
Chapter 3

Modular Symbols of Weight

Two

We saw in Chapter 2 (especially Section 2.2) that we can compute each space
Mk(SL2(Z)) explicitly. This involved computing Eisenstein series E4 and E6

to some precision, then forming the basis {Ea
4Eb

6 : 4a + 6b = k, 0 ≤ a, b ∈ Z}
for Mk(SL2(Z)). In this chapter we instead consider the problem of computing
M2(Γ0(N)), for positive integers N . Again we have a decomposition

M2(Γ0(N)) = S2(Γ0(N)) ⊕ Eis2(Γ0(N)),

where Eis2(Γ0(N)) is a space spanned by explicit generalized Eisenstein series
and S2(Γ0(N)) is the space of cusp forms, i.e., elements of M2(Γ0(N)) that
vanish at all cusps.

The space Eis2(Γ0(N)) can be computed explicitly much like Mk(SL2(Z)),
as we will see in Chapter 5. On the other hand, general elements of S2(Γ0(p))
can not be written as sums or products of generalized Eisenstein series. In fact,
the structure of M2(Γ0(N)) is drastically different than that of Mk(SL2(Z)).
For example, when p is a prime Eis2(Γ0(p)) has dimension 1, whereas S2(Γ0(p))
has dimension about p/12.

Fortunately an idea of Birch called “modular symbols” provides a powerful
method for computing S2(Γ0(N)), and indeed much more. In this chapter,
we explain how S2(Γ0(N)) is related to modular symbols, and how to use this
relationship to explicitly compute a basis for S2(Γ0(N)). We will discuss much
more general modular symbols in Chapter 8, where we will explain how to use
them to compute Sk(Γ1(N)) for any integers k ≥ 2 and N .

Section 3.1 contains a brief summary of basic facts about modular forms,
Hecke operators, and integral homology. Section 3.2 introduces modular sym-
bols, and describes how to compute with them. Section 3.3 outlines an algo-
rithm for constructing cusp forms using modular symbols in conjunction with
Atkin-Lehner theory.
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This chapter assumes some familiarity with algebraic curves, Riemann sur-
faces, and homology groups of compact Riemann surfaces.

3.1 Review of modular forms and Hecke opera-

tors

The group Γ0(N) acts on h∗ by linear fractional transformations, and the quo-
tient Γ0(N)\h∗ is a Riemann surface, which we denote by X0(N). Shimura
showed in [Shi94, §6.7] that X0(N) has a canonical structure of algebraic curve
over Q.

Recall from Section 1.3 that a cusp form of weight 2 for Γ0(N) is a function f
on h such that f(z)dz defines a holomorphic differential on X0(N). Equivalently,
a cusp form is a holomorphic function f on h such that

(a) the expression f(z)dz is invariant under replacing z by γ(z) for each γ ∈
Γ0(N), and

(b) f(z) vanishes at every cusp for Γ0(N).

The space S2(Γ0(N)) of weight 2 cusp forms on Γ0(N) is a finite dimensional
complex vector space, of dimension equal to the genus g of X0(N). Viewed
topologically, as a 2-dimensional real manifold, X0(N)(C) is a g-holed torus
(see Figure 3.1.1 on page 32).

Condition (b) in the definition of f(z) means that f(z) has a Fourier expan-
sion about each element of P1(Q). Thus, at ∞ we have

f(z) = a1e
2πiz + a2e

2πi2z + a3e
2πi3z + · · ·

= a1q + a2q
2 + a3q

3 + · · · ,

where, for brevity, we write q = q(z) = e2πiz.

Example 3.1.1. Let E be the elliptic curve defined by the equation y2 + xy =
x3 +x2−4x−5. Let ap = p+1−#Ẽ(Fp), where Ẽ is the reduction of E mod p
(note that for the bad primes we have a3 = −1, a13 = 1). For n composite,
define an using the relations at the end of Section 3.3. Then

f = q + a2q
2 + a3q

3 + a4q
4 + a5q

5 + · · ·

= q + q2 − q3 − q4 + 2q5 + · · ·

is the q-expansion of a modular form on Γ0(39). The Shimura-Taniyama con-
jecture, which is now a theorem (see [BCDT01]) asserts that any q-expansion
constructed as above from an elliptic curve over Q is a modular form.

