9q3 + 4q4 + 6q5 − 54q6 − 40q7 + · · · .
Example 8.6.8. The relation matrix for M2(Γ0(43)) is
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0
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Reducing, one computes a presentation for M2(Γ0(43)), which has dimension
7. With respect to the symbols

x1 = (1, 0), x32 = (1, 31), x33 = (1, 32),

x39 = (1, 38), x40 = (1, 39), x41 = (1, 40), x42 = (1, 41),

the matrix of T2 is

T2 =





















3 0 0 0 0 0 0
0 −2 −1 −1 −1 0 0
0 1 1 0 0 −2 −1
0 0 1 −1 1 0 0
0 0 0 2 1 2 1
0 0 −1 −1 −1 −2 0
−1 0 0 1 1 1 −1





















,

which has characteristic polynomial

(x− 3)(x+ 2)2(x2 − 2)2.

There is one Eisenstein series, and three cusp forms with a2 = −2 and a2 =
±
√

2.
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Example 8.6.9. In this example we discuss computation of M2(Γ0(2004),Q),
without explicitly writing down the matrices, which are huge. First we make a
list of the

4032 = (22 + 2) · (3 + 1) · (167 + 1)

elements (a, b) ∈ P1(Z/2004Z) using Algorithm 8.6.1. This list looks like this:

x0 = (0, 1), (1, 0), (1, 1), (1, 2), . . . , (501, 7), (668, 1), (668, 3), (668, 5), x4032 = (1002, 1)

For each of the symbols xi, we consider the S and T relations. Ignoring the
redundant relations, we find 2016 S-relations and 1344 T -relations. It is simple
to quotient out by the S-relations, e.g., by identifying xi with −xiS = −xj for
some j (or setting xi = 0 if xiS = xi). Once we’ve quotiented out by the S
relations, we take the image of all of the 1344 T relations modulo the S-relations
and quotient out by those relations. Because S and T do not commutate, we
can not only quotient out by T relations xi + xiT + xiT

2 = 0 where the xi are
the basis after quotienting out by the S relations. We find that the relation
matrix has rank 3359, so M2(Γ0(2004),Q) has dimension 673.

If we instead compute the quotient M2(Γ0(2004),Q)+ of M2(Γ0(2004),Q)
by the subspace of elements x− η∗(x), we include relations xi + xiI = 0, where
I =

(−1 0
0 1

)

. There are now 2016 S relations, 2024 I relations, and 1344 T
relations. Again, it is almost trivial to quotient out by the S relations by
identifying xi and −xiS. We then take the image of all 2024 I relations modulo
the S relations, and again directly quotient out by the I-relations by identifying
[xi] with −[xiI] = −[xj ] for some j, where by [xi] we mean the class of xi
modulo the S relations. Finally, we quotient out by the 1344 T relations, which
involves sparse Gauss elimination on a matrix with ??? columns and 1344 rows,
and at most 3 nonzero entries per row. The dimension of M2(Γ0(2004),Q)+ is
331.

8.6.3 Refined Algorithm For Computing Presentation

Algorithm 8.6.10 (Compute Presentation). This is an algorithm to com-
pute Mk(Γ0(N),Q) or Mk(Γ0(N),Q)±, which only requires doing generic sparse
linear algebra to deal with the three term T -relations.

1. Let x0, . . . , xn by a list of all Manin symbols.

2. Quotient out the two-term S relations and if the ± quotient is desired, by
the two-term η relations. (See Algorithm 8.6.12 below.) Let [xi] denote
the class of xi after this quotienting process.

3. Create a sparse matrix A with m columns, whose rows encode the relations

[xi] + [xiT ] + [xiT
2] = 0.

For example, there are about n/3 such rows (I’m unsure what the situation
is for k > 2). The number of nonzero entries per row is at most 3(k− 1).
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Note that we must include rows for all i, since even if [xi] = [xj ], it need
not be the case that [xiT ] = [xjT ], since the matrices S and T do not
commute. However, we have an a priori formula for the dimension of the
quotient by all these relations, so we could omit many relations and just
check that there are enough at the end—if there aren’t, we add in more.

4. Compute the reduced row echelon form of A using the multi-modular (sparse)
Gaussian elimination algorithm (Algorithm 7.2.3). For k = 2, this is the
echelon form of a matrix with size about n/3 × n/4.

5. Use what we have done above to read off a sparse matrix R that expresses
each of the n Manin symbols in terms of a basis of Manin symbols, modulo
the relations.

Remark 8.6.11. There is rumored to be a “geometric” way to compute a
presentation for M2(Γ0(N)) more directly, without resorting to general linear
algebra techniques. I am unaware of such a method having ever been published,
but it was sketched to me independently by Georg Weber in 1999 and Robert
Pollack in 2004. The computations we do after computing a presentation for
M2(Γ0(N)) are usually significantly more time consuming than computation
of a presentation in the first place, so it’s unclear how useful this algorithm
would be in practice. (I have not heard of a method for directly obtaining a
presentation for Mk(Γ0(N)).)

Algorithm 8.6.12 (Quotient By 2-Term Relations). This algorithm per-
forms sparse Gauss elimination on a matrix all of whose columns have at most
2 nonzero entries. This algorithm is more subtle than just “identify symbols in
pairs”, since complicated relations can cause generators to surprisingly equal 0.
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INPUT:

rels -- set of pairs ((i,s), (j,t)). The pair represents

the relation

s*x_i + t*x_j = 0.

n -- int, the x_i are x_0, ..., x_{n-1}.

F -- base field

OUTPUT:

mod -- list such that mod[i] = (j,s), which means that

x_i is equivalent to s*x_j,

where the x_j are a basis for the quotient.

EXAMPLE:

We quotient out by the relations

3*x0 - x1 = 0, x1 + x3 = 0, x2 + x3 = 0, x4 - x5 = 0

to get

>>> Q = rings.RationalField()

>>> rels = set([((0,3), (1,-1)), ((1,1), (3,1)), ((2,1),(3,1)), ((4,1),(5,-1))])

>>> n = 6

>>> sparse_2term_quotient(rels, n, Q)

[(3, -1/3), (3, -1), (3, -1), (3, 1), (5, 1), (5, 1)]

"""

if not isinstance(rels, set):

raise TypeError, "rels must be a set"

if not isinstance(n, int):

raise TypeError, "n must be an int"

if not isinstance(F, rings.Ring):

raise TypeError, "F must be a ring."

tm = misc.verbose()

free = range(n)

ONE = F(1)

ZERO = F(0)

coef = [ONE for i in xrange(n)]

related_to_me = [[] for i in xrange(n)]

for v0, v1 in rels:

c0 = coef[v0[0]] * F(v0[1])

c1 = coef[v1[0]] * F(v1[1])

# Mod out by the relation

# c1*x_free[t[0]] + c2*x_free[t[1]] = 0.

die = None

if c0 == ZERO and c1 == ZERO:

pass

elif c0 == ZERO and c1 != ZERO: # free[t[1]] --> 0

die = free[v1[0]]

elif c1 == ZERO and c0 != ZERO:

die = free[v0[0]]

elif free[v0[0]] == free[v1[0]]:

if c0+c1 != 0:

# all xi equal to free[t[0]] must now equal to zero.

die = free[v0[0]]

else: # x1 = -c1/c0 * x2.

x = free[v0[0]]

free[x] = free[v1[0]]

coef[x] = -c1/c0

for i in related_to_me[x]:

free[i] = free[x]

coef[i] *= coef[x]

related_to_me[free[v1[0]]].append(i)

related_to_me[free[v1[0]]].append(x)

if die != None:

for i in related_to_me[die]:

free[i] = 0

coef[i] = ZERO

free[die] = 0

coef[die] = ZERO

mod = [(free[i], coef[i]) for i in xrange(len(free))]

misc.verbose("finished",tm)

return mod
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8.7 Applications

8.7.1 Later in this Book

We now sketch some of the ways in which we will apply the modular symbols
algorithms of this chapter later in this book.

Cuspidal modular symbols are in Hecke-equivariant duality with cuspidal
modular forms, and as such we can compute modular forms by computing sys-
tems of eigenvalues for the Hecke operators acting on modular symbols. By the
Atkin-Lehner-Li theory of newforms (see, e.g., 6.1.2), we can construct Sk(N, ε)
for any N , any ε, and k ≥ 2 using this method. See Chapter 1 for more details.

Once we can compute spaces of modular symbols, we move to computing
the corresponding modular forms. We define inclusion and trace maps from
modular symbols of one level N to modular symbols of level a multiple or di-
visor of N . Using these we compute the quotient V of the new subspace of
cuspidal modular symbols on which a “star involution” acts as +1. The Hecke
operators act by diagonalizable commuting matrices on this space, and comput-
ing the simultaneous systems of Hecke eigenvalues is equivalent to computing
corresponding newforms

∑

anq
n. In this way, we obtain a list of all newforms

(normalized eigenforms) in Sk(N, ε) for any N , ε, and k ≥ 2.
In Chapter 10, we compute with the period mapping from modular symbols

to C attached to a newform f ∈ Sk(N, ε). When k = 2, ε = 1 and f has
rational Fourier coefficients, this gives a method to compute the period lattice
associated to a modular elliptic curve attached to a newform (see Section 10.6).
In general, computation of this map is important when finding equations for
modular Q-curves, CM curves, and curves with a given modular Jacobian. It is
also important for computing special values of the L-function L(f, s) at integer
points in the critical strip.

8.7.2 Discussion of the Literature and Research

Modular symbols were introduced by Birch [Bir71] in connection with com-
putations in support of the Birch and Swinnerton-Dyer conjecture. Manin
[Man72] then made a systematic study of weight 2 modular symbols and used
them to prove rationality results about special values of L-functions (note that
“parabolic points” in the title of Manin’s paper means “cusps”). Merel’s paper
[Mer94] builds on work of Šokurov (mainly [Šok80]), which developed a higher-
weight generalization of Manin’s work partly to understand rationality proper-
ties of special values of modular L-functions (Shimura simultaneously proved
similar results via related cohomological methods). Cremona’s book [Cre97a]
discusses in detail how to compute the space of weight 2 modular symbols for
Γ0(N), in connection with the problem of enumerating all elliptic curves of given
conductor, and his article [Cre92] discusses the Γ1(N) case and computation of
modular symbols with character.

There have been several recent Ph.D. thesis about modular symbols. Bas-
maji’s thesis [Bas96], which is in German, contains a tricks to efficiently compute
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Hecke operators Tp, with p very large, and also discusses how to compute spaces
of half integral weight modular forms building on what one can get from mod-
ular symbols of integral weight. The author’s Ph.D. thesis [Ste00] contains two
chapters about higher-weight modular symbols, and an application to visibility
of Shafarevich-Tate groups (see also [Aga00]). Martin’s thesis [Mar01] is about
an attempt to study an analogue of modular symbols for weight 1. Lemelin’s
thesis [Lem01] discusses modular symbols for quadratic imaginary fields in the
context of p-adic analogues of the Birch and Swinnerton-Dyer conjecture. See
also the survey paper [FM99], which discusses computation with of weight 2
modular symbols in the context of computing with modular abelian varieties.

