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3.4 Computing a basis for S2(Γ0(N))

In this section we explain a method for using what we know how to compute
using modular symbols to compute a basis for S2(Γ0(N)).

Let M2(Γ0(N); Q) and S2(Γ0(N); Q) denote modular symbols and cuspidal
modular symbols over Q. Before we begin, we describe a simple but crucial fact
about the relation between cusp forms and the Hecke algebra.

If f =
∑

bnqn ∈ C[[q]] is a power series, let an(f) = bn be the n coefficient
of f . Notice that an is a linear map from C[[q]] to itself.

As explained in [Lan95, §VII.3], the Hecke operators Tn acts on elements of
M2(Γ0(N)) as follows:

Tn

(

∞
∑

m=0

amqm

)

=





∑

1≤d | gcd(n,m)

ε(d) · d · amn/d2



 qm, (3.4.1)

where ε(d) = 1 if gcd(d,N) = 1 and ε(d) = 0 if gcd(d,N) 6= 1.

Lemma 3.4.1. Suppose f is a modular form and n is a positive integer. Then

a1(Tn(f)) = an(f).

Proof. The coefficient of q in (3.4.1) is ε(1) · 1 · a1·n/12 = an.

Let T′ denote the image of the Hecke algebra in End(S2(Γ0(N))), and let
T′

C
= T′ ⊗ C be the C-span of the Hecke operators.

Proposition 3.4.2. There is a perfect bilinear pairing of complex vector spaces

S2(Γ0(N)) × T′
C → C

given by

〈f, t〉 = a1(t(f)).

Proof. The pairing is bilinear since both t and a1 are linear. Suppose f ∈
S2(Γ0(N)) is such that 〈f, t〉 = 0 for all t ∈ T′

C
. Then in particular 〈f, Tn〉 = 0

for each positive integer n. But by Lemma 3.4.1 we have

an(f) = a1(Tn(f)) = 0

for all n; thus f = 0.
Next suppose that t ∈ T′

C
is such that 〈f, t〉 = 0 for all f ∈ S2(Γ0(N)).

Then a1(t(f)) = 0 for all f . For any n, the image Tn(f) is also a cuspform, so
a1(t(Tn(f))) = 0 for all n and f . Finally T′ is commutative and Lemma 3.4.1
together imply that for all n and f ,

0 = a1(t(Tn(f))) = a1(Tn(t(f))) = an(t(f)),

so t(f) = 0 for all f . Thus t is the 0 operator.
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By Proposition 3.4.2 there is an isomorphism of vector spaces

Ψ : S2(Γ0(N))
∼=

−−→ Hom(T′, C)

that sends f ∈ S2(Γ0(N)) to the homomorphism

t 7→ a1(t(f)).

For any linear map ϕ : T′
C
→ C, let

fϕ =

∞
∑

n=1

ϕ(Tn)qn ∈ C[[q]].

By Lemma 3.4.1, we have

〈fϕ, Tn〉 = a1(Tn(fϕ)) = an(fϕ) = ϕ(Tn).

Thus fϕ must be the q-expansion of the modular form that corresponds to ϕ

under the isomorphism Ψ. In paritcular, fϕ ∈ S2(Γ0(N)), and the cuspforms
fϕ, as ϕ runs through a basis, form a basis for S2(Γ0(N)).

We can compute S2(Γ0(N)) by computing Hom(T′, C), where we

compute T′ in any way we want, e.g., using a space that contains an

isomorphic copy of S2(Γ0(N)).

Algorithm 3.4.3 (Basis of Cuspforms). Given a positive integers N and B,

this algorithm computes a basis for S2(Γ0(N)) to precision O(qB).