Just as is the case for level 1 modular forms (see Section 2.4) there is a
family of commuting Hecke operators that act on S2(Γ0(N)). To define them
conceptually, we introduce an interpretation of X0(N) as a space whose points
parameterize elliptic curves with extra structure.
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Proposition 3.1.2. The complex points of the open subcurve Y0(N) = Γ0(N)\h
are in natural bijection with pairs (E,C), where E is an elliptic curve over C
and C is a cyclic subgroup of E(C) of order N .

Suppose n and N are coprime positive integers. Keeping in mind Proposi-
tion 3.1.2, we see that there are two natural maps π1 and π2 from Y0(n · N) to
Y0(N); the first, π1, sends a pair (E,C) to (E,C ′), where C ′ is the unique cyclic
subgroup of C of order N , and the second, π2, sends a point (E,C) ∈ Y0(N)(C)
to (E/D,C/D), where D is the unique cyclic subgroup of C of order n. These
maps extend in a unique way to algebraic maps from X0(n · N) to X0(N):

X0(n · N)

π2

yyrrrrrrrrrr
π1

&&
LLLLLLLLLL

X0(N) X0(N).

The nth Hecke operator Tn is (π1)∗ ◦ (π2)
∗, where π∗

2 and (π1)∗ denote pullback
and pushforward of differentials respectively. (There is a similar definition of
Tn when gcd(n,N) 6= 1.) Using our interpretation of S2(Γ0(N)) as differentials
on X0(N) this gives an action of Hecke operators on S2(Γ0(N)). One can show
that these induce the maps of Proposition 2.4.6 on q-expansions.

Example 3.1.3. There is a basis of S2(39) so that

T2 =





1 1 0
−2 −3 −2

0 0 1



 and T5 =





−4 −2 −6
4 4 4
0 0 2



 .

Notice that these matrices commute, and that 1 is an eigenvalue of T2, and 2 is
an eigenvalue of T5.

The first homology group H1(X0(N), Z) is the group of closed 1-cycles mod-
ulo boundaries of 2 cycles (formal sums of images of 2-simplexes). Recall that
topologically X0(N) is a g-holed torus, where g is the genus of X0(N). The
group H1(X0(N), Z) is thus a free abelian group of rank 2g (see, e.g., [GH81,
Ex. 19.30]), with two generators corresponding to each hole, as illustrated in
the case N = 39 in Figure 3.1.1.

Homology is closely connected to modular forms, since the Hecke operators
Tn also act on H1(X0(N), Z). The action is by pullback of homology classes
by π2 followed by taking the image under π1. Moreover, integration defines a
pairing

〈 , 〉 : S2(Γ0(N)) × H1(X0(N), Z) → C. (3.1.1)

Explicitly, for a path x,

〈f, x〉 = 2πi

∫

x

f(z)dz,

where the integral is locally a complex line integral along preimages of intervals
of x in the upper half plane.
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H1(X0(39), Z) ∼= Z × Z × Z × Z × Z × Z

Figure 3.1.1: The homology of X0(39).

Theorem 3.1.4. The pairing (3.1.1) is nondegenerate and Hecke equivariant
in the sense that for every Hecke operator Tn, we have 〈fTn, x〉 = 〈f, Tnx〉.

As we will see, modular symbols allow us to make explicit the action of the
Hecke operators on H1(X0(N), Z); the above pairing then translates this into a
wealth of information about cusp forms.

3.2 Modular symbols

The modular symbols formalism provides a presentation of H1(X0(N), Z) in
terms of paths between elements of P1(Q). Furthermore, a trick due to Manin
gives an explicit finite list of generators and relations for the space of modular
symbols.

The modular symbol defined by a pair α, β ∈ P1(Q) is denoted {α, β}. As
illustrated in Figure 3.2.1, we view this modular symbol as the homology class,
relative to the cusps, of a (geodesic) path from α to β in h∗. The homology
group relative to the cusps is a slight enlargement of the usual homology group,
in that we allow paths with endpoints in the cusps instead of restricting to
closed loops.