There are analogues for modular symbols for groups besides finite-index
subgroups of SL2(Z), e.g., for groups of higher degree, e.g., GL3. There has
also been work on computing Hilbert modular forms, e.g., by Lassina Dembele
[Dem04] (Hilbert modular forms are like classical modular forms, but are func-
tions on a product of copies of h, and SL2(Z) is replaced by a group of matrices
with entries in a totally real field). I am not aware of any analogue of modular
symbols for Siegel modular forms (these are like classical modular forms, except
the upper half plane is replaced by a space of matrices).

Glenn Stevens (and recently Robert Pollack and Henri Darmon, see [DP04])
has been working for many years to develop an analogue of modular symbols
in a rigid analytic context, which should be very helpful for questions about
computing with over convergent p-adic modular forms, or proving results about
p-adic L-functions.

Gabor Weise and Bas Edixhoven have been working on theory about mod p
modular symbols, and computation of weight 1 modular symbols mod 2.

Finally we mention that Mazur uses the term “modular symbol” slightly
differently in many of his papers. This is a dual notion, which attaches a
“modular symbol” to a modular form or elliptic curve, and is really just an
overloading of the terminology. See [MTT86] for an extensive discussion of
modular symbols from this point of view, where they are used to construct
p-adic L-functions.

8.8 Exercises

8.1 Compute M3(Γ1(3)) explicitly. List each Manin symbol, the relations they
satisfy, compute the quotient, etc. Find the matrix of T2. (Check: The
dimension of M3(Γ1(3)) is 2, and the characteristic polynomial of T2 is
(x− 3)(x+ 3).)

8.2 Prove that the pairing 8.5.1 is well defined.

8.3 (a) Show that if η =
(−1 0

0 1

)

, then ηΓη = Γ for Γ = Γ0(N) and Γ =
Γ1(N).

(b) (*) Give an example of a finite index subgroup Γ such that ηΓη 6= Γ.
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8.4 Suppose M is an integer multiple of N . Prove that the natural map
(Z/MZ)∗ → (Z/NZ)∗ is surjective.
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Chapter 9

Computing Spaces of

Modular Forms

9.1 Decomposing Modular Forms Using Dirich-

let Characters

The group (Z/NZ)∗ acts on Mk(Γ1(N)) through the diamond-bracket opera-
tors 〈d〉, as follows. For [d] ∈ (Z/NZ)∗, define

f |〈d〉 = f |[
(

a b
c d

)

]k,

where
(

a b
c d

)

∈ SL2(Z) is congruent to
(

d−1 0
0 d

)

(mod N). Note that the map

SL2(Z) → SL2(Z/NZ) is surjective (see Exercise 5.2), so the matrix
(

a b
c d

)

exists.
To prove that 〈d〉 preserves Mk(Γ1(N)), we prove the more general fact that
Γ1(N) is normal in

Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) :

(

a b
c d

)

≡
(

∗ ∗
0 ∗

)

(mod N)

}

.

This will imply that 〈d〉 preserves Mk(Γ1(N)) since
(

a b
c d′
)

∈ Γ0(N).

Lemma 9.1.1. The group Γ1(N) is a normal subgroup of Γ0(N), and the quo-
tient Γ0(N)/Γ1(N) is isomorphic to (Z/NZ)∗.

Proof. Consider the surjective homomorphism r : SL2(Z) → SL2(Z/NZ). Then
Γ1(N) is the exact inverse image of the subgroup H of matrices of the form ( 1 ∗

0 1 )
and Γ0(N) is the inverse image of the subroup T of upper triangular matrices.
It thus suffices to observe that H is normal in T , which is clear. Finally, the
quotient T/H is isomorphic to the group of diagonal matrices in SL2(Z/NZ)∗,
which is isomorphic to (Z/NZ)∗.

The diamond bracket action is simply the action of Γ0(N)/Γ1(N) ∼= (Z/NZ)∗

on Mk(Γ1(N)). Since Mk(Γ1(N)) is a finite dimensional vector space over C,

137
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the 〈d〉 action breaks Mk(Γ1(N)) up as a direct sum of factors corresponding to
the Dirichlet characters D(N,C) of modulus N .

Proposition 9.1.2. We have

Mk(Γ1(N)) =
⊕

ε∈D(N,C)

Mk(N, ε),

where

Mk(N, ε) =
{

f ∈ Mk(Γ1(N)) : f |〈d〉 = ε(d)f all d ∈ (Z/NZ)∗
}

.

Proof. The linear transformations 〈d〉, for the d ∈ (Z/NZ)∗, all commute, since
〈d〉 acts through the abelian group Γ0(N)/Γ1(N). Also, if e is the exponent of
(Z/NZ)∗, then 〈d〉e = 〈de〉 = 〈1〉 = 1, so the matrix of 〈d〉 is diagonalizable. It
is a standard fact from linear algebra that any commuting family of diagonaliz-
able linear transformations is simultaneously diagonalizable (see Exercise 5.4),
so there is a basis f1, . . . , fn for Mk(Γ1(N)) so that all 〈d〉 act by diagonal ma-
trices. The eigenvalues of the action of (Z/NZ)∗ on a fixed fi defines a Dirichlet
character, i.e., each fi has the property that fi|〈d〉 = εi(d), for all d ∈ (Z/NZ)∗

and some Dirichlet character εi. The fi for a given ε then span Mk(N, ε), and
taken together the Mk(N, ε) must span Mk(Γ1(N)).

Definition 9.1.3 (Character of Modular Form). If f ∈ Mk(N, ε), we say
that f has character ε.

Remark 9.1.4. People sometimes write that f has “nebentypus character” ε.

The spaces Mk(N, ε) are a direct sum of subspaces Sk(N, ε) and Ek(N, ε),
where Sk(N, ε) is the subspace of cusp forms, i.e., forms that vanish at all cusps
(elements of Q∪ {∞}), and Ek(N, ε) is the subspace of Eisenstein series, which
is the unique subspace of Mk(N, ε) that is invariant under all Hecke operators
and is such that Mk(N, ε) = Sk(N, ε) ⊕ Ek(N, ε). The space Ek(N, ε) can also
be defined as the space spanned by all Eisenstein series of weight k and level N ,
as defined in Chapter 5. The space Ek(N, ε) can also be defined using the
Petersson inner product (see, e.g., [Lan95]).

The diamond bracket operators preserve the subspace of cusp forms, so
the isomorphism of Proposition 9.1.2 restricts to an isomorphism of the corre-
sponding cuspidal subspaces. SAGE implements dimension formulas for general
spaces of cusp forms, which we can use to make a table giving the dimension of
Sk(Γ1(N)) and of the dimension of each subspace corresponding to a character.
We do this first for N = 13.
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sage: G = DirichletGroup(13)

sage: G

Group of Dirichlet characters of modulus 13 over Cyclotomic Field

of order 12 and degree 4

sage: dimension_cusp_forms(Gamma1(13),2)

2

sage: [dimension_cusp_forms_eps(e,2) for e in G]

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0]

Next we do this for N = 100.

sage: G = DirichletGroup(100)

sage: G

Group of Dirichlet characters of modulus 100 over Cyclotomic Field

of order 20 and degree 8

sage: dimension_cusp_forms_gamma1(100)

231

sage: [dimension_cusp_forms_eps(e,2) for e in G]

[ 7, 0, 0, 13, 12, 0, 0, 13, 12, 0, 0, 9, 12, 0, 0, 13,

12, 0, 0, 13, 6, 0, 0, 13, 12, 0, 0, 13, 12, 0, 0, 9,

12, 0, 0, 13, 12, 0, 0, 13]

9.2 Atkin-Lehner-Li Theory

By Atkin-Lehner-Li theory (see [AL70, Li75]), we have a decomposition

Sk(Γ1(N)) =
⊕

M |N

⊕

d|N/M
αd(Sk(Γ1(M))new). (9.2.1)

Here αd : Sk(Γ1(M)) → Sk(Γ1(N)) is the degeneracy map f(q) 7→ f(qd), and
Sk(Γ1(M))new is the largest T-stable (or Petersson) complement of the image
of all maps αd from level properly dividing M . The analogue of (9.2.1) with
Γ1 replaced by Γ0 is true; it is also true with character, as long as we omit the
spaces Sk(Γ1(M), ε) for which M - cond(ε).

Example 9.2.1. If N is prime and k ≤ 11, then Sk(Γ1(N))new = Sk(Γ1(N)),
since Sk(Γ1(1)) = 0.

One can prove using the Petersson inner product that the Hecke operators
Tn on Sk(Γ1(N)), with (n,N) = 1, are diagonalizable. Another result of Atkin-
Lehner-Li theory is that the ring of endomorphism of Sk(Γ1(N))new generated
by all Hecke operators equals the ring generated by the Hecke operators Tn with
(n,N) = 1. This statement need not be true if we do not restrict to the new
subspace.
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Example 9.2.2. We have

S2(Γ0(22)) = S2(Γ0(11)) ⊕ α2(S2(Γ0(11))),

where each of the spaces S2(Γ0(11)) has dimension 1. Thus S2(Γ0(22))new = 0.
The Hecke operator T2 on S2(Γ0(22)) has characteristic polynomial x2 +2x+2,
which is irreducible. Since α2 commutes with all Hecke operators Tn, with
gcd(n, 2) = 1, the subring T′ of the Hecke algebra generated by operators Tn
with n odd is isomorphic to Z (the 2×2 scalar matrices). Thus on the full space
S2(Γ0(22)), we do not have T′ = T. However, on the new subspace we do have
this equality, since the new subspace has dimension 0.

Example 9.2.3. This example is similar to Example 9.2.2, except that there
are newforms. We have

S2(Γ0(55)) = S2(Γ0(11)) ⊕ α5(S2(Γ0(11))) ⊕ S2(Γ0(55))new,

where S2(Γ0(11)) has dimension 1 and S2(Γ0(55))new has dimension 3. The
Hecke operator T5 on S2(Γ0(55))new acts via the matrix





−2 2 −1
−1 1 −1

1 −2 0





with respect to some basis. This matrix has eigenvalues 1 and −1. Atkin-Lehner
theory asserts that T5 must be a linear combination of Hecke operators Tn, with
gcd(n, 55) = 1. Upon computing the matrix for T2, we find by simple linear
algebra that T5 = 2T2 − T4.

Before moving on, we pause to say something about how the Atkin-Lehner-
Li theorems are proved. A key result is to prove that if f, g ∈ Sk(Γ1(N))new and
an(f) = an(g) for all n with gcd(n,N) = 1, then f = g. First, replace f and
g by their difference h = f − g, and observe that an(h) = 0 for gcd(n,N) = 1.
Note that such an h “looks like” it is in the image of the maps αd, for d | N .
In fact it is—one shows that h is in the old subspace Sk(Γ1(N))old (this is the
“crucial” Theorem 2 of [Li75]). But h is also new, since it is the difference of two
newforms, so h = 0, hence f = g. The details involve introducing many maps
between spaces of modular forms, and computing what they do to q-expansions.

