Computing With Modular Forms

William Stein

October 24, 2005

Contents

Preface 7
1 Modular Forms 9
1.1 Basic Definitions 9
1.2 Modular Forms of Level 1 10
1.3 Modular Forms of Any Level 12
1.4 Eisenstein Series and Delta 13
1.5 Structure Theorem 16
1.6 Hecke Operators 18
1.7 The Victor Miller Basis 22
1.8 The Complexity of Computing Fourier Coefficients 24
1.9 Exercises 25
2 Dirichlet Characters 27
2.1 Decomposing Modular Forms Using Dirichlet Characters 28
2.2 Representation and Arithmetic 29
2.3 Algorithms 34
2.4 Alternative Representations of Characters 38
2.5 Exercises 39
3 Eisenstein Series 41
3.1 Generalized Bernoulli Numbers 41
3.2 Explicit Basis for the Eisenstein Subspace 43
3.3 Exercises 45
4 Dimensions Formulas 47
4.1 Modular Forms for $\Gamma_{0}(N)$ 48
4.1.1 New and Old Subspaces 49
4.2 Modular Forms for $\Gamma_{1}(N)$ 52
4.3 Modular Forms with Character 53
4.4 Exercises 56
5 Linear Algebra 57
5.1 Echelon Forms of Matrices 57
5.2 Echelon Forms over \mathbb{Q} 60
5.3 Polynomials 65
5.4 Decomposing Spaces 65
5.4.1 Wiedemann's Minimal Polynomial Algorithm 66
5.4.2 Polynomial Factorization 70
5.4.3 Decomposition Using Kernels 70
5.4.4 Multi-Modular Decomposition Algorithm 70
6 Modular Symbols 73
6.1 Modular Symbols 74
6.2 Manin Symbols 75
6.2.1 Coset Representatives and Manin Symbols 79
6.2.2 Modular Symbols With Character 80
6.3 Hecke Operators 80
6.3.1 General Definition of Hecke Operators 81
6.3.2 Hecke Operators on Manin Symbols 83
6.3.3 Remarks on Complexity 84
6.4 Cuspidal Modular Symbols 85
6.5 The Pairing Between Modular Symbols and Modular Forms 86
6.6 Explicitly Computing $\mathbb{M}_{k}\left(\Gamma_{0}(N)\right.$ 90
6.6.1 Computing $\mathbb{P}^{1}(\mathbb{Z} / N \mathbb{Z})$ 91
6.6.2 Examples of Computation of $\mathbb{M}_{k}\left(\Gamma_{0}(N)\right)$ 94
6.6.3 Refined Algorithm For Computing Presentation 102
6.7 Applications 105
6.7.1 Later in this Book 105
6.7.2 Discussion of the Literature and Research 105
6.8 Exercises 106
7 Computing Spaces of Modular Forms 109
7.1 Atkin-Lehner-Li Theory 109
7.2 Computing Cuspforms Using Modular Symbols 111
7.3 Computing Systems of Eigenvalues 112
7.3.1 Computing Projection Onto a Subspace 113
7.3.2 Systems of Eigenvalues 113
8 Periods and Special Values of L-functions 117
8.1 The Period Mapping and Complex Torus Attached to a Newform 117
8.2 Extended Modular Symbols 119
8.3 Numerically Approximating Period Integrals 119
8.4 Speeding Convergence Using the Atkin-Lehner Operator 123
8.4.1 Another Atkin-Lehner Trick 124
8.5 Computing the Period Mapping 125
8.6 Computing Elliptic Curves of Given Conductor 126
8.6.1 Using Modular Symbols 126
8.6.2 Finding Curves by Finding S-Integral Points 128
8.7 Examples 129
8.7.1 Jacobians of genus-two curves 129
8.7.2 Level one cusp forms 130
8.7.3 CM elliptic curves of weight greater than two 131
8.8 Exercises 131
9 Congruences 133
9.1 Congruences Between Modular Forms 133
9.1.1 The j-invariant 133
9.1.2 Congruences for Modular Forms 134
9.1.3 Congruence for Newforms 137
9.2 Generating the Hecke Algebra as a \mathbb{Z}-module 138

Preface

This is a book about algorithms for computing with modular forms that started as a series of notes for a graduate course at Harvard University in 2004. This book is meant to answer the question "How do you compute spaces of modular forms", by both providing a clear description of the specific algorithms that are used and explaining how to apply them using SAGE [SJ05].