1. Compute the modular symbols space M2(Γ0(N); Q) via the presentation
of Section 3.2.2.

2. Compute the subspace S2(Γ0(N); Q) of cuspidal modular symbols as in
Section 3.3.

3. Let d = 1
2 · dim S2(Γ0(N); Q). This is the dimension of S2(Γ0(N)).

4. Use the Hecke operators T2, T3, etc., of Section 3.2.3 to find the unique
subspace V of Hom(M2(Γ0(N); Q), Q) that is isomorphic to S2(Γ0(N); Q)
as a T-module. (The Hecke operators act via their transpose; find the
subspace V of the dual with the same characteristic polynomials.)

5. Let [Tn] denote the matrix of Tn acting on some fixed basis of V . For a
matrix A, let aij(A) denote the ij-th entry of A. For various integers i, j

with 0 ≤ i, j ≤ d − 1, compute formal q-expansions

fij(q) =
B−1
∑

n=1

aij([Tn])qn + O(qB) ∈ Q[[q]]

until we find enough to span a space of dimension d (or exhaust all of them,
in which case B is too small). These fij then form a basis for S2(Γ0(N)).
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3.4.1 Examples

In this section we use SAGE to demonstrate Algorithm 3.4.3 for computing
S2(Γ0(N)) for various N .

Example 3.4.4. The smallest N with S2(Γ0(N)) 6= 0 is N = 11.

sage: M = ModularSymbols(11)

sage: M.basis()

((1,0), (1,8), (1,9))

sage: S = M.cuspidal_subspace()

sage: S

Dimension 2 subspace of a modular symbols space of level 11

sage: S.basis()

((1,8), (1,9))

sage: d = S.dimension() // 2; d

1

The command dual free module computes the vector space V of Algorithm 3.4.3.

sage: S.dual_free_module()

Vector space of degree 3 and dimension 2 over Rational Field

Basis matrix:

[1 0 5]

[0 1 0]

View each of the basis vectors (1, 0, 5) and (0, 1, 0) as defining a linear map (via
dot product) S2(Γ0(11)) → Q, where we view elements of S2(Γ0(11)) as linear
combinations of our fixed basis (1, 0), (1, 8), (1, 9) for M2(Γ0(11)).

The command dual hecke matrix computes the matrix of Tn on the above
basis for V .

sage: S.dual_hecke_matrix(1)

[1 0]

[0 1]

sage: S.dual_hecke_matrix(2)

[-2 0]

[ 0 -2]

sage: S.dual_hecke_matrix(3)

[-1 0]

[ 0 -1]

Thus
f0,0 = q − 2q2 − q3 + · · · ∈ S2(Γ0(11)).

Since dim S2(Γ0(11)) = 1, this form must be a basis.

Example 3.4.5. Next consider N = 23, where we have d = dimS2(Γ0(23)) = 2.
The command q expansion cuspforms computes V and the matrices [Tn]|V
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and returns a function f such that f(i, j) is the q-expansion of fi,j to some
precision.

sage: M = ModularSymbols(23)

sage: S = M.cuspidal_subspace()

sage: S

Dimension 4 subspace of a modular symbols space of level 23

sage: f = S.q_expansion_cuspforms(6)

sage: f(0,0)

q - 2/3*q^2 + 1/3*q^3 - 1/3*q^4 - 4/3*q^5 + O(q^6)

sage: f(0,1)

O(q^6)

sage: f(1,0)

-1/3*q^2 + 2/3*q^3 + 1/3*q^4 - 2/3*q^5 + O(q^6)

Thus a basis for S2(Γ0(23)) is

f0,0 = q −
2

3
q2 +

1

3
q3 −

1

3
q4 −

4

3
q5 + · · ·

f1,0 = −
1

3
q2 +

2

3
q3 +

1

3
q4 −

2

3
q5 + · · ·

Or, in echelon form,

q − q3 − q4 + · · ·

q2 − 2q3 − q4 + 2q5 + · · ·

which we computed using

sage: S.q_expansion_basis(6)

[q - q^3 - q^4 + O(q^6),

q^2 - 2*q^3 - q^4 + 2*q^5 + O(q^6)]


