3.4 Computing a basis for $S_{2}\left(\Gamma_{0}(N)\right)$

In this section we explain a method for using what we know how to compute using modular symbols to compute a basis for $S_{2}\left(\Gamma_{0}(N)\right)$.

Let $\mathbb{M}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right)$ and $\mathbb{S}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right)$ denote modular symbols and cuspidal modular symbols over \mathbb{Q}. Before we begin, we describe a simple but crucial fact about the relation between cusp forms and the Hecke algebra.

If $f=\sum b_{n} q^{n} \in \mathbb{C}[[q]]$ is a power series, let $a_{n}(f)=b_{n}$ be the n coefficient of f. Notice that a_{n} is a linear map from $\mathbb{C}[[q]]$ to itself.

As explained in [Lan95, §VII.3], the Hecke operators T_{n} acts on elements of $M_{2}\left(\Gamma_{0}(N)\right)$ as follows:

$$
\begin{equation*}
T_{n}\left(\sum_{m=0}^{\infty} a_{m} q^{m}\right)=\left(\sum_{1 \leq d \mid \operatorname{gcd}(n, m)} \varepsilon(d) \cdot d \cdot a_{m n / d^{2}}\right) q^{m} \tag{3.4.1}
\end{equation*}
$$

where $\varepsilon(d)=1$ if $\operatorname{gcd}(d, N)=1$ and $\varepsilon(d)=0$ if $\operatorname{gcd}(d, N) \neq 1$.
Lemma 3.4.1. Suppose f is a modular form and n is a positive integer. Then

$$
a_{1}\left(T_{n}(f)\right)=a_{n}(f)
$$

Proof. The coefficient of q in (3.4.1) is $\varepsilon(1) \cdot 1 \cdot a_{1 \cdot n / 1^{2}}=a_{n}$.
Let \mathbb{T}^{\prime} denote the image of the Hecke algebra in $\operatorname{End}\left(S_{2}\left(\Gamma_{0}(N)\right)\right.$), and let $\mathbb{T}_{\mathbb{C}}^{\prime}=\mathbb{T}^{\prime} \otimes \mathbb{C}$ be the \mathbb{C}-span of the Hecke operators.

Proposition 3.4.2. There is a perfect bilinear pairing of complex vector spaces

$$
S_{2}\left(\Gamma_{0}(N)\right) \times \mathbb{T}_{\mathbb{C}}^{\prime} \rightarrow \mathbb{C}
$$

given by

$$
\langle f, t\rangle=a_{1}(t(f))
$$

Proof. The pairing is bilinear since both t and a_{1} are linear. Suppose $f \in$ $S_{2}\left(\Gamma_{0}(N)\right)$ is such that $\langle f, t\rangle=0$ for all $t \in \mathbb{T}_{\mathbb{C}}^{\prime}$. Then in particular $\left\langle f, T_{n}\right\rangle=0$ for each positive integer n. But by Lemma 3.4.1 we have

$$
a_{n}(f)=a_{1}\left(T_{n}(f)\right)=0
$$

for all n; thus $f=0$.
Next suppose that $t \in \mathbb{T}_{\mathbb{C}}^{\prime}$ is such that $\langle f, t\rangle=0$ for all $f \in S_{2}\left(\Gamma_{0}(N)\right)$. Then $a_{1}(t(f))=0$ for all f. For any n, the image $T_{n}(f)$ is also a cuspform, so $a_{1}\left(t\left(T_{n}(f)\right)\right)=0$ for all n and f. Finally \mathbb{T}^{\prime} is commutative and Lemma 3.4.1 together imply that for all n and f,

$$
0=a_{1}\left(t\left(T_{n}(f)\right)\right)=a_{1}\left(T_{n}(t(f))\right)=a_{n}(t(f))
$$

so $t(f)=0$ for all f. Thus t is the 0 operator.

By Proposition 3.4.2 there is an isomorphism of vector spaces

$$
\Psi: S_{2}\left(\Gamma_{0}(N)\right) \xrightarrow{\cong} \operatorname{Hom}\left(\mathbb{T}^{\prime}, \mathbb{C}\right)
$$

that sends $f \in S_{2}\left(\Gamma_{0}(N)\right)$ to the homomorphism

$$
t \mapsto a_{1}(t(f))
$$

For any linear map $\varphi: \mathbb{T}_{\mathbb{C}}^{\prime} \rightarrow \mathbb{C}$, let

$$
f_{\varphi}=\sum_{n=1}^{\infty} \varphi\left(T_{n}\right) q^{n} \in \mathbb{C}[[q]] .
$$

By Lemma 3.4.1, we have

$$
\left\langle f_{\varphi}, T_{n}\right\rangle=a_{1}\left(T_{n}\left(f_{\varphi}\right)\right)=a_{n}\left(f_{\varphi}\right)=\varphi\left(T_{n}\right)
$$

Thus f_{φ} must be the q-expansion of the modular form that corresponds to φ under the isomorphism Ψ. In paritcular, $f_{\varphi} \in S_{2}\left(\Gamma_{0}(N)\right)$, and the cuspforms f_{φ}, as φ runs through a basis, form a basis for $S_{2}\left(\Gamma_{0}(N)\right)$.

We can compute $S_{2}\left(\Gamma_{0}(N)\right)$ by computing $\operatorname{Hom}\left(\mathbb{T}^{\prime}, \mathbb{C}\right)$, where we compute \mathbb{T}^{\prime} in any way we want, e.g., using a space that contains an isomorphic copy of $S_{2}\left(\Gamma_{0}(N)\right)$.