I have spent many years trying to find good practical ways to compute with classical modular forms for congruence subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$, and have implemented most of these algorithms several times, first in C ++ [Ste99], then in MAGMA [BCP97], and most recently as part of SAGE. Much of this work has involved turning formulas and constructions burried in obscure research papers into precise computational recipes, then testing these in many cases and eliminating subtle inaccuracies (published theorems sometimes contain small mistakes that appear magnified when implemented and run on a computer). The goal of this book is to explain some of what I have learned along the way.

The author is aware of no other books on computing with modular forms, the closest work being Cremona's book [Cre97a], which is about computing with elliptic curves, and Cohen's book [Coh93] about algebraic number theory. The field is not yet mature, and there are missing details and potential improvements to many of the algorithms, which you the reader might fill in, and which would be greatly appreciated by other mathematicians.

This book focuses on how best to compute the spaces $M_{k}(N, \varepsilon)$ of modular forms, where $k \geq 2$ is an integer and ε is a Dirichlet character modulo N. I will spend the most effort explaining the algorithms that appear so far to be the best (in practice!) for such computations. I will not discuss computing halfintegral weight forms, weight one forms, forms for non-congruence subgroups or groups other than GL_{2}, Hilbert and Siegel modular forms, trace formulas, p-adic modular forms, and modular abelian varieties, all of which are topics for another book.

The reader is not assumed to have prior exposure to modular forms, but should be familiar with abstract algebra, basic algebraic number theory, Riemann surfaces, and complex analysis.

Acknowledgement. Kevin Buzzard made many helpful remarks which were helpful in finding the algorithms in Chapter 2. Noam Elkies made many remarks about chapters 1 and 2. The students in the Harvard course made help-
ful remark; in particular, Abhinav Kumar made observations about computing widths of cusps, Thomas James Barnet-Lamb about how to represent Dirichlet characters, and Tseno V. Tselkov, Jennifer Balakrishnan and Jesse Kass made other remarks.

Parts of Chapter 7 follow [Ser73, Ch. VII] closely, though we adjust the notation, definitions, and order of presentation to be consistent with the rest of this book. (For example, Serre writes $2 k$ for the weight instead of k.)

Grant Information. This material is based upon work supported by the National Science Foundation under Grant No. 0400386.

Chapter 1

Modular Forms

1.1 Basic Definitions

Modular forms are certain types of functions on the complex upper half plane

$$
\mathfrak{h}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}
$$

The group

$$
\mathrm{SL}_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a d-b c=1, \text { and } a, b, c, d \in \mathbb{R}\right\}
$$

acts on \mathfrak{h} via linear fractional transformations, as follows. If $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$ and $z \in \mathfrak{h}$, then (see Exercise 7.1)

$$
\begin{equation*}
\gamma(z)=\frac{a z+b}{c z+d} \in \mathfrak{h} . \tag{1.1.1}
\end{equation*}
$$

Definition 1.1.1 (Modular Group). The modular group is the subgroup $\mathrm{SL}_{2}(\mathbb{Z})$ of $\mathrm{SL}_{2}(\mathbb{R})$ of matrices with integer entries. Thus is is the group of all matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in \mathbb{Z}$ and $a d-b c=1$.

For example, the matrices

$$
S=\left(\begin{array}{rr}
0 & -1 \tag{1.1.2}\\
1 & 0
\end{array}\right) \quad \text { and } \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

are both elements of $\mathrm{SL}_{2}(\mathbb{Z})$; the matrix S defines the function $z \mapsto-1 / z$, and T the function $z \mapsto z+1$.