Definition 9.2.4 (Newform). A newform is a T-eigenform f ∈ Sk(Γ1(N))new

that is normalized so that the coefficient of q is 1.

We now motivate this definition by explaining why any eigenform can be
normalized so that the coefficient of q is 1, and how such an eigenform has
the convenient properties that its Fourier coefficients are exactly the Hecke
eigenvalues.

Proposition 9.2.5. The coefficients of a normalized T-eigenform are the eigen-
values.
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Proof. The Hecke algebra TQ on Sk(Γ1(N)) contains the diamond bracket op-
erators 〈d〉, since Tp2 = T 2

p − 〈p〉pk−1, so any T-eigenform lies in a subspace
Sk(Γ1(N), ε) for some Dirichlet character ε. The Hecke operators Tp, for p
prime, act on Sk(Γ1(N), ε) by

Tp

( ∞
∑

n=1

anq
n

)

=

∞
∑

n=1

(

anpq
n + ε(p)pk−1anq

np
)

,

and there is a similar formula for Tm with m composite. If f =
∑∞
n=1 anq

n is
an eigenform for all Tp, with eigenvalues λp, then by the above formula

λpf = λpa1q + λpa2q
2 + · · · = Tp(f) = apq + higher terms. (9.2.2)

Equating coefficients of q we see that if a1 = 0, then ap = 0 for all p, hence
an = 0 for all n, because of the multiplicativity of Fourier coefficients and the
recurrence

apr = apr−1ap − ε(p)pk−1apr−2 .

This would mean that f = 0, a contradiction. Thus a1 6= 0, and it makes sense
to normalize f so that a1 = 1. With this normalization, (9.2.2) implies that
λp = ap, as desired.

Remark 9.2.6. We even have that the operators 〈d〉 on Sk(Γ1(N)) lie in
Z[. . . , Tn, . . .]. It is enough to show 〈p〉 ∈ Z[. . . , Tn, . . .] for primes p, since
each 〈d〉 can be written in terms of the 〈p〉. Since p - N , we have that

Tp2 = T 2
p − 〈p〉pk−1,

so 〈p〉pk−1 = T 2
p −Tp2 . By Dirichlet’s theorem on primes in arithmetic progres-

sion, there is another prime q congruent to p mod N . Since pk−1 and qk−1 are
relatively prime, there exist integers a and b such that apk−1 + bqk−1 = 1. Then

〈p〉 = 〈p〉(apk−1 + bqk−1) = a(Tp
2 − Tp2) + b(Tq

2 − Tq2) ∈ Z[. . . , Tn, . . .].

9.3 Computing Cuspforms Using

Modular Symbols

There is an isomorphism

Sk(Γ1(N), ε)new
∼= Sk(Γ1(N), ε,C)+new

of T modules. Thus finding the systems of T-eigenvalues on cuspforms is the
same as finding the systems of T-eigenvalues on cuspidal modular symbols.

Our strategy to compute Sk(Γ1(N), ε) is to first reduce to computing spaces
Sk(Γ1(N), ε)new using the Atkin-Lehner-Li decomposition (9.2.1). To compute
Sk(Γ1(N), ε)new to a given precision, we compute the systems of eigenvalues of
the Hecke operators Tp on V = Sk(Γ1(N), ε,C)+new. Using Proposition 9.2.5, we
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then recover a basis of q-expansions for newforms. Note that we only need to
compute Hecke eigenvalues Tp, for p prime, not the Tn for n composite, since
the an can be quickly recovered in terms of the ap using multiplicativity and
the recurrence.

For many problems, one is really interested in the newforms, not just any
basis for Sk(Γ1(N), ε). The are many other problems where just having a ba-
sis is enough, and knowing the newforms is not so important. Merel’s paper
[Mer94] culminates with the following algorithm to compute Sk(Γ1(N), ε) with-
out finding any eigenspaces:

Algorithm 9.3.1 (Merel’s Algorithm for Computing a Basis). 1. [Compute
Modular Symbols] Using Algorithm 8.6.10, compute a presentation for
V = Sk(Γ1(N), ε)+ ⊗ Q(ε), viewed as a K = Q(ε) vector space, along
with an action of Hecke operators Tn.

2. [Basis for Linear Dual] Write down a basis for V ∗ = Hom(V,Q(ε)). E.g.,
if we identify V with Kn viewed as column vectors, then V ∗ is the space
of row vectors of length n, and the pairing is the row × column product.

3. [Find Generator] Find x ∈ V such that Tx = V by choosing random x
until we find one that generates. The set of x that fail to generate lie
in a union of a finite number of proper subspace. (This can be seen by
analyzing the structure of Sk(Γ1(N), ε) as a T-module; see, e.g., my 252
notes.)

4. [Compute Basis] The set of power series

fi =
m
∑

n=1

ψi(Tn(x))q
n +O(qm+1)

form a basis for Sk(Γ1(N), ε) to precision m.

In practice my experience is that my implementations of Algorithm 9.3.1
are significantly slower than the eigenspace algorithm that we will describe in
the rest of this chapter. The theoretical complexity of Algorithm 9.3.1 may
be better, because it is not necessary to factor any polynomials. Polynomial
factorization is difficult from the analysis-of-complexity point of view, though
usually fairly fast in practice. The eigenvalue algorithm only requires computing
a few images Tp(x) for p prime and x a Manin symbol on which Tp can easily be
computed. The Merel algorithm involves computing Tn(x) for all n, and a fairly
easy x, which is potentially more work. (By “easy x”, I mean that computing
Tn(x) is easier on x than on a completely random element of Sk(Γ1(N), ε)+,
e.g., x could be a Manin symbol.)

9.4 Computing Systems of Eigenvalues

In this section we describe an algorithm for computing the system of Hecke
eigenvalues associated to a simple subspace of a space of modular symbols. This
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algorithm is vastly better than naively doing linear algebra over the number field
generated by the eigenvalues. It only involves linear algebra over the base field,
and also yields a very compact representation for the answer, which is much
better than writing the eigenvalues in terms of a power basis for a number field.

9.4.1 Computing Projection Onto a Subspace

Suppose V = ⊕Wi is the T-simple decomposition of V and fix a factor Wj .
Then there is a unique T-equivariant homomorphism

πj : V →Wj

such that πj restricted to Wj is the identity map. We compute πj using the
following algorithm.

Algorithm 9.4.1 (Projection Matrix). INPUT: Decomposition V = ⊕Wi.
OUTPUT: Matrix of Projection Onto a Factor Wj.

1. Let B be the matrix whose columns are got by concatenating together a
basis for the factors Wi.

2. Compute C = B−1 using, e.g., computation of the reduced row echelon
form of the augmented matrix [B|I], which is [I|C].

3. The projection matrix onto Wj is the submatrix of C got from the rows
corresponding to Wj, i.e., if the basis vectors for Wj appear as columns n
through m of B, then the projection matrix is got from rows n through m
of C.

The algorithm works because the matrix of projection, written with respect
to the basis of columns for B, is just given by an m − n + 1 row slice P of a
diagonal matrix D with 1’s in the n through m positions. Thus projection with
respect to the standard basis is given by PC, which is just rows n through m
of B−1.

Note that we only have to do the work of inverting B once; we then get all
projection maps πi for all i by taking appropriate submatrices of B.

9.4.2 Systems of Eigenvalues

Algorithm 9.4.2 (System of Eigenvalues). INPUT: A T-simple subspace
W ⊂ V of modular symbols.
OUTPUT: Maps ψ and e, where ψ : TK →W is a K-linear map and e : W ∼= L
is an isomorphism of W with a number field L, such that an = e(ψ(Tn)) is the
eigenvalue of the nth Hecke operator acting on a fixed T-eigenvector in W ⊗Q.
Thus f =

∑∞
n=1 i(ψ(Tn))q

n is a cuspidal modular eigenform.

1. [Compute Projection] Using Algorithm 9.4.1, compute the T-equivariant
projection map π : V → W . Remark: We can replace π by any K-vector
space map ϕ : V → W ′ such that Ker(π) = Ker(ϕ), where W ′ is any
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vector space, and the rest of the algorithm works. For example, one could
find such a ϕ by finding the simple submodule of V ∗ = Hom(V,K) that is
isomorphic to W , e.g., by applying Algorithm 7.4.8 to V ∗ with T replaced
by the transpose of T . This is what Cremona means in his book when he
talks about find “left eigenvectors”.

2. [Choose v] Choose a nonzero element v ∈ V such that π(v) 6= 0 and
computation of Tn(v) is “easy”, e.g., choose v to be a Manin symbol.

3. [Map From Hecke Ring] Let ψ be the map T →W , given by ψ(t) = π(tv).
Note that computation of ψ is relatively easy, because v was chosen so that
tv is relatively easy to compute. In particular, if t = Tp, we do not need
to compute the full matrix of Tp on V ; instead we just compute Tp(v).
(We can even often compute eigenvalues for all the factors Wi just by
computing one evaluation Tp(v) for a single easy v!)

4. [Find Generator] Find a random T ∈ T such that the iterates

ψ(T 0), ψ(T ), ψ(T 2), . . . , ψ(T d−1)

are a basis for W , where W has dimension d. For example, the T that
was used to compute the decomposition V = ⊕Wi earlier would work.

5. [Characteristic Polynomial] Compute the characteristic polynomial f of
T |W , and let L = K[x]/(f) be the number field generated by a root of
f . Because of how we chose T in Step 4, the minimal and characteristic
polynomials of T |W are equal, and both are irreducible, so L is an extension
of K of degree d = dim(W ). If in Step 4, we used the T used to compute
the decomposition V = ⊕Wi earlier, then we already know f .

6. [Field Structure] In this step we endow W with a field structure. Let
e : W → L be the unique K-linear isomorphism such that

e(ψ(T i)) ≡ xi (mod f)

for i = 0, 1, 2, ...,deg(f) − 1. The map e is uniquely determined since the
ψ(T i) are a basis for W . To compute e, we compute the change of basis
matrix from the standard basis for W to the basis {ψ(T i)}. This change
of basis matrix is the inverse of the matrix whose rows are the ψ(T i) for
i = 0, ...,deg(f) − 1.

7. [Hecke Eigenvalues] Finally note that we have

an = e(ψ(Tn)) = e(π(Tn(v)))

for Hecke operators Tn, where the an are eigenvalues. Output the maps ψ
and e and terminate.
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One reason we separate ψ and e is that when dim(W ) is large, the values
ψ(Tn) tend to take not too much space to store and are easier to compute,
whereas each one of the values e(ψ(n)) are huge. John Cremona initially sug-
gested to me the idea of separating these two maps. The function e typically
involves large numbers if dim(W ) is large, since e is got from the iterates of
a single vector. For many applications, e.g., databases, it is better to store a
matrix that defines e and the images under ψ of many Tn.