Note that modular symbols satisfy the following homology relations: if
α, β, γ ∈ Q ∪ {∞}, then

{α, β} + {β, γ} + {γ, α} = 0.

Furthermore, the space of modular symbols is torsion free, so, e.g., {α, α} = 0
and {α, β} = −{β, α}.

Denote by M2 the free abelian group with basis the set of symbols {α, β}
modulo the three-term homology relations above and modulo any torsion. There
is a left action of GL2(Q) on M2, whereby a matrix g acts by

g{α, β} = {g(α), g(β)},

and g acts on α and β by a linear fractional transformation. The space M2(Γ0(N))
of modular symbols for Γ0(N) is the quotient of M2 by the submodule gener-
ated by the infinitely many elements of the form x− g(x), for x in M2 and g in
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∞

α β0 Q

Figure 3.2.1: The modular symbols {α, β} and {0,∞}.

Γ0(N), and modulo any torsion. A modular symbol for Γ0(N) is an element of
this space. We frequently denote the equivalence class that defines a modular
symbol by giving a representative element.

Example 3.2.1. Some modular symbols are 0 no matter what the level N is!
For example, since γ = ( 1 1

0 1 ) ∈ Γ0(N), we have

{∞, 0} = {γ(∞), γ(0)} = {∞, 1},

so

0 = {∞, 1} − {∞, 0} = {∞, 1} + {0,∞} = {0,∞} + {∞, 1} = {0, 1}.

There is a natural homomorphism

ϕ : M2(Γ0(N)) → H1(X0(N), {cusps}, Z) (3.2.1)

that sends a formal linear combination of geodesic paths in the upper half plane
to their image as paths on X0(N). In [Man72] Manin proved that (3.2.1) is
an isomorphism. He also identified the subspace of M2(Γ0(N)) that is sent
isomorphically onto H1(X0(N), Z). This subspace is constructed as follows. Let
B2(Γ0(N)) denote the free abelian group whose basis is the finite set C(Γ0(N)) =
Γ0(N)\P1(Q) of cusps for Γ0(N). The boundary map

δ : M2(Γ0(N)) → B2(Γ0(N))

sends {α, β} to {β} − {α}, where {β} denotes the basis element of B2(Γ0(N))
corresponding to β ∈ P1(Q). The kernel S2(Γ0(N)) of δ is the subspace of
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cuspidal modular symbols. An element of S2(Γ0(N)) can be thought of as a
linear combination of paths in h∗ whose endpoints are cusps, and whose images
in X0(N) are a linear combination of loops.

Theorem 3.2.2 (Manin). The map ϕ given above induces a canonical isomor-
phism

S2(Γ0(N)) ∼= H1(X0(N), Z).

Example 3.2.3. We illustrate modular symbols in the case when N = 11.
Using SAGE we find that M2(11) has basis {∞, 0}, {−1/8, 0}, {−1/9, 0}:

sage: M = ModularSymbols(11, 2)

sage: print [b.modular_symbol_rep() for b in M.basis()]

[{Infinity,0}, {-1/8,0}, {-1/9,0}]

The integral homology H1(X0(11), Z) corresponds to the abelian subgroup gen-
erated by {−1/7, 0} and {−1/5, 0}.

3.2.1 Manin’s trick

In this section, we describe a trick of Manin that shows that the space of modular
symbols can be computed.

The group Γ0(N) has finite index in SL2(Z) (see Exercise 1.6). Let r0, r1, . . . , rm

be distinct right coset representatives for Γ0(N) in SL2(Z), so that

SL2(Z) = Γ0(N)r0 ∪ Γ0(N)r1 ∪ · · · ∪ Γ0(N)rm,

where the union is disjoint. For example, when N is prime, a list of coset
representatives is

(

1 0
0 1

)

,

(

1 0
1 1

)

,

(

1 0
2 1

)

,

(

1 0
3 1

)

, . . . ,

(

1 0
N − 1 1

)

,

(

0 −1
1 0

)

.

Let

P1(Z/NZ) = {(a : b) : a, b ∈ Z/NZ, gcd(a, b,N) = 1 }/ ∼

where (a : b) ∼ (a′ : b′) if there is u ∈ (Z/NZ)∗ such that a = ua′, b = ub′.