Theorem 1.1.2. The group $\mathrm{SL}_{2}(\mathbb{Z})$ is generated by S and T.
Proof. See e.g. [Ser73, §VII.1], which uses the fundamental domain \mathcal{F} consisting of all elements of \mathfrak{h} that satisfy $|z| \geq 1$ and $\operatorname{Re}(z) \leq 1 / 2$.

In SAGE we compute the group $\mathrm{SL}_{2}(\mathbb{Z})$ and its generators as follows:

```
sage: G = SL(2,Z)
sage: print G
The modular group SL(2,Z)
sage: S, T = G.gens()
sage: S
[ 0 -1]
[ 1 0]
sage: T
[1 1]
[0 1]
```

Definition 1.1.3 (Holomorphic and Meromorphic). A function $f: \mathfrak{h} \rightarrow \mathbb{C}$ is holomorphic if f is complex differentiable at every point $z \in \mathfrak{h}$, i.e., for each $z \in \mathfrak{h}$ the $\operatorname{limit} \lim _{h \rightarrow 0}(f(z+h)-f(z)) / h$ exists, where h may approach 0 along any path. The function f is meromorphic if it is holomorphic except (possibly) at a discrete set of points in \mathfrak{h}.

The function $f(z)=e^{z}$ is a holomorphic function on \mathfrak{h} (in fact on all of \mathbb{C}). The function $1 /(z-i)$ is meromorphic on \mathfrak{h}, and fails to be analytic at i.

Modular forms are holomorphic functions on \mathfrak{h} that transform in a particular way under a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$. Before definining general modular forms, we define modular forms of level 1 .

1.2 Modular Forms of Level 1

Definition 1.2.1 (Weakly Modular Function). A weakly modular function of weight $k \in \mathbb{Z}$ is a meromorphic function f on \mathfrak{h} such that for all $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in$ $\mathrm{SL}_{2}(\mathbb{Z})$ and all $z \in \mathfrak{h}$ we have

$$
\begin{equation*}
f(z)=(c z+d)^{-k} f(\gamma(z)) . \tag{1.2.1}
\end{equation*}
$$

The constant functions are weakly modular of weight 0 . There are no nonzero weakly modular functions of odd weight (see Exercise 7.4), and it is by no means obvious that there are any weakly modular functions of even weight $k \geq 2$. The product of two weakly modular functions of weights k_{1} and k_{2} is a weakly modular function of weight $k_{1}+k_{2}$ (see Exercise 7.3), so once we find some nonconstant weakly modular functions, we'll find many of them.

When k is even (1.2.1) has a possibly more conceptual interpretation; namely (1.2.1) is the same as

$$
f(\gamma(z)) d(\gamma(z))^{k / 2}=f(z) d z^{k / 2}
$$

Thus (1.2.1) simply says that the weight k "differential form" $f(z) d z^{k / 2}$ is fixed under the action of every element of $\mathrm{SL}_{2}(\mathbb{Z})$.

Since $\mathrm{SL}_{2}(\mathbb{Z})$ is generated by the matrices S and T of (1.1.2), to show that a meromorphic function f on \mathfrak{h} is a weakly modular function all we have to do is show that for all $z \in \mathfrak{h}$ we have

$$
\begin{equation*}
f(z+1)=f(z) \quad \text { and } \quad f(-1 / z)=z^{k} f(z) \tag{1.2.2}
\end{equation*}
$$

Suppose that f is a weakly modular function of some weight k. Then f might have a Fourier expansion, which we try to obtain as follows. Let $q=$ $q(z)=e^{2 \pi i z}$, which we view as a holomorphic function $\mathbb{C} \cup \infty \rightarrow D$, where D is the closed unit disk. Let D^{\prime} be the punctured unit disk, i.e., D with the origin removed, and note that $q: \mathbb{C} \rightarrow D^{\prime}$. By (1.2.2) we have $f(z+1)=f(z)$, so there is a set-theoretic map $F: D^{\prime} \rightarrow \mathbb{C}$ such that for every $z \in \mathfrak{h}$ we have $F(q(z))=f(z)$. This function F is thus a complex-valued function on the open unit disk. It may or may not be well behaved at 0 .