Remark 9.4.3. How can we find a minimal collection of information from which
we can compute the map n 7→ ψ(Tn)? Do we need the whole modular symbols
presentation? No, we need only the image of each generating Manin symbol
in M under projection. The Hecke operators are then given by the standard
Manin symbols formulas, where we reduce all resulting Manin symbols to their
image in M .

Example 9.4.4. The space S2(Γ0(23)) of cusp forms has dimension 2, and is
spanned by two Gal(Q/Q)-conjugate newforms, one of which is

f =
∑

q + aq2 + (−2a− 1)q3 + (−a− 1)q4 + 2aq5 + · · · ,

where a = (−1 +
√

5)/2. We will use Algorithm 9.4.2 to compute a few of these
coefficients.

The space M2(Γ0(23))
+ of modular symbols has dimension 3. It has as basis

the following basis of Manin symbols:

[(0, 0)], [(1, 0)], [(0, 1)],

where we use square brackets to differentiate Manin symbols from vectors. The
Hecke operator

T2 =





3 0 0
0 0 2
−1 1/2 −1





has characteristic polynomial (x−3)(x2+x−1). The kernel of T2−3 corresponds
to the span of the Eisenstein series of level 23 and weight 2, and the kernel V
of T 2

2 + T2 − 1 corresponds to S2(Γ0(23)). (We could also have computed V
as the kernel of the boundary map M2(Γ0(23))

+ → B2(Γ0(23))
+.) Each of the

following steps corresponds to the same step of Algorithm 9.4.2.

1. [Compute Projection] Using the Algorithm 9.4.1, we compute projection
onto V . The matrix whose first two columns are the echelon basis for V
and whose last column is the echelon basis for the Eisenstein subspace is





0 0 1
1 0 −2/11
0 1 −3/11





and

B−1 =





2/11 1 0
3/11 0 1

1 0 0



 ,
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so projection onto V is given by the first two rows:

π =

(

2/11 1 0
3/11 0 1

)

.

2. [Choose v] Let v = (0, 1, 0)t. Notice that π(v) = (1, 0)t 6= 0, and v =
[(1, 0)] is a sum of only one Manin symbol, so it is easier to compute
Hecke operators on v using Heilbronn matrices.

3. [Map From Hecke Ring] This step is purely conceptual, since no actual
work needs to be done. We illustrate it by computing ψ(T1) and ψ(T2).
We have

ψ(T1) = π(v) = (1, 0)t,

and
ψ(T2) = π(T2(v)) = π((0, 0, 1/2)t) = (0, 1/2)t.

4. [Find Generator] We have

ψ(T 0
2 ) = ψ(T1) = (1, 0)t,

which is clearly independent from ψ(T2) = (0, 1/2)t. Thus we find that
the image of the powers of T = T2 generate V .

5. [Characteristic Polynomial] It is easy to compute the characteristic poly-
nomial of a 2 × 2 matrix. The matrix of T2|V is

(

0 2
1/2 −1

)

, which has

characteristic polynomial f = x2 +x− 1. Of course, we already knew this
because we computed V as the kernel of T 2

2 + T2 − 1.

6. [Field Structure] We have

ψ(T 0
2 ) = π(v) = (1, 0)t and ψ(T2) = (0, 1/2).

The matrix with rows the ψ(T i2) is
(

1 0
0 1/2

)

, which has inverse e = ( 1 0
0 2 ).

The matrix e defines an isomorphism between V and the field

L = Q[x]/(f) = Q((−1 +
√

5)/2).

For example, e((1, 0)) = 1 and e((0, 1)) = 2x, where x = (−1 +
√

5)/2.

7. [Hecke Eigenvalues] We have an = e(Ψ(Tn)). For example,

a1 = e(Ψ(T1)) = e((1, 0)) = 1

a2 = e(Ψ(T2)) = e((0, 1/2)) = x

a3 = e(Ψ(T3)) = e(π(T3(v))) = e(π((0,−1,−1)t)) = e((−1,−1)t) = −1 − 2x

a4 = e(Ψ(T4)) = e(π((0,−1,−1/2)t)) = e((−1,−1/2)t) = −1 − x

a5 = e(Ψ(T5)) = e(π((0, 0, 1)t)) = e((0, 1)t) = 2x

a23 = e(Ψ(T23)) = e(π((0, 1, 0)t)) = e((1, 0)t) = 1

a97 = e(Ψ(T23)) = e(π((0, 14, 3)t)) = e((14, 3)t) = 14 + 6x
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It is difficult to appreciate this algorithm without seeing how big the co-
efficients of the power series expansion of a newform typically are, when the
newform is defined over a large field. For such examples, please browse [Ste04].
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Chapter 10

Special Values of

L-functions and Periods

This chapter is about how to approximate the integration pairing, and the
induced period mapping from modular symbols to a complex vector space.

Let Γ be a subgroup of SL2(Z) that contains Γ1(N) for some N , and suppose

f =
∑

n≥1

anq
n ∈ Sk(Γ).

is a newform. In this chapter we describe how to approximately compute the
complex period mapping

Φf : Mk(Γ) → C,

given by

Φf (P{α, β}) = 〈f, P{α, β}〉 =

∫ β

α

f(z)P (z, 1)dz,

as in Section 8.5. As an application, we approximate the special values L(f, j),
for j = 1, 2, . . . , k − 1 using (8.5.3) from page 116. We also compute the period
lattice attached to a modular abelian variety, which is an important step, e.g., in
enumeration of Q-curves [cite Gonzalez, Lario, etc.] or computation of a curve
whose Jacobian is a modular abelian variety Af [cite X. Wang and Ph.D. thesis
from Essen].

The algorithms that we describe in this chapter are a generalization of the
ones in [Cre97a] to other congruence subgroups, newforms of degree bigger
than 1, and weight bigger than 2.

10.1 The Period Mapping and Complex Torus

Attached to a Newform

Fix a newform f ∈ Sk(Γ), where Γ1(N) ⊂ Γ for some N . Let f1, . . . , fd be the
Gal(Q/Q)-conjugates of f , where Gal(Q/Q) acts via its action on the Fourier

149
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coefficients, which are algebraic integers. Let

Vf = Cf1 ⊕ · · · ⊕ Cfd ⊂ Sk(Γ)

be the subspace of cusp forms spanned by the Gal(Q/Q)-conjugates of f . The
integration pairing induces a T-equivariant homomorphism

Φf : Mk(Γ) → V ∗
f = HomC(Vf ,C),

from modular symbols to the C-linear dual V ∗
f of Vf . Here T acts on V ∗

f via
(ϕ.t)(x) = ϕ(tx), and this homomorphism is T-stable by Theorem 8.5.4. The
complex torus attached to f is the quotient

Af (C) = V ∗
f /Φf (Sk(Γ,Z)).

Note that Sk(Γ,Z) = Sk(Γ), and we include the Z in the notation here just to
emphasize that these are integral modular symbols.

When k = 2, we can also construct Af as a quotient of the modular Jacobian
Jac(XΓ), so Af is an abelian variety canonically defined over Q.

In general, we have an exact sequence

0 → Ker(Φf ) → Sk(Γ) → V ∗
f → Af (C) → 0.

When k = 2, we have an exact sequence

0 → B → Jac(XΓ) → Af → 0,

where XΓ = Γ\h∗ is the modular curve associated to Γ and B is some abelian
variety. We have

H1(Jac(XΓ),Z) ∼= H1(XΓ,Z) ∼= S2(Γ),

so the induced map on homology is

0 → H1(B,Z) → S2(Γ) → H1(Af ,Z).

Thus we can identify the homology of Af with a quotient of modular symbols.

Remark 10.1.1 (Warnings). In the literature, the notation Af is sometimes
used for the abelian subvariety of C ⊂ Jac(XΓ) attached to f . Here C is the
abelian variety dual of our Af . Also, f could be a newform for a different
group Γ′, and then the corresponding abelian variety Af could be different, so
Af depends on the choice of Γ. For example, any newform for Γ0(N) is also a
newform for Γ1(N), but the corresponding Af ’s need not be equal.

Remark 10.1.2. When k > 2, it is my understanding that the complex torus
Af (C) is an abelian variety over C. This additional abelian variety structure
comes somehow from the Petersson inner product. I believe Shimura proves this
in [Shi59].
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10.2 Extended Modular Symbols

In this section, we extend the notion of modular symbols to allows symbols of
the form P{w, z} where w and z are arbitrary elements of h∗ = h ∪ P1(Q).

Definition 10.2.1 (Extended Modular Symbols). The abelian group Mk

of extended modular symbols of weight k is the Z-span of symbols P{w, z}, with
P ∈ Vk−2 a homogenous polynomial of degree k − 2 with integer coefficients,
modulo the relations

P · ({w, y} + {y, z} + {z, w}) = 0

and modulo any torsion.

Fix a finite-index subgroup Γ ⊂ SL2(Z). Just as for usual modular symbols,
Mk is equipped with an action of Γ, and we define the space of extended modular
of weight k for Γ to be the biggest quotient

Mk(Γ) = (Mk/{γx− x : γ ∈ Γ, x ∈ Mk})/ tor

of Mk(Γ) that is torsion free and fixed by Γ.

The integration pairing extends naturally to a pairing

(

Sk(Γ) ⊕ Sk(Γ)
)

× Mk(Γ) → C, (10.2.1)

where we recall that Sk(Γ) denotes the space of antiholomorphic cusp forms.
Moreover, if

ι : Mk(Γ) ↪→ Mk(Γ)

is the natural embedding, then ι respects (10.2.1) in the sense that for all f ∈
Sk(Γ) ⊕ Sk(Γ) and x ∈ Mk(Γ), we have

〈f, x〉 = 〈f, ι(x)〉.

As we will see soon, it is often useful to replace x ∈ Mk(Γ) first by ι(x), and
then by an equivalent sum

∑

yi of symbols yi ∈ Mk(N, ε) such that 〈f,∑ yi〉 is
easier to compute numerically than 〈f, x〉.

For any Dirichlet character ε modulo N we also define Mk(Γ1(N), ε) to be
the quotient of Mk(Γ1(N),Z[ε]) by the relations γ(x)−ε(γ)x, for all γ ∈ Γ0(N),
and modulo any torsion. (Recall that if γ =

(

a b
c d

)

, then ε(γ) = ε(d).)