Proposition 3.2.4. There is a bijection between P1(Z/NZ) and the right cosets
of Γ0(N) in SL2(Z), which sends a coset representative

(

a b
c d

)

to the class of
(c : d) in P1(Z/NZ).

Proof. See Exercise 3.1.

We now describe an observation of Manin (see [Man72, §1.5]) that is crucial
to making M2(Γ0(N)) computable. It allows us to write any modular symbol
{α, β} as a Z-linear combination of symbols of the form ri{0,∞}, where the
ri ∈ SL2(Z) are coset representatives as above. In particular, the finitely many
symbols r0{0,∞}, . . . rm{0,∞} generate M2(Γ0(N)).
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Proposition 3.2.5 (Manin). Let N be a positive integer and r0, . . . , rm a set
of right coset representatives for Γ0(N) in SL2(Z). Every {α, β} ∈ M2(Γ0(N))
is a Z-linear combination of r0{0,∞}, . . . rm{0,∞}.

We give two proofs of the proposition. The first is useful for actual compu-
tation (see [Cre97a, §2.1.6]); the second seems less useful for computation but
is easy to understand conceptually (see [MTT86, §2]).

Continued Fractions Proof of Proposition 3.2.5. Because of the relation {α, β} =
{0, β}−{0, α}, it suffices to consider modular symbols of the form {0, b/a}, where
the rational number b/a is in lowest terms. Expand b/a as a continued fraction
and consider the successive convergents in lowest terms:

b−2

a−2

=
0

1
,

b−1

a−1

=
1

0
,

b0

a0

=
b0

1
, . . . ,

bn−1

an−1

,
bn

an
=

b

a

where the first two are added formally. Then

bkak−1 − bk−1ak = (−1)k−1,

so that

gk =

(

bk (−1)k−1bk−1

ak (−1)k−1ak−1

)

∈ SL2(Z).

Hence
{

bk−1

ak−1

,
bk

ak

}

= gk{0,∞} = ri{0,∞},

for some i, is of the required special form. Since

{0, b/a} = {0,∞} + {∞, b0} +

{

b0

1
,
b1

a1

}

+ · · · +

{

bn−1

an−1

,
bn

an

}

,

this completes the proof.

Inductive Proof of Proposition 3.2.5. As in the first proof it suffices to prove
the proposition for any symbol {0, b/a}, where b/a is in lowest terms. We will
induct on a ∈ Z≥0. If a = 0 then the symbol is {0,∞}, which corresponds to
the identity coset, so assume that a > 0. Find a′ ∈ Z such that

ba′ ≡ 1 (mod a),

and set b′ = (ba′ − 1)/a. Then the matrix

δ =

(

b b′

a a′

)

is an element of SL2(Z), so δ = γ · rj for some right coset representative rj and
γ ∈ Γ0(N). Then

{0, b/a} − {0, b′/a′} = {b′/a′, b/a} =

(

b b′

a a′

)

· {0,∞} = rj{0,∞}.

By induction {0, b′/a′} is a linear combination of symbols of the form rk{0,∞},
which completes the proof.
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Example 3.2.6. Let N = 11, and consider the modular symbol {0, 4/7}. We
have

4

7
= 0 +

1

1 + 1

1+ 1

3

,

so the partial convergents are

b−2

a−2

=
0

1
,

b−1

a−1

=
1

0
,

b0

a0

=
0

1
,

b1

a1

=
1

1
,

b2

a2

=
1

2
,

b3

a3

=
4

7
.

Thus, noting as in Example 3.2.1 that {0, 1} = 0, we have

{0, 4/7} = {0,∞} + {∞, 0} + {0, 1} + {1, 1/2} + {1/2, 4/7}

=

(

1 −1
2 −1

)

{0,∞} +

(

4 1
7 2

)

{0,∞}

=

(

1 0
9 1

)

{0,∞} +

(

1 0
9 1

)

{0,∞}

= 2 ·

[(

1 0
9 1

)

{0,∞}

]

3.2.2 Manin symbols

As above, fix coset representatives r0, . . . , rm for Γ0(N) in SL2(Z). Denote the
modular symbol ri{0,∞} by [ri]. The symbols [r0], . . . , [rm] are called Manin
symbols, and they are equipped with a right action of SL2(Z), which is given by
[ri]g = [rj ], where Γ0(N)rj = Γ0(N)rig. Note that Manin symbols are nothing
more than modular symbols of the form ri{0,∞}.