Suppose that F is well-behaved at 0 , namely that for some $m \in \mathbb{Z}$ and all q in a neighborhood of 0 we have the equality

$$
F(q)=\sum_{n=m}^{\infty} a_{n} q^{n}
$$

If this is the case, we say that f is meromorphic at ∞. If, moreover, $m \geq 0$, then we say that f is holomorphic at ∞.

Definition 1.2.2 (Modular Function). A modular function of weight k is a weakly modular function of weight k that is meromorphic at ∞.

Definition 1.2.3 (Modular Form). A modular form of weight k (and level 1) is a modular function of weight k that is holomorphic on \mathfrak{h} and at ∞.

If f is a modular form, then there are complex numbers a_{n} such that for all $z \in \mathfrak{h}$,

$$
f(z)=\sum_{n=0}^{\infty} a_{n} q^{n}=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n z}
$$

Proposition 1.2.4. The above series converges for all $z \in \mathfrak{h}$.
Proof. n The function $f(q)$ is holomorphic on D, so its Taylor series converges absolutely in D. See also [Ser73, §VII.4] for an explicit bound on the $\left|a_{n}\right|$.

We set $f(\infty)=a_{0}$, since $q^{2 \pi i z} \rightarrow 0$ as $z \rightarrow i \infty$, and the value of f at ∞ should be the value of F at 0 , which is a_{0} from the power series.

Definition 1.2.5 (Cusp Form). A cusp form of weight k (and level 1) is a modular form of weight k such that $f(\infty)=0$, i.e., $a_{0}=0$.

1.3 Modular Forms of Any Level

We next define spaces of modular forms of level possibly bigger than 1 . When $k=2$ these are closely related to elliptic curves and abelian varieties.

For each positive integer N, define a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ as follows:

$$
\Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \quad(\bmod N)\right\}
$$

This is a "congruence subgroup", since it is given by congruence conditions. We are now in a position to define $M_{k}\left(\Gamma_{1}(N)\right)$.

Definition 1.3.1 (Modular Forms). Let $M_{k}\left(\Gamma_{1}(N)\right)$ be the complex vector space of holomorphic functions $f: \mathfrak{h}^{*} \rightarrow \mathbb{C}$ such that $f \mid[\gamma]_{k}=f$ for all $\gamma \in$ $\Gamma_{1}(N)$.

What it means for f to be holomorphic at the elements of $\mathbb{Q} \cup\{i \infty\}$ is subtle. We say f is holomorphic at $i \infty$ if its q-expansion $\sum a_{n} q^{n}$ has no nonzero coefficient a_{n} for $n<0$. To make sense of holomorphicity of f at $\alpha \in \mathbb{Q}$, let $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ be such that $\gamma(\infty)=\alpha$. We say f is holomorphic at α if $f \mid[\gamma]_{k}$ is holomorphic at infinity. Note that formally

$$
f \mid[\gamma]_{k}(\infty)=(c z+d)^{-k} f(\alpha)
$$

where (c, d) is the bottom row of γ and the factor $(c z+d)^{-k}$ does not affect holomorphicity at α.

Another subtlety hidden in this definition is that $f \mid[\gamma]_{k}$ is a modular form for the conjugate group $G=\gamma^{-1} \Gamma_{1}(N) \gamma$, which need not equal $\Gamma_{1}(N)$. In particular, the matrix ($\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right)$ need not be in G, so $f \mid[\gamma]_{k}$ need not even have a power series expansion $\sum_{n \in \mathbb{Z}} b_{n} q^{n}$ at infinity! Fortunately (see Exercise 3.1) there is some positive integer h such that $\left(\begin{array}{cc}1 & h \\ 0 & 1\end{array}\right) \in G$, so $f \mid[\gamma]_{k}$ has a power series expansion $\sum_{n \in \mathbb{Z}} b_{n / h} q^{n / h}$ in powers of $q^{1 / h}$, and we again say $f \mid[\gamma]_{k}$ is holomorphic at infinity if $b_{n / h}=0$ for all $n<0$. (The reason we obtain a power series in $q^{1 / h}$ is that $f \mid[\gamma]_{k}(h z)$ is invariant under $z \mapsto z+1$, so $f \mid[\gamma]_{k}(h z)$ has an expansion in powers of q.)