10.3 Numerically Approximating Period Integrals

In this section we assume Γ is a congruence subgroup of SL2(Z) that contains
Γ1(N) for some N . Suppose α ∈ h, so Im(α) > 0 and m is an integer such that
0 ≤ m ≤ k− 2, and consider the extended modular symbol XmY k−2−m{α,∞}.
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Given an arbitrary cusp form f =
∑∞
n=1 anq

n ∈ Sk(Γ), we find that

Φf (X
mY k−2−m{α,∞}) =

〈

f, XmY k−2−m{α,∞}
〉

(10.3.1)

=

∫ i∞

α

f(z)zmdz (10.3.2)

=
∞
∑

n=1

an

∫ i∞

α

e2πinzzmdz. (10.3.3)

The reversal of summation and integration is justified because the imaginary
part of α is positive so that the sum converges absolutely. This is made explicit
in the following lemma, which one proves by repeated integration by parts.

Lemma 10.3.1.

∫ i∞

α

e2πinzzmdz = e2πinα
m
∑

s=0





(−1)sαm−s

(2πin)s+1

m
∏

j=(m+1)−s
j



 . (10.3.4)

In practice we will be interested in computing the period map Φf when
f ∈ Sk(Γ) is a newform. Since f is a newform, there is a Dirichlet character
ε such that f ∈ Sk(Γ1(N), ε). The period map Φf : Mk(Γ) → C then factors
through the quotient Mk(Γ1(N), ε), so it suffices to compute the period map on
modular symbols in Mk(Γ1(N), ε).

The following proposition is a higher weight analogue of [Cre97a, Prop.
2.1.1(5)].

Proposition 10.3.2. For any γ ∈ Γ0(N), P ∈ Vk−2 and α ∈ h∗, we have the
following relation in Mk(Γ1(N), ε):

P{∞, γ(∞)} = P{α, γ(α)} + (P − ε(γ)γ−1P ){∞, α} (10.3.5)

= ε(γ)(γ−1P ){α,∞}− P{γ(α),∞}. (10.3.6)

Proof. By definition, if x ∈ Mk(N, ε) is a modular symbol and γ ∈ Γ0(N) then
γx = ε(γ)x. Thus ε(γ)γ−1x = x, so

P{∞, γ(∞)} = P{∞, α} + P{α, γ(α)} + P{γ(α), γ(∞)}
= P{∞, α} + P{α, γ(α)} + ε(γ)γ−1(P{γ(α), γ(∞)})
= P{∞, α} + P{α, γ(α)} + ε(γ)(γ−1P ){α,∞}
= P{α, γ(α)} + P{∞, α} − ε(γ)(γ−1P ){∞, α}
= P{α, γ(α)} + (P − ε(γ)γ−1P ){∞, α}.

The second equality in the statement of the proposition now follows easily.

In the classical case of weight two and trivial character, the “error term”
(P−ε(γ)γ−1P ){∞, α} vanishes. In general this term does not vanish. However,
we can suitably modify the formulas found in [Cre97a, 2.10], and still obtain an
algorithm for computing period integrals.
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Algorithm 10.3.3 (Period Integrals). INPUT: A matrix γ ∈ Γ0(N), a
polynomial P ∈ Vk−2 and a cuspidal modular form f ∈ Sk(Γ1(N), ε) presented
as a q-expansion to some precision.
OUTPUT: The period integral 〈g, P{∞, γ(∞)}〉, computed to some precision.

1. Write γ =
(

a b
cN d

)

∈ Γ0(N), with a, b, c, d ∈ Z, and set α = −d+i
cN in

Proposition 10.3.2.

2. Replacing γ by −γ if necessary, we find that the imaginary parts of α and
γ(α) = a+i

cN are both equal to the positive number 1
cN .

3. Use (10.3.3) and Lemma 10.3.1 to compute the period integrals of Propo-
sition 10.3.2.

Remark 10.3.4. I have not specified the precision of the output in terms of
the input, which is a major problem with this algorithm.

It would be nice to know that the modular symbols of the form P{∞, γ(∞)},
for P ∈ Vk−2 and γ ∈ Γ0(N) generate a large subspace of Mk(Γ1(N), ε) ⊗ Q.
When k = 2 and ε = 1, Manin proved in [Man72], that the map Γ0(N) →
H1(X0(N),Z) sending γ to {0, γ(0)} is a surjective group homomorphism. When
k > 2, I have not found any similar group-theoretic statement. However, we
have the following theorem.

Theorem 10.3.5. Any element of Sk(Γ1(N), ε) can be written in the form

n
∑

i=1

Pi{∞, γi(∞)}

for some Pi ∈ Vk−2 and γi ∈ Γ0(N). Moreover, Pi and γi can be chosen so that
∑

Pi =
∑

ε(γi)γ
−1
i (Pi), so the error term in (10.3.6) vanishes.

The author and Helena Verrill prove this theorem in [SV01]. See also [[what
that Edixhoven student is writing up...]] The condition that the error term
vanishes, means that one can replace ∞ by any α in the expression for the
modular symbol and obtain an equivalent modular symbol. For this reason, we
call such modular symbols transportable, as illustrated in Figure 10.3.1.

Note that in general not every element of the form P{∞, γ(∞)} must lie
in Sk(N, ε). However, if γP = P then P{∞, γ(∞)} does lie in Sk(N, ε). It
would be interesting to know under what circumstances Sk(N, ε) is generated
by symbols of the form P{∞, γ(∞)} with γP = P . This sometimes fails for k
odd; for example, when k = 3 the condition γP = P implies that γ ∈ Γ0(N)
has an eigenvector with eigenvalue 1, hence is of finite order. When k is even
the author can see no obstruction to generating Sk(N, ε) using such symbols.
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Figure 10.3.1: “Transporting” a transportable modular symbol.

10.4 Speeding Convergence Using the Atkin-Lehner

Operator

Let wN =
(

0 −1
N 0

)

∈ M2(Z). Consider the Atkin-Lehner involution WN on
Mk(Γ1(N)), which is defined by

WN (f) = N (2−k)/2 · f |[wN ]k

= N (2−k)/2 · f
(

− 1

Nz

)

·Nk−1 · (Nz)−k

= N−k/2 · z−k · f
(

− 1

Nz

)

.

Here we take the positive square root if k is odd. Then W 2
N = (−1)k is an

involution when k is even.
There is an operator on modular symbols, which we also denote WN , which

is given by

WN (P{α, β}) = N (2−k)/2 · wN (P ){wN (α), wN (β)}

= N (2−k)/2 · P (−Y,NX)

{

− 1

αN
,− 1

βN

}

,

and one has that if f ∈ Sk(Γ1(N)) and x ∈ Mk(Γ1(N)), then

〈WN (f), x〉 = 〈f,WN (x)〉.

If ε is a Dirichlet character modN , then the operatorWN sends Sk(Γ1(N), ε)
to Sk(Γ1(N), ε). Thus if ε2 = 1, then WN preserves Sk(Γ1(N), ε). In particular,
WN acts on Sk(Γ0(N)).
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The follow proposition shows how to compute the pairing 〈f, P{∞, γ(∞)}〉
under certain restrictive assumptions. It generalizes a result of [Cre97b] to
higher weight.

Proposition 10.4.1. Let f ∈ Sk(Γ1(N), ε) be a cusp form which is an eigen-
form for the Atkin-Lehner operator WN having eigenvalue w ∈ {±1} (thus
ε2 = 1 and k is even). Then for any γ ∈ Γ0(N) and any P ∈ Vk−2, with
the property that γP = ε(γ)P , we have the following formula, valid for any
α ∈ h:

〈g, P{∞, γ(∞)}〉 =
〈

g, w
P (Y,−NX)

Nk/2−1
{wN (α),∞}

+

(

P − w
P (Y,−NX)

Nk/2−1

)

{

i/
√
N,∞

}

− P {γ(α),∞}
〉

.

Here wN (α) = − 1

Nα
.

Proof. By Proposition 10.3.2 our condition on P implies that P{∞, γ(∞)} =
P{α, γ(α)}. The steps of the following computation are described below.

〈

f, P{α, γ(α)}
〉

=
〈

f, P{α, i/
√
N} + P{i/

√
N,W (α)} + P{W (α), γ(α)}

〉

=

〈

f, w
W (P )

Nk/2−1
{W (α), i/

√
N} + P{i/

√
N,W (α)} + P{W (α), γ(α)}

〉

=

〈

f,

(

w
W (P )

Nk/2−1
− P

)

{W (α), i/
√
N} + P{W (α),∞}− P{γ(α),∞}

〉

=

〈

f, w
W (P )

Nk/2−1
{W (α),∞} +

(

P − w
W (P )

Nk/2−1

)

{i/
√
N,∞}− P{γ(α),∞}

〉

.

For the first step, we break the path into three paths. In the second step,
we apply the W -involution to the first term, and use that the action of W is
compatible with the pairing 〈 , 〉 and that f is an eigenvector with eigenvalue w.
The third step involves combining the first two terms and breaking up the third.
In the final step, we replace {W (α), i/

√
N} by {W (α),∞} + {∞, i/

√
N} and

regroup.

A good choice for α is α = γ−1
(

b
d + i

d
√
N

)

, so that W (α) = c
d + i

d
√
N

. This

maximizes the minimum of the imaginary parts of α and W (α), which results
in series that converge more quickly.

Let γ =
(

a b
c d

)

∈ Γ0(N). The polynomial

P (X,Y ) = (cX2 + (d− a)XY − bY 2)
k−2

2
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satisfies γ(P ) = P . We obtained this formula by viewing Vk−2 as the (k − 2)th
symmetric product of the two-dimensional space on which Γ0(N) acts naturally.
For example, observe that since det(γ) = 1 the symmetric product of two eigen-
vectors for γ is an eigenvector in V2 having eigenvalue 1. For the same reason,
if ε(γ) 6= 1, there need not be a polynomial P (X,Y ) such that γ(P ) = ε(γ)P .
One remedy is to choose another γ so that ε(γ) = 1.

Since the imaginary parts of the terms i/
√
N , α and W (α) in the proposi-

tion are all relatively large, the sums appearing at the beginning of Section 10.3
converge quickly if d is small. It is extremely important to choose γ in Propo-
sition 10.4.1 with d small, otherwise the series will converge very slowly.

Remark 10.4.2. There should be a generalization of Proposition 10.4.1 without
the restrictions that ε2 = 1 and k is even. I would love to include something
like this in the final version of this book. Student project?