Theorem 1.1.2 implies that SL2(Z) is generated by the two matrices σ =
(

0 −1
1 0

)

and τ =
(

1 −1
1 0

)

. Note that σ = S from that theorem and τ = TS, so
T = τσ ∈ 〈σ, τ〉.

The following theorem provides us with a finite presentation for the space
of modular symbols.

Theorem 3.2.7 (Manin). The Manin symbols [r0], . . . , [rm] satisfy the following
relations:

[ri] + [ri]σ = 0

[ri] + [ri]τ + [ri]τ
2 = 0.

Furthermore these are all relations in the following sense: if we consider the
free abelian group on formal symbols [ri] modulo the above relations and modulo
any torsion, we obtain M2(Γ0(N)).

Proof. To see that the the first relation holds, note that

[ri] + [ri]σ = {ri(0), ri(∞)} + {riσ(0), riσ(∞)}

= {ri(0), ri(∞)} + {ri(∞), ri(0)}

= 0.
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For the second relation we have

[ri] + [ri]τ + [ri]τ
2 = {ri(0), ri(∞)} + {riτ(0), riτ(∞)}{riτ

2(0), riτ
2(∞)}

= {ri(0), ri(∞)} + {ri(∞), ri(1)}{ri(1), ri(0)}

= 0

The proof that these general all relations (modulo torsion) is deeper; see
[Man72, §1.7].

3.2.3 Hecke operators on modular symbols

When p is a prime not dividing N , define

Tp{α, β} =

(

p 0
0 1

)

{α, β} +
∑

r mod p

(

1 r
0 p

)

{α, β}.

As mentioned before, this definition is compatible with the integration pairing
〈 , 〉 of Section 3.1, in the sense that 〈fTp, x〉 = 〈f, Tpx〉. When p | N , the
definition is the same, except that the matrix

(

p 0

0 1

)

is not included in the sum.
(There is a similar definition of Tn for n composite; see Section 8.3.1 for the
general definition.)

For example, when N = 11 we have

T2{0, 1/5} = {0, 2/5} + {0, 1/10} + {1/2, 3/5}

= −2{0, 1/5}.

In [Mer94], L. Merel gives a description of the action of Tp directly on Manin
symbols [ri] (see Section 8.3.2 for details). For example, when p = 2 and N is
odd, we have

T2([ri]) = [ri]

(

1 0
0 2

)

+ [ri]

(

2 0
0 1

)

+ [ri]

(

2 1
0 1

)

+ [ri]

(

1 0
1 2

)

. (3.2.2)

3.3 Computing the space of modular forms

In this section we describe how to use modular symbols to construct a basis of
S2(Γ0(N)) consisting of modular forms that are eigenvectors for every element
of the ring T′ generated by the Hecke operator Tp, with p ∤ N . Such eigenvectors
are called eigenforms.

Suppose M is a positive integer that divides N . As explained in [Lan95,
VIII.1–2], for each divisor d of N/M there is a natural degeneracy map βM,d :
S2(M) → S2(Γ0(N)) given by βM,d(f(q)) = f(qd). The new subspace of
S2(Γ0(N)), denoted S2(Γ0(N))new, is the complementary T-submodule of the
T-module generated by the images of all maps βM,d, with M and d as above.
(It is a nontrivial fact that this complement is well defined; one possible proof
uses the Petersson inner product.)
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The theory of Atkin and Lehner [AL70] (see Section 6.1.1) asserts that, as
a T′-module, S2(Γ0(N)) decomposes as follows:

S2(Γ0(N)) =
⊕

M |N, d|N/M

βM,d(S2(M)new).

To compute S2(Γ0(N)) it thus suffices to compute S2(M)new for each positive
divisor M of N .