A congruence subgroup is a subgroup Γ of $\mathrm{SL}_{2}(\mathbb{Z})$ that contains the kernel $\Gamma(N)=\operatorname{ker}\left(\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})\right)$ for some N. The smallest such N is the level of Γ.

Definition 1.3.2 (Width of Cusp). The minimal h such that $\left(\begin{array}{cc}1 & h \\ 0 & 1\end{array}\right) \in \gamma^{-1} \Gamma \gamma$ is called the width of the cusp $\gamma(\infty)$ for the group Γ.
Algorithm 1.3.3 (Width of Cusp).
Given a congruence subgroup Γ of level N and a cusp α for Γ, this algorithm computes the width h of α. We assume that Γ is given by congruence conditions, e.g., $\Gamma=\Gamma_{0}(N)$ or $\Gamma_{1}(N)$.

1. [Find γ] Using the extended Euclidean algorithm, find $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\gamma(\infty)=\alpha$. If $\alpha=\infty$ set $\gamma \leftarrow 1$; otherwise, write $\alpha=a / b$, find c, d such that $a d-b c=1$, and set $\gamma \leftarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
2. [Generic Conjugate Matrix] Compute the following matrix in $M_{2}(\mathbb{Z}[x])$:

$$
\delta(x) \leftarrow \gamma\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \gamma^{-1}
$$

Note that $\delta(x)$ matrix whose entries are constant or linear in x.
3. [Solve] The congruence conditions that define Γ give rise to four linear congruence conditions on x. Use techniques from elementary number theory to find the smallest simultaneous positive solution h to these four equations.

Example 1.3.4.

1. Suppose $\alpha=0$ and $\Gamma=\Gamma_{0}(N)$ or $\Gamma_{1}(N)$. Then $\gamma=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ has the property that $\gamma(\infty)=\alpha$. Next, the congruence condition is

$$
\delta(x)=\gamma\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \gamma^{-1}=\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \quad(\bmod N)
$$

Thus the smallest positive solution is $h=N$, so the width of 0 is N.
2. Suppose $N=p q$ where p, q are distinct primes, and let $\alpha=1 / p$. Then $\gamma=\left(\begin{array}{ll}1 & 0 \\ p & 1\end{array}\right)$ sends ∞ to α. The congruence condition for $\Gamma_{0}(p q)$ is

$$
\delta(x)=\gamma\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \gamma^{-1}=\left(\begin{array}{cc}
1-p x & x \\
-p^{2} x & p x+1
\end{array}\right) \equiv\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right) \quad(\bmod p q)
$$

Since $p^{2} x \equiv 0(\bmod p q)$, we see that $x=q$ is the smallest solution. Thus $1 / p$ has width q, and likewise $1 / q$ has width p.

Remark 1.3.5. For $\Gamma_{0}(N)$, once we enforce that the bottom left entry is 0 $(\bmod N)$, and use that the determinant is 1, the coprimeness that one gets from the other two congruences is automatic. So there is one congruence to solve for $\Gamma_{0}(N)$. There are 2 congruences in the $\Gamma_{1}(N)$ case (the bottom left entry and top left entry).

1.4 Eisenstein Series and Delta

For an even integer $k \geq 4$, define the (non-normalized) weight k Eisenstein series to be

$$
G_{k}(z)=\sum_{m, n \in \mathbb{Z}}^{*} \frac{1}{(m z+n)^{k}}
$$

where the sum is over all $m, n \in \mathbb{Z}$ such that $m z+n \neq 0$.
Proposition 1.4.1. The function $G_{k}(z)$ is a modular form of weight k.