10.4.1 Another Atkin-Lehner Trick

Suppose E is an elliptic curve and let L(E, s) be the corresponding L-function.
Let ε ∈ {±1} be the root number of E, i.e., the sign of the functional equation
for L(E, s), so Λ(E, s) = εΛ(E, 2− s), where Λ(E, s) = N s/2(2π)−sΓ(s)L(E, s).
Let f = fE be the modular form associated to E. If WN (f) = wf , then ε = −w
(see Exercise 10.2). We have

L(E, 1) = −2π

∫ i∞

0

f(z) dz

= −2πi 〈f, {0,∞}〉
= −2πi

〈

f, {0, i/
√
N} + {i/

√
N,∞}

〉

= −2πi
〈

wf, {wN (0), wN (i/
√
N)} + {i/

√
N,∞}

〉

= −2πi
〈

wf, {∞, i/
√
N} + {i/

√
N,∞}

〉

= −2πi (w − 1)
〈

f, {∞, i/
√
N}
〉

If w = 1, then L(E, 1) = 0. If w = −1, then

L(E, 1) = 4πi
〈

f, {∞, i/
√
N}
〉

= 2

∞
∑

n=1

an
n
e−2πn/

√
N . (10.4.1)

For much more about computing with L-functions of elliptic curves, includ-
ing a trick for computing ε quickly without directly computing WN , see [Coh93,
§7.5] and [Cre97a, §2.11]. One can also find higher derivatives L(r)(E, 1) by a
formula similar to (10.4.1) (see [Cre97a, §2.13]).
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10.5 Computing the Period Mapping

Fix a newform f =
∑

anq
n ∈ Sk(Γ), where Γ1(N) ⊂ Γ for some N . Let

I = If ⊂ T be the kernel of the ring homomorphism T → Kf = Q(a2, . . .) that
sends Tn to an. Let Θf be the rational period mapping associated to f and Φf
the period mapping associated to the Gal(Q/Q)-conjugates of f , so we have a
commutative diagram

Mk(Γ)Q

Θf $$HH
HH

HH
HH

H

Φf
// HomC(Sk(Γ)[I],C)

Mk(Γ)Q

Ker(Φf )

*



if

77pppppppppppp

Recall that the cokernel of Φf is the complex torus Af (C).
The Hecke algebra T acts on the linear dual

Mk(Γ)∗ = Hom(Mk(Γ),Q)

by (t.ϕ)(x) = ϕ(tx). Since f is a newform, if θ1, . . . , θd is a basis for Mk(Γ)∗Q[I],
then

Ker(Φf ) = Ker(θ1) ⊕ · · · ⊕ Ker(θd).

Thus we can compute Ker(Φf ), hence Θf , so to compute Φf we only need to
compute if .

Let g1, . . . , gd be a basis for the Q-vector space

Sk(Γ; Q)[I] = Sk(Γ) ∩ Q[[q]],

i.e., the space of cusp forms with rational Fourier expansion. We will compute
Φf with respect to the basis of HomQ(Sk(Γ; Q)[I],C) dual to this basis. Choose
elements x1, . . . , xd ∈ Mk(Γ) with the following properties:

1. Using Proposition 10.3.2 or Proposition 10.4.1 it is possible to compute
the period integrals 〈gi, xj〉, i, j ∈ {1, . . . d} efficiently.

2. The 2d elements v+ η(v) and v− η(v) for v = Θf (x1), . . . ,Θf (xd) span a
space of dimension 2d (i.e., they span Mk(Γ)/Ker(Φf )).

Given this data, we can compute

if (v + η(v)) = 2Re(〈g1, xi〉, . . . , 〈gd, xi〉)

and
if (v − η(v)) = 2iIm(〈g1, xi〉, . . . , 〈gd, xi〉).

We break the integrals into real and imaginary parts because this increases the
precision of our answers. Since the vectors vn+η(vn) and vn−η(vn), n = 1, . . . , d
span Mk(N, ε)Q/Ker(Φf ), we have computed if .
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Remark 10.5.1. We want to find symbols xi satisfying the conditions of Propo-
sition 10.4.1. This is usually possible when d is very small, but in practice I
have had problems doing this when d is large.

Remark 10.5.2. The above strategy was motivated by [Cre97a, §2.10].
Remark 10.5.3. The following idea just occured to me. We could use that
〈Tn(g), x〉 = 〈g, Tn(x)〉 for any Hecke operator Tn, so that we only need to
compute the period integrals 〈g, xi〉. Then we obtain all pairings 〈Tn(g), xi〉 =
〈g, Tn(xi)〉. Since the Tn(g) span the simple T-module Sk(Γ; Q)[I], this must
give all pairings. However, it requires computing only 2d pairings instead of 2d2

pairings, which is potentially a huge savings when d is large.

10.6 Computing Elliptic Curves of Given Con-

ductor

10.6.1 Using Modular Symbols

Using modular symbols and the period map, we can compute all elliptic curves
over Q of conductor N , up to isogeny. The algorithm in this section gives
all modular elliptic curves, i.e., elliptic curves attached to modular forms, of
conductor N . Fortunately, it is now known by [Wil95, BCDT01, TW95] that
every elliptic curve over Q is modular, so the procedure described in this section
gives all elliptic curves, up to isogeny, of given conductor. I think this algorithm
was first introduced by Tingly (??), and later refined by Cremona [Cre97a].

Algorithm 10.6.1 (Elliptic Curves of Conductor N). INPUT: A positive
integer N .
OUTPUT: A list of Weierstrass equations for the elliptic curves of conductor N ,
up to isogeny.

1. [Compute Modular Symbols] Compute M2(Γ0(N)) using Section 8.6.

2. [Find Rational Eigenspaces] Find the two-dimensional eigenspaces V in
M2(Γ0(N))new that correspond to elliptic curves. Do not use the decom-
position algorithms from Section 7.4, which are too complicated, and give
way more information than we need. Instead, for the first few primes
p - N , compute all eigenspaces Ker(Tp − a), where a runs through in-
tegers with −2

√
p < a < 2

√
p. Intersect these eigenspaces to find the

eigenspaces that correspond to elliptic curves. To find just the new ones,
either compute the degeneracy maps to lower level, or find all the rational
eigenspaces of all levels that strictly divide N and exclude them.

3. [Find Rational Newforms] Using Algorithm 9.4.2, find each rational new-
form f =

∑∞
n=1 anq

n ∈ Z[[q]] associated to each eigenspace V found in
Step 2.

4. [Find Each Curve] For each rational eigenvector f found in Step 3, do the
following:
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(a) [Period Lattice] Compute the corresponding period lattice Λ = Zω1+
Zω2 by computing the image of Φf , as described in Section 10.5.

(b) [Compute τ ] Let τ = ω1/ω2. If Im(τ) < 0, swap ω1 and ω2, so
Im(τ) > 0. By successively applying generators of SL2(Z), we find
an SL2(Z) equivalent element τ ′ in the standard fundamental domain,
so |Re(τ ′)| ≤ 1/2 and |τ | ≥ 1.

(c) [c-invariants] Compute the invariants c4 and c6 of the lattice Λ using
the following rapidly convergent series:

c4 =

(

2π

ω2

)4

·
(

1 + 240

∞
∑

n=1

n3qn

1 − qn

)

c6 =

(

2π

ω2

)6

·
(

1 − 504

∞
∑

n=1

n5qn

1 − qn

)

,

where q = e2πiτ
′

, where τ ′ is as in Step 4b. A theorem of Edixhoven
(that the Manin constant is an integer) implies that the invariants
c4 and c6 of Λ are integers, so it is only necessary to compute Λ to
large precision to determine them.

(d) [Elliptic Curve] An elliptic curve with invariants c4 and c6 is

E : y2 = x3 − c4
48
x− c6

864
.

(e) [Prove Correctness] Compute the conductor of E. If the conductor
of E is not N , then recompute c4 and c6 using a larger precision
everywhere (e.g., more terms of f , reals to larger precision, etc.)
If the conductor is N , compute the coefficients bp of the modular
form g = gE attached to the elliptic curve E, for p ≤ #P1(Z/NZ)/6.
Verify that ap = bp, where ap are the coefficients of f . If this equality
holds, then E must be isogenous to the elliptic curve attached to f , by
the Sturm bound (Theorem 11.1.2) and Faltings’s isogeny theorem. If
the equality fails for some p, recompute c4 and c6 to larger precision.

There are a couple of tricks to optimize the above algorithm. For example,
one can work separately with Mk(Γ0(N))+new and Mk(Γ0(N))−new and get enough
information to find E, up to isogeny (see [Cre97b]).

Once we have one curve from each isogeny class of curves of conductor N ,
we can find each curve in each isogeny class, hence all curves of conductor N .
If E/Q is an elliptic curve, then any curve isogenous to E is isogenous via a
chain of isogenous of prime degree. There is an a priori bound on the degrees
of these isogenous due to Mazur. Also, there are various methods for finding all
isogenous from E of a given fixed degree. See [Cre97a, §3.8] for more details.

10.6.2 Finding Curves by Finding S-Integral Points

Cremona and others have recently been systematically developing an alternative
complementary approach to the problem of computing all elliptic curves of given
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conductor (see [CL04]). Instead of computing all curves of given conductor, we
instead consider the seemingly more difficult problem of find all curves with
good reduction outside a finite set S of primes. Since one can compute the
conductor of a curve using Tate’s algorithm [Tat75, Cre97a, §3.2], if we know
all curves with good reduction outside S, we can find all curves of conductor N
by letting S be the set of prime divisors of N .

There is a strategy for finding all curves with good reduction outside S. It
is not a provably-correct algorithm, in the sense that it is always guarenteed to
terminate (the modular symbols method above is an algorithm), but in practice
it often works, and I think one conjectures that it always does. Also, this strat-
egy makes sense over any number field, whereas the modular symbols method
does not, though there are generalizations of modular symbols to other number
fields.

Fix a finite set S of primes of a number fieldK. It is a theorem of Shafarevich
that there are only finitely many elliptic curves with good reduction outside S
(see [Sil92, §IX.6]). His proof uses that the group of S-units in K is finite,
and Siegel’s theorem that there are only finitely many S-integral points on an
elliptic curve. One can make all this explicit, and sometimes in practice one can
compute all these S-integral points.

The problem of finding all elliptic curves with good reduction outside of S
can be broken into several subproblems, the main ones being:

1. Determine the following finite subgroup of K∗/(K∗)m:

K(S,m) = {x ∈ K∗/(K∗)m : m | ordp(x) all p 6∈ S}.

2. Find all S-integral points on certain elliptic curves y2 = x3 + k.

In [CL04], there is one example, where he finds all curves of conductor N =
28 · 172 = 73984 by finding all curves with good reduction outside {2, 17}.
He finds 32 curves of conductor 73984 that divide into 16 isogeny classes. He
remarks that dimS2(Γ0(N)) = 9577, and his modular symbols program was
not able to find these curves at this high of level (presumably due to memory
constraints?).