We now turn to the problem of computing S2(Γ0(N))new. Atkin and Lehner
[AL70] also proved that S2(Γ0(N))new is spanned by eigenforms, each of which
occurs with multiplicity one in S2(Γ0(N))new. Moreover, if f ∈ S2(Γ0(N))new

is an eigenform then the coefficient of q in the q-expansion of f is nonzero, so
it is possible to normalize f so that coefficient of q is 1. With f so normalized,
if Tp(f) = apf , then the pth Fourier coefficient of f is ap. If f =

∑∞
n=1

anqn is
a normalized eigenvector for all Tp, then the an, with n composite, are deter-
mined by the ap, with p prime, by the following formulas: anm = anam when
n and m are relatively prime, and apr = apr−1ap − papr−2 for p ∤ N prime.
When p | N , apr = ar

p. We conclude that in order to compute S2(Γ0(N))new,
it suffices to compute all systems of eigenvalues {a2, a3, a5, . . .} of the Hecke
operators T2, T3, T5, . . . acting on S2(Γ0(N))new. Given a system of eigenvalues,
the corresponding eigenform is f =

∑∞
n=1

anqn, where the an, for n composite,
are determined by the recurrence given above.

In light of the pairing 〈 , 〉 introduced in Section 3.1, computing the above
systems of eigenvalues {a2, a3, a5, . . .} amounts to computing the systems of
eigenvalues of the Hecke operators Tp on the subspace V of S2(Γ0(N)) that
corresponds to the new subspace of S2(Γ0(N)). For each proper divisor M of N
and each divisor d of N/M , let φM,d : S2(Γ0(N)) → S2(Γ0(M)) be the map
sending x to ( d 0

0 1
) x. Then V is the intersection of the kernels of all maps φM,d.

The computation of the systems of eigenvalues of a collection of commuting
diagonalizable endomorphisms involves standard linear algebra techniques, such
as computation of characteristic polynomials and kernels of matrices. There
are, however, several tricks that greatly speed up this process, some of which
are described in Chapter 7.

Example 3.3.1. All forms in S2(Γ0(39)) are new. Up to Galois conjugacy,
the eigenvalues of the Hecke operators T2, T3, T5, and T7 on S2(Γ0(39)) are
{1,−1, 2,−4} and {a, 1,−2a − 2, 2a + 2}, where a2 + 2a − 1 = 0. Each of
these eigenvalues occur in S2(Γ0(39)) with multiplicity two; for example, the
characteristic polynomial of T2 on S2(Γ0(39)) is (x − 1)2 · (x2 + 2x − 1)2. Thus
S2(Γ0(39)) is spanned by

f1 = q + q2 − q3 − q4 + 2q5 − q6 − 4q7 + · · · ,

f2 = q + aq2 + q3 + (−2a − 1)q4 + (−2a − 2)q5 + aq6 + (2a + 2)q7 + · · · ,

and the Galois conjugate of f2.
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3.3.1 Summary

To compute the q-expansion, to some precision, of each eigenforms in S2(Γ0(N)),
we use the degeneracy maps so that we only have to solve the problem for
S2(Γ0(N))new. Here, using modular symbols, we compute all systems of eigen-
values {a2, a3, a5, . . .}, then write down each of the corresponding eigenforms
f = q + a2q

2 + q3q
3 + · · · .

3.4 Exercises

3.1 Let p be a prime.

(a) List representative elements of P1(Z/3Z).

(b) What is the cardinality of P1(Z/pZ) as a function of p?

(c) Prove that there is a bijection between the right cosets of Γ0(p) in
SL2(Z) and the elements of P1(Z/pZ). (As mentioned in this chapter
this is also true for composite level; see [Cre97a, §2.2] for complete
details.)

3.2 Use the inductive proof of Proposition 3.2.5 to write {0, 4/7} in terms of
Manin symbols.

3.3 Show that the Hecke operator T2 acts as multiplication by 3 on the space
M2(Γ0(3)) as follows:

(a) Write down right coset representatives for Γ0(3) in SL2(Z).

(b) List all 8 relations coming from 3.2.7.

(c) Find a single Manin symbols [ri] so that the three other Manin sym-
bols are a nonzero multiple of [ri] modulo the relations found in the
previous step.

(d) Use formula (3.2.2) to compute the image of your symbol [ri] un-
der T2. You will obtain a sum of four symbols. Using the relations
above, write this sum as a multiple of [ri]. (The multiple must be 3
or you made a mistake.)