See [Ser73, § VII.2.3], where he proves that $G_{k}(z)$ defines a holomorphic function on $\mathfrak{h} \cup\{\infty\}$. To see that G_{k} is modular, note that

$$
G_{k}(z+1)=\sum^{*} \frac{1}{(m(z+1)+n)^{k}}=\sum^{*} \frac{1}{(m z+(n+m))^{k}}=\sum^{*} \frac{1}{(m z+n)^{k}}
$$

and
$G_{k}(-1 / z)=\sum^{*} \frac{1}{(-m / z+n)^{k}}=\sum^{*} \frac{z^{k}}{(-m+n z)^{k}}=z^{k} \sum^{*} \frac{1}{(m z+n)^{k}}=z^{k} G_{k}(z)$.
Proposition 1.4.2. $G_{k}(\infty)=2 \zeta(k)$, where ζ is the Riemann zeta function.
Proof. Taking the limit as $z \rightarrow i \infty$ in the definition of $G_{k}(z)$, we obtain $\sum_{n \in \mathbb{Z}}^{*} \frac{1}{n^{k}}$, since the terms involving z all go to 0 as $z \mapsto i \infty$. This sum is twice $\zeta(k)=\sum_{n \geq 1} \frac{1}{n^{k}}$.

For example, one can show that

$$
G_{4}(\infty)=2 \zeta(4)=\frac{1}{3^{2} \cdot 5} \pi^{4}
$$

and

$$
G_{6}(\infty)=2 \zeta(6)=\frac{2}{3^{3} \cdot 5 \cdot 7} \pi^{6}
$$

Suppose $E=\mathbb{C} / \Lambda$ is an elliptic curve over \mathbb{C}, viewed as a quotient of \mathbb{C} by a lattice $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$, with $\omega_{1} / \omega_{2} \in \mathfrak{h}$. Then

$$
\wp_{\Lambda}(u)=\frac{1}{u^{2}}+\sum_{k=4, \text { even }}^{\infty}(k-1) G_{k}\left(\omega_{1} / \omega_{2}\right) u^{k-2}
$$

and

$$
\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-60 G_{4}\left(\omega_{1} / \omega_{2}\right) \wp-140 G_{6}\left(\omega_{1} / \omega_{2}\right) .
$$

The discriminant of the cubic $4 x^{3}-60 G_{4}\left(\omega_{1} / \omega_{2}\right) x-140 G_{6}\left(\omega_{1} / \omega_{2}\right)$ is $16 \Delta\left(\omega_{1} / \omega_{2}\right)$, where

$$
\Delta=\left(60 G_{4}\right)^{3}-27\left(140 G_{6}\right)^{2}
$$

is a cusp form of weight 12 . Since E is an elliptic curve, $\Delta\left(\omega_{1} / \omega_{2}\right) \neq 0$.
Proposition 1.4.3. For every even integer $k \geq 4$, we have

$$
G_{k}(z)=2 \zeta(k)+2 \cdot \frac{(2 \pi i)^{k}}{(k-1)!} \cdot \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where $\sigma_{d}(n)$ is the sum of the dth powers of the divisors of n.

For the proof, see [Ser73, §VII.4], which uses clever manipulations of various series, starting with the identity

$$
\pi \cot (\pi z)=\frac{1}{z}+\sum_{m=1}^{\infty}\left(\frac{1}{z+m}+\frac{1}{z-m}\right)
$$

From a computational point of view, the q-expansion for G_{k} from Proposition 1.4.3 is unsatisfactory, because it involves transcendental numbers. To understand more clearly what is going on, we introduce the Bernoulli numbers B_{n} for $n \geq 0$ defined by the following equality of formal power series:

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!} \tag{1.4.1}
\end{equation*}
$$