10.7 Examples

10.7.1 Jacobians of genus-two curves

The author is among the the six authors of [FpS+01], who gather empirical
evidence for the BSD conjecture for Jacobian of genus two curves. Of the 32 Ja-
cobians considered, all but four are optimal quotients of J0(N) for some N . The
methods of this section can be used to compute Ω+

f for the Jacobians of these 28

curves. Using explicit models for the genus two curves, the authors of [FpS+01]
computed the measure of A with respect to a basis for the Néron differentials
of A. In all 28 cases our answers agreed to the precision computed. Thus in
these cases we have numerically verified that the Manin constant equals 1.
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The first example considered in [FpS+01] is the Jacobian A = J0(23) of the
modular curve X0(23). This curve has as a model

y2 + (x3 + x+ 1)y = −2x5 − 3x2 + 2x− 2

from which one can compute the BSD ΩA = 2.7328.... The following is an
integral basis of cusp forms for S2(23).

g1 = q − q3 − q4 − 2q6 + 2q7 + · · ·
g2 = q2 − 2q3 − q4 + 2q5 + q6 + 2q7 + · · ·

The space M2(23; Q) of modular symbols has dimension five and is spanned by
{−1/19, 0}, {−1/17, 0}, {−1/15, 0}, {−1/11, 0} and {∞, 0}. The submodule
S2(23; Z) has rank four and has as basis the first four of the above five symbols.
Choose γ1 = ( 8 1

23 3 ) and γ2 = ( 6 1
23 4 ) and let xi = {∞, γi(∞)}. Using the WN -

trick (see Section 10.4) we compute the period integrals 〈gi, xj〉 using 97 terms
of the q-expansions of g1 and g2, and obtain

〈g1, x1〉 ∼ −1.3543 + 1.0838i, 〈g1, x2〉 ∼ −0.5915 + 1.6875i
〈g2, x1〉 ∼ −0.5915 − 0.4801i, 〈g2, x2〉 ∼ −0.7628 + 0.6037i

Using 97 terms we already obtain about 14 decimal digits of accuracy, but we
do not reproduce them all here. We next find that

〈g1, x1 + x∗1〉 ∼ 2Re(−1.3543 + 1.0838i) = 2.7086,

and so on. Upon writing each generator of S2(23) in terms of x1 + x∗1, x1 − x∗1,
x2 + x∗2 and x2 − x∗2 we discover that the period mapping with respect to the
basis dual to g1 and g2 is (approximately)

{−1/19, 0} 7→ ( 0.5915 − 1.6875i, 0.7628 − 0.6037i)
{−1/17, 0} 7→ (−0.5915 − 1.6875i, −0.7628 − 0.6037i)
{−1/15, 0} 7→ (−1.3543 − 1.0838i, −0.5915 + 0.4801i)
{−1/11, 0} 7→ (−1.5256, 0.3425)

Working in S2(23) we find S2(23)
+ is spanned by {−1/19, 0} − {−1/17, 0} and

{−1/11, 0}. There is only one real component so

Ω+
I ∼

∣

∣

∣

∣

1.1831 1.5256
−1.5256 0.3425

∣

∣

∣

∣

= 2.7327...

To greater precision we find that Ω+
f ∼ 2.7327505324965. This agrees with the

value in [FpS+01]; since the Manin constant is an integer, it must equal 1.

10.7.2 Level one cusp forms

In the following two sections we consider several specific examples of tori at-
tached to modular forms of weight greater than two.
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Table 10.7.1: Volumes associated to level one cusp forms.

k Ω+ Ω−

12 0.002281474899 0.000971088287i
16 0.003927981492 0.000566379403i
18 0.000286607497 0.023020042428i
20 0.008297636952 0.0005609325015i
22 0.002589288079 0.0020245743816i
24 0.000000002968 0.0000000054322i
26 0.003377464512 0.3910726132671i
28 0.000000015627 0.0000000029272i

Let k ≥ 12 be an even integer. Associated to each Galois conjugacy class of
normalized eigenforms f , there is a torus Af over R. The real and minus volume
of the first few of these tori are displayed in Table 10.7.1. For weights 24 and 28
we give Ω−/i so that the columns will line up nicely. In each case, 97 terms of
the q-expansion were used.

The volumes appear to be much smaller than the volumes of weight two
abelian varieties. The dimension of each Af is 1, except for weights 24 and 28
when the dimension is 2.

10.7.3 CM elliptic curves of weight greater than two

Let f be a rational newform with “complex multiplication”, in the sense that
“half” of the Fourier coefficients of f are zero. For our purposes, it is not nec-
essary to define complex multiplication any more precisely. Experimentally, it
appears that the associated elliptic Af has rational j-invariant. As evidence for
this we present Table 10.7.2, which includes the analytic data about every ratio-
nal CM form of weight four and level ≤ 197. The computations of Table 10.7.2
were done using at least 97 terms of the q-expansion of f . The rationality of j
could probably be proved by observing that the CM forces Af to have extra
automorphisms.

In these examples, the invariants c4 and c6 are mysterious (to me); in con-
trast, in weight 2 the invariants of an elliptic curve are known to be integers
(see [Cre97a, 2.14]).

10.8 Exercises

10.1 Let f ∈ Sk(Γ1(N)) be a newform, and let Vf be the subspace spanned by
the Gal(Q/Q) conjugates of f . Let V ⊥

f be the Petersson complement of
Vf in Sk(Γ1(N)).

(a) Show that Atkin-Lehner-Li theory and properties of the Petersson
innner product imply that V ⊥

f is stable under the full Hecke algebra
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Table 10.7.2: CM elliptic curves of weight > 2.

E j Ω+ Ω− c4 c6

9k4A 0 0.2095 0.1210i 0.0000 −56626421686.2951
32k4A 1728 0.2283 0.2283i −3339814.8874 0.0000
64k4D 1728 0.1614 0.1614i 53437038.1988 0.0000
108k4A 0 0.0440 0.0762i −14699.2655 24463608892439.7456
108k4C 0 0.0554 0.0960i 1608.7743 6115643810955.1724
121k4A −215 0.0116 0.0385i 85659519816.8841 25723073306989527.1216
144k4E 0 0.0454 0.0262i 81.1130 −549788016394046.1396
27k6A 0 0.0110 0.0191i 0.0000 97856189971744203.7795
32k6A 1728 0.0199 0.0199i −58095643136.7658 8.0094

T ⊂ Sk(Γ1(N)).

(b) (*) Give an example of f ∈ S2(Γ1(N)) that shows that V ⊥
f need not

be T-stable if f is not a newform. [Hint: Argue that if V ⊥
f is T-stable

for any f , then every element of T is diagonalizable. An example of a
space where T3 is not diagonalizable is S2(Γ1(81)) (you may assume
this).]

10.2 Suppose f ∈ S2(Γ0(N)) is a newform and that WN (f) = wf . Let
Λ(E, s) = Ns/2(2π)−sΓ(s)L(E, s). Prove that

Λ(E, s) = −wΛ(E, 2 − s).

[Hint: Show that Λ(f, s) =
∫

0,∞ f(iy/
√
N)ys−1 dy, then substitute 1/y

for y. If you get completely stuck, see any of many standard references,
e.g., [Cre97a, §2.8].]
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Chapter 11

Congruences

11.1 Congruences Between Modular Forms

In this section we develop theory for determining when modular forms are con-
gruent, which is extremely import for computing with modular forms.

Let Γ be an arbitrary congruence subgroup of SL2(Z), and suppose f ∈
Mk(Γ) is a modular form of integer weight k for Γ. Since ( 1 N

0 1 ) ∈ Γ for some
integerN , the form f has a Fourier expansion in nonnegative powers of q1/N . For
a rational number n, let an(f) be the coefficient of qn in the Fourier expansion
of f . Put

ordq(f) = min{n ∈ Q : an 6= 0},
where by convention we take min ∅ = +∞, so ordq(0) = +∞.

11.1.1 The j-invariant

Let

j =
1

q
+ 744 + 196884q + · · ·

be the j-function, which is a weight 0 modular function that is holomorphic
except for a simple pole at ∞ and has integer Fourier coefficients (see, e.g.,
[Ser73, §VIII.3.3]).

Lemma 11.1.1. Suppose g is a weight 0 level 1 modular function that is holo-
morphic except possibly with a pole of order n at ∞. Then g is a polynomial
in j of degree at most n. Moreover, the coefficients of this polynomial lie in the
ideal I generated by the coefficients am(g) with m ≤ 0.

Proof. If n = 0, then g ∈M0(SL2(Z)) = C, so g is constant with constant term
in I, so the statement is true. Next suppose n > 0 and the lemma has been
proved for all functions with smaller order poles. Let α = an(g), and note that

ordq(g − αjn) = ordq

(

g − α ·
(

1

q
+ 744 + 196884q + · · ·

)n)

> −n.
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Thus by induction h = g−αjn is a polynomial in j of degree< n with coefficients
in the ideal generated by the coefficients am(g) with m < 0. It follows that
g = α · jn − h satisfies the conclusion of the lemma.

11.1.2 Congruences for Modular Forms

If O is the ring of integers of a number field, m is a maximal ideal of O, and
f =

∑

anq
n ∈ O[[q1/N ]] for some integer N , let

ordm(f) = ordq(f mod m) = min{n ∈ Q : an 6∈ m}.

Note that ordm(fg) = ordm(f) + ordm(g). The following theorem was first
proved in [Stu87], and our proof is an expanded version of the one in [Stu87].

Theorem 11.1.2 (Sturm). Let m be a prime ideal in the ring of integers O
of a number field K, and let Γ be a congruence subgroup of SL2(Z) of index m
and level N . Suppose f ∈Mk(Γ,O) is a modular form and

ordm(f) >
km

12

or f ∈ Sk(Γ,O) is a cusp form and

ordm(f) >
km

12
− m− 1

N
.

Then f ≡ 0 (mod m).

Proof. Case 1: First we assume Γ = SL2(Z).
Let

∆ = q + 24q2 + · · · ∈ S12(SL2(Z),Z)

be the ∆ function. Since ordm(f) > k/12, we have ordm(f12) > k. We have

ordq(f
12 · ∆−k) = 12 · ordq(f) − k · ordq(∆) ≥ −k, (11.1.1)

since f is holomorphic at infinity and ∆ has a zero of order 1. Also

ordm(f12 · ∆−k) = ordm(f12) − k · ordm(∆) > k − k = 0. (11.1.2)

Combining (11.1.1) and (11.1.2), we see that

f12 · ∆−k =
∑

n≥−k
bnq

n,

with bn ∈ O and bn ∈ m if n ≤ 0.
By Lemma 11.1.1,

f12 · ∆−k ∈ m[j]

is a polynomial in j of degree at most k with coefficients in m. Thus

f12 ∈ m[j] · ∆k,
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so since the coefficients of ∆ are integers, every coefficient of f 12 is in m. Thus
ordm(f12) = +∞, hence ordm(f) = +∞, so f = 0, as claimed.

Case 2: Γ Arbitrary
Let N be such that Γ(N) ⊂ Γ, so also f ∈ Mk(Γ(N)). If g ∈ Mk(Γ(N)) is

arbitrary, then because Γ(N) is a normal subgroup of SL2(Z), we have that for
any γ ∈ Γ(N) and δ ∈ SL2(Z), that

(g|[δ]k)|[γ]k = g|[δγ]k = g|[γ′δ]k = g|[γ′]k|[δ]k = g|[δ]k,
where δ′ ∈ SL2(Z). Thus for any δ ∈ SL2(Z), we have that g|[δ]k ∈ Mk(Γ(N)),
so SL2(Z) acts on Mk(Γ(N)).