Algorithm 3.4.3 (Basis of Cuspforms). Given a positive integers N and B, this algorithm computes a basis for $S_{2}\left(\Gamma_{0}(N)\right)$ to precision $O\left(q^{B}\right)$.

1. Compute the modular symbols space $\mathbb{M}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right)$ via the presentation of Section 3.2.2.
2. Compute the subspace $\mathbb{S}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right)$ of cuspidal modular symbols as in Section 3.3.
3. Let $d=\frac{1}{2} \cdot \operatorname{dim} \mathbb{S}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right)$. This is the dimension of $S_{2}\left(\Gamma_{0}(N)\right)$.
4. Use the Hecke operators T_{2}, T_{3}, etc., of Section 3.2.3 to find the unique subspace V of $\operatorname{Hom}\left(\mathbb{M}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right), \mathbb{Q}\right)$ that is isomorphic to $\mathbb{S}_{2}\left(\Gamma_{0}(N) ; \mathbb{Q}\right)$ as a \mathbb{T}-module. (The Hecke operators act via their transpose; find the subspace V of the dual with the same characteristic polynomials.)
5. Let $\left[T_{n}\right]$ denote the matrix of T_{n} acting on some fixed basis of V. For a matrix A, let $a_{i j}(A)$ denote the $i j$-th entry of A. For various integers i, j with $0 \leq i, j \leq d-1$, compute formal q-expansions

$$
f_{i j}(q)=\sum_{n=1}^{B-1} a_{i j}\left(\left[T_{n}\right]\right) q^{n}+O\left(q^{B}\right) \in \mathbb{Q}[[q]]
$$

until we find enough to span a space of dimension d (or exhaust all of them, in which case B is too small). These $f_{i j}$ then form a basis for $S_{2}\left(\Gamma_{0}(N)\right)$.

3.4.1 Examples

In this section we use SAGE to demonstrate Algorithm 3.4.3 for computing $S_{2}\left(\Gamma_{0}(N)\right)$ for various N.
Example 3.4.4. The smallest N with $S_{2}\left(\Gamma_{0}(N)\right) \neq 0$ is $N=11$.

```
sage: M = ModularSymbols(11)
sage: M.basis()
((1,0), (1, 8), (1,9))
sage: S = M.cuspidal_subspace()
sage: S
Dimension 2 subspace of a modular symbols space of level 11
sage: S.basis()
((1,8), (1,9))
sage: d = S.dimension() // 2; d
1
```

The command dual_free_module computes the vector space V of Algorithm 3.4.3.

```
sage: S.dual_free_module()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[1 0 5
[0 1 0]
```

View each of the basis vectors $(1,0,5)$ and $(0,1,0)$ as defining a linear map (via dot product) $\mathbb{S}_{2}\left(\Gamma_{0}(11)\right) \rightarrow \mathbb{Q}$, where we view elements of $\mathbb{S}_{2}\left(\Gamma_{0}(11)\right)$ as linear combinations of our fixed basis $(1,0),(1,8),(1,9)$ for $\mathbb{M}_{2}\left(\Gamma_{0}(11)\right)$.

The command dual_hecke_matrix computes the matrix of T_{n} on the above basis for V.

```
sage: S.dual_hecke_matrix(1)
[1 0]
[0 1]
sage: S.dual_hecke_matrix(2)
[-2 0]
[ 0 -2]
sage: S.dual_hecke_matrix(3)
[-1 0]
[ 0 -1]
```

Thus

$$
f_{0,0}=q-2 q^{2}-q^{3}+\cdots \in S_{2}\left(\Gamma_{0}(11)\right)
$$

Since $\operatorname{dim} S_{2}\left(\Gamma_{0}(11)\right)=1$, this form must be a basis.
Example 3.4.5. Next consider $N=23$, where we have $d=\operatorname{dim} S_{2}\left(\Gamma_{0}(23)\right)=2$. The command q-expansion_cuspforms computes V and the matrices $\left[T_{n}\right] \mid V$
and returns a function f such that $f(i, j)$ is the q-expansion of $f_{i, j}$ to some precision.

```
sage: M = ModularSymbols(23)
sage: S = M.cuspidal_subspace()
sage: S
Dimension 4 subspace of a modular symbols space of level 23
sage: f = S.q_expansion_cuspforms(6)
sage: f(0,0)
q-2/3*q^2 + 1/3*q^3 - 1/3*q^4 - 4/3*q^5 + O(q^6)
sage: f(0,1)
0(q^6)
sage: f(1,0)
-1/3*q^2 + 2/3*q^3 + 1/3*q^4-2/3*q^5 + 0(q^6)
```

Thus a basis for $S_{2}\left(\Gamma_{0}(23)\right)$ is

$$
\begin{aligned}
& f_{0,0}=q-\frac{2}{3} q^{2}+\frac{1}{3} q^{3}-\frac{1}{3} q^{4}-\frac{4}{3} q^{5}+\cdots \\
& f_{1,0}=-\frac{1}{3} q^{2}+\frac{2}{3} q^{3}+\frac{1}{3} q^{4}-\frac{2}{3} q^{5}+\cdots
\end{aligned}
$$

Or, in echelon form,

$$
\begin{aligned}
& q-q^{3}-q^{4}+\cdots \\
& \quad q^{2}-2 q^{3}-q^{4}+2 q^{5}+\cdots
\end{aligned}
$$

which we computed using

```
sage: S.q_expansion_basis(6)
    [q - q^3 - q^4 + 0(q^6),
        q^2 - 2*q^3 - q^4 + 2*q^5 + 0(q^6)]
```