Expanding the power series on the left we have

$$
\frac{x}{e^{x}-1}=1-\frac{x}{2}+\frac{x^{2}}{12}-\frac{x^{4}}{720}+\frac{x^{6}}{30240}-\frac{x^{8}}{1209600}+\cdots
$$

As this expansion suggests, the Bernoulli numbers B_{n} with $n>1$ odd are 0 (see Exercise 7.6). Expanding the series further, we obtain the following table:
$B_{0}=1, \quad B_{1}=-\frac{1}{2}, \quad B_{2}=\frac{1}{6}, \quad B_{4}=-\frac{1}{30}, \quad B_{6}=\frac{1}{42}, \quad B_{8}=-\frac{1}{30}$,
$B_{10}=\frac{5}{66}, \quad B_{12}=-\frac{691}{2730}, \quad B_{14}=\frac{7}{6}, \quad B_{16}=-\frac{3617}{510}, \quad B_{18}=\frac{43867}{798}$,
$B_{20}=-\frac{174611}{330}, \quad B_{22}=\frac{854513}{138}, \quad B_{24}=-\frac{236364091}{2730}, \quad B_{26}=\frac{8553103}{6}$.
For us the significance of the Bernoulli numbers is their connection with values of ζ at positive even integers.

Proposition 1.4.4. If $k \geq 2$ is an even integer, then

$$
\zeta(k)=-\frac{(2 \pi i)^{k}}{2 \cdot k!} \cdot B_{k}
$$

The proof involves manipulating a power series expansion for $z \cot (z)$ (see [Ser73, §VII.4]).

Definition 1.4.5 (Normalized Eisenstein Series). The normalized Eisenstein series of even weight $k \geq 4$ is

$$
E_{k}=\frac{(k-1)!}{2 \cdot(2 \pi i)^{k}} \cdot G_{k}
$$

Combining Propositions 1.4.3 and 1.4.4 we see that

$$
\begin{equation*}
E_{k}=-\frac{B_{k}}{2 k}+q+\sum_{n=2}^{\infty} \sigma_{k-1}(n) q^{n} \tag{1.4.2}
\end{equation*}
$$

Remark 1.4.6. Warning: Our series E_{k} is normalized so that the coefficient of q is 1 , but most books normalize E_{k} so that the constant coefficient is 1 . We use the normalization with the coefficient of q equal to 1 , because then the eigenvalue of the nth Hecke operator (see Section 1.6) is the coefficient of q^{n}. Our normalization will also be convenient when we consider congruences between cusp forms and Eisenstein series.

1.5 Structure Theorem

If f is a nonzero meromorphic function on \mathfrak{h} and $w \in \mathfrak{h}$, let $\operatorname{ord}_{w}(f)$ be the largest integer n such that $f /(w-z)^{n}$ is holomorphic at w. If $f=\sum_{n=m}^{\infty} a_{n} q^{n}$ with $a_{m} \neq 0$, let $\operatorname{ord}_{\infty}(f)=m$. We will use the following theorem to give a presentation for the vector space of modular forms of weight k; this presentation will allow us to obtain an algorithm to compute a basis for this space.

Theorem 1.5.1 (Valence Formula). Suppose f is a modular form. Then

$$
\operatorname{ord}_{\infty}(f)+\frac{1}{2} \operatorname{ord}_{i}(f)+\frac{1}{3} \operatorname{ord}_{\rho}(f)+\sum_{w \in D}^{*} \operatorname{ord}_{w}(f)=\frac{k}{12}
$$

where $\sum_{w \in D}^{*}$ is the sum over elements of \mathcal{F} other than i or ρ.
Proof. Serre proves this theorem in [Ser73, §VII.3] using the residue theorem from complex analysis.