It is a standard (but nontrivial) fact about modular forms, which comes
from the geometry of the modular curve X(N) over Q(ζN ) and Z[ζN ], that
Mk(Γ(N)) has a basis with Fourier expansions in Z[ζN ][[q1/N ]], and that the
action of SL2(Z) on Mk(Γ(N)) preserves

Mk(Γ(N),Q(ζN )) = Mk(Γ(N)) ∩ (Q(ζN )[[q1/N ]]),

and the cuspidal subspace Sk(Γ(N),Q(ζN )). In particular, for any γ ∈ SL2(Z),

f |[γ]k ∈Mk(Γ(N),K(ζN )),

Moreover, the denominators of f |[γ]k are bounded, since f is an O[ζN ]-linear
combination of a basis for Mk(Γ(N),Z[ζN ]), and the denominators of f |[γ]k
divide the product of the denominators of the images of each of these basis
vectors under [γ]k.

Let L = K(ζN ). Let M be a prime of OL that divides mOL. We will now
show that for each γ ∈ SL2(Z), the Chinese remainder theorem implies that
there is an element Aγ ∈ L∗ such that

Aγ · f |[γ]k ∈Mk(Γ(N),OL) and ordM(Aγ · f |[γ]k) <∞. (11.1.3)

First find A ∈ L∗ such that A ·f |[γ]k has coefficients in OL. Choose α ∈ M with
α 6∈ M2, and find a negative power αt such that αt · A · f |[γ]k has M-integral
coefficients and finite valuation. This is possible because we assumed that f is
nonzero. Use the Chinese remainder theorem to find β ∈ OL such that β ≡ 1
(mod M) and β ≡ 0 (mod ℘) for each prime ℘ 6= M that divides (α). Then for
some s we have

βs · αt ·A · f |[γ]k = Aγ · f |[γ]k ∈Mk(Γ(N),OL),

and ordM(Aγ · f |[γ]k) <∞.
Write

SL2(Z) =

m
⋃

i=1

Γγi

with γ1 = ( 1 0
0 1 ), and let

F = f ·
m
∏

i=2

Aγi
· f |[γi]k.
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Then F ∈Mkm(SL2(Z)) and since M ∩ OK = m, we have ordM(f) = ordm(f),
so

ordM(F ) ≥ ordM(f) = ordm(f) >
km

12
.

Thus we can apply case 1 to conclude that

ordM(F ) = +∞.

Thus

∞ = ordM(F ) = ordm(f) +

m
∑

i=2

ordM(Aγi
f |[γ]k), (11.1.4)

so ordm(f) = +∞, because of (11.1.3).
We next obtain a better bound when f is a cusp form. Since |[γ]k preserves

cusp forms, ordM(Aγi
f |[γ]k) ≥ 1

N for each i. Thus

ordM(F ) ≥ ordM(f) +
m− 1

N
= ordm(f) +

m− 1

N
>
km

12
,

since now we are merely assuming that

ordm(f) >
km

12
− m− 1

N
.

Thus we again apply case 1 to conclude that ordM(F ) = +∞, and using (11.1.4)
conclude that ordm(f) = +∞.

Corollary 11.1.3. Let m be a prime ideal in the ring of integers O of a number
field. Suppose f, g ∈Mk(Γ,O) are modular forms and

an(f) ≡ an(g) (mod m)

for all

n ≤











km

12
− m− 1

N
if f − g ∈ Sk(Γ,O),

km

12
otherwise,

where m = [SL2(Z) : Γ]. Then f ≡ g (mod m).

Buzzard proved the following corollary, which is extremely useful in practical
computations. It asserts that the Sturm bound for modular forms with character
is the same as the Sturm bound for Γ0(N).

Corollary 11.1.4 (Buzzard). Let m be a prime ideal in the ring of integers O
of a number field. Suppose f, g ∈ Mk(Γ1(N), ε,O) are modular forms with
Dirichlet character ε : (Z/NZ)∗ → C∗ and assume that

an(f) ≡ an(g) (mod m) for all n ≤ km

12
,
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where

m = [SL2(Z) : Γ0(N)] = #P1(Z/NZ) = N ·
∏

p|N

(

1 +
1

p

)

.

Then f ≡ g (mod m).

Proof. Let h = f − g and let r = km/12, so ordm(h) > r. Let s be the order of
the Dirichlet character ε. Then hs ∈Mks(Γ0(N)) and

ordm(hs) > sr =
ksm

12
.

By Theorem 11.1.2, we have ordm(hs) = ∞, so ordm(h) = ∞. It follows that
f ≡ g (mod m).

11.1.3 Congruence for Newforms

Sturm’s paper [Stu87] also applies some results of Asai on q-expansions at var-
ious cusps to obtain a more refined result for newforms.

Theorem 11.1.5 (Sturm). Let N be a square-free positive integer, and sup-
pose f and g are two newforms in Sk(Γ1(N), ε,O), where O is the ring of
integers of a number field, and suppose that m is a maximal ideal of O. Let I be
an arbitrary subset of the prime divisors of N . If ap(f) = ap(g) for all p ∈ I,
and

ap(f) ≡ ap(g) (mod m)

for all primes

p ≤ k · [SL2(Z) : Γ0(N)]

12 · 2#I
,

then f ≡ g (mod m).

[BS02] also contains a result about congruences between newforms, which
does not require that the level be square free. Recall (see Definition 4.5.5) that
the conductor of a Dirichlet character ε is the largest divisor c of N such that ε
factors through (Z/cZ)×.

Theorem 11.1.6. Let N > 4 be any integer, and suppose f and g are two
normalized eigenforms in Sk(Γ1(N), ε,O), where O is the ring of integers of a
number field, and suppose that m is a maximal ideal of O. Let I be the set of
prime divisors of N that do not divide N

cond(ε) . If

ap(f) ≡ ap(g) (mod m)

for all primes p ∈ I and for all primes

p ≤ k · [SL2(Z) : Γ0(N)]

12 · 2#I
,

then f ≡ g (mod m).

For the proof, see Lemma 1.4 and Corollary 1.7 in [BS02, §1.3].



170 CHAPTER 11. CONGRUENCES

11.2 Generating the Hecke Algebra as a Z-module

The following theorem appeared in [LS02, Appendix], except that we give a
better bound here.

Theorem 11.2.1. Suppose Γ is a congruence subgroup that contains Γ1(N) and
let

r =
km

12
− m− 1

N
, (11.2.1)

where m = [SL2(Z) : Γ]. Then the Hecke algebra T = Z[. . . , Tn, . . .] ⊂ End(Sk(Γ))
is generated as a Z-module by the Hecke operators Tn for n ≤ r.

Proof. For any ring R, let Sk(N,R) = Sk(N,Z) ⊗ R, where Sk(N,Z) ⊂ Z[[q]]
is the submodule of cusp forms with integer Fourier expansion at the cusp ∞,
and let TR = T ⊗Z R. For any ring R, there is a perfect pairing

Sk(N,R) ⊗R TR → R

given by 〈f, T 〉 7→ a1(T (f)) (this is true for R = Z, hence for any R).
Let M be the submodule of T generated by T1, T2, . . . , Tr, where r is the

largest integer ≤ kN
12 · [SL2(Z) : Γ]. Consider the exact sequence of additive

abelian groups

0 →M
i→ T → T/M → 0.

Let p be a prime and use that tensor product is right exact to obtain an exact
sequence

M ⊗ Fp
i→ T ⊗ Fp → (T/M) ⊗ Fp → 0.

Suppose that f ∈ Sk(N,Fp) pairs to 0 with each of T1, . . . , Tr. Then

am(f) = a1(Tmf) = 〈f, Tm〉 = 0

in Fp for each m ≤ r. By Theorem 11.1.2, it follows that f = 0. Thus the
pairing restricted to the image of M ⊗ Fp in TFp

is nondegenerate, so because
(11.2.1) is perfect, it follows that

dimFp
i(M ⊗ Fp) = dimFp

Sk(N,Fp).

Thus (T/M) ⊗ Fp = 0. Repeating the argument for all primes p shows that
T/M = 0, as claimed.

Remark 11.2.2. In general, the conclusion of Theorem 11.2.1 is not true if one
considers only Tn where n runs over the primes less than the bound. Consider,
for example, S2(11), where the bound is 1 and there are no primes ≤ 1. However,
the Hecke algebra is generated as an algebra by operators Tp with p ≤ r.
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Miscellaneous

12.1 Computing Widths of Cusps

Let Γ be a congruence subgroup of level N . Suppose α ∈ C(Γ) is a cusp, and
choose γ ∈ SL2(Z) such that γ(∞) = α. The minimal h such that ( 1 h

0 1 ) ∈ γ−1Γγ
is called the width of the cusp α for the group Γ. In this section we discuss how
to compute h.

Algorithm 12.1.1 (Width of Cusp). Given a congruence subgroup Γ of level
N and a cusp α for Γ, this algorithm computes the width h of α. We assume
that Γ is given by congruence conditions, e.g., Γ = Γ0(N) or Γ1(N).

1. [Find γ] Use the extended Euclidean algorithm to find γ ∈ SL2(Z) such
that γ(∞) = α, as follows. If α = ∞ set γ = 1; otherwise, write α = a/b,
find c, d such that ad− bc = 1, and set γ =

(

a b
c d

)

.

2. [compute Conjugate Matrix] Compute the following matrix in M2(Z[x]):

δ(x) = γ

(

1 x
0 1

)

γ−1.

Note that the entries of δ(x) are constant or linear in x.

3. [Solve] The congruence conditions that define Γ give rise to four linear
congruence conditions on x. Use techniques from elementary number the-
ory (or enumeration) to find the smallest simultaneous positive solution h
to these four equations.

Example 12.1.2. 1. Suppose α = 0 and Γ = Γ0(N) or Γ1(N). Then γ =
( 0 1

1 0 ) has the property that γ(∞) = α. Next, the congruence condition is

δ(x) = γ

(

1 x
0 1

)

γ−1 =

(

1 0
x 1

)

≡
(

1 ∗
0 1

)

(mod N).

Thus the smallest positive solution is h = N , so the width of 0 is N .
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2. Suppose N = pq where p, q are distinct primes, and let α = 1/p. Then
γ =

(

1 0
p 1

)

sends ∞ to α. The congruence condition for Γ0(pq) is

δ(x) = γ

(

1 x
0 1

)

γ−1 =

(

1 − px x
−p2x px+ 1

)

≡
(

∗ ∗
0 ∗

)

(mod pq).

Since p2x ≡ 0 (mod pq), we see that x = q is the smallest solution. Thus
1/p has width q, and symmetrically 1/q has width p.

Remark 12.1.3. For Γ0(N), once we enforce that the bottom left entry is 0
(mod N), and use that the determinant is 1, the coprimality from the other
two congruences is automatic. So there is one congruence to solve in the Γ0(N)
case. There are 2 congruences in the Γ1(N) case.
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