Let M_{k} denote the complex vector space of modular forms of weight k, and let S_{k} denote the subspace of cusp forms. We have an exact sequence

$$
0 \rightarrow S_{k} \rightarrow M_{k} \rightarrow \mathbb{C}
$$

that sends $f \in M_{k}$ to $f(\infty)$. When $k \geq 4$ is even, the space M_{k} contains G_{k} and $G_{k}(\infty)=2 \zeta(k) \neq 0$, so the $\operatorname{map} M_{k} \rightarrow \mathbb{C}$ is surjective, and $\operatorname{dim}\left(S_{k}\right)=$ $\operatorname{dim}\left(M_{k}\right)-1$, so

$$
M_{k}=S_{k} \oplus \mathbb{C} G_{k}
$$

Proposition 1.5.2. For $k<0$ and $k=2$, we have $M_{k}=0$.
Proof. Suppose $f \in M_{k}$ is nonzero yet $k=2$ or $k<0$. By Theorem 1.5.1,

$$
\operatorname{ord}_{\infty}(f)+\frac{1}{2} \operatorname{ord}_{i}(f)+\frac{1}{3} \operatorname{ord}_{\rho}(f)+\sum_{w \in D}^{*} \operatorname{ord}_{w}(f)=\frac{k}{12} \leq 1 / 6
$$

This is impossible because each quantity on the left-hand side is nonnegative so whatever the sum is, it is too big (or 0 , in which $k=0$).

Theorem 1.5.3. Multiplication by Δ defines an isomorphism $M_{k-12} \rightarrow S_{k}$.

Proof. (We follow [Ser73, §VII.3.2] closely.) We apply Theorem 1.5.1 to G_{4} and G_{6}. If $f=G_{4}$, then

$$
\operatorname{ord}_{\infty}(f)+\frac{1}{2} \operatorname{ord}_{i}(f)+\frac{1}{3} \operatorname{ord}_{\rho}(f)+\sum_{w \in D}^{*} \operatorname{ord}_{w}(f)=\frac{4}{12}=\frac{1}{3}
$$

with the ords all nonnegative, so $\operatorname{ord}_{\rho}\left(G_{4}\right)=1$ and $\operatorname{ord}_{w}\left(G_{4}\right)=0$ for all $w \neq \rho$. Likewise $\operatorname{ord}_{i}\left(G_{6}\right)=1$ and $\operatorname{ord}_{w}\left(G_{6}\right)=0$ for all $w \neq i$. Thus $\Delta(i) \neq 0$, so Δ is not identically 0 (we also saw this above using the Weierstrass \wp function). Since Δ has weight 12 and $\operatorname{ord}_{\infty}(\Delta) \geq 1$, Theorem 1.5.1 implies that Δ has a simple zero at ∞ and does not vanish on \mathfrak{h}. Thus if $f \in S_{k}$ and we let $g=f / \Delta$, then g is holomorphic and satisfies the appropriate transformation formula, so g is a modular form of weight $k-12$.

Corollary 1.5.4. For $k=0,4,6,8,10,14$, the vector space M_{k} has dimension 1 , with basis $1, G_{4}, G_{6}, E_{8}, E_{10}$, and E_{14}, respectively, and $S_{k}=0$.

Proof. Combining Proposition 1.5.2 with Theorem 1.5.3 we see that the spaces M_{k} for $k \leq 10$ can not have dimension bigger than 1 , since then $M_{k^{\prime}} \neq 0$ for some $k^{\prime}<0$. Also M_{14} has dimension at most 1 , since M_{2} has dimension 0 . Each of the indicated spaces of weight ≥ 4 contains the indicated Eisenstein series, so has dimension 1 , as claimed.

Corollary 1.5.5. $\operatorname{dim} M_{k}= \begin{cases}0 & \text { if } k \text { is odd, } \\ \lfloor k / 12\rfloor & \text { if } k \equiv 2(\bmod 12), \text { where }\lfloor x\rfloor \text { is } \\ \lfloor k / 12\rfloor+1 & \text { if } k \not \equiv 2(\bmod 12),\end{cases}$ the biggest integer $\leq x$.

Proof. As we have seen above, the formula is true when $k \leq 12$. By Theorem 1.5.3, the dimension increases by 1 when k is replaced by $k+12$.

Theorem 1.5.6. The space M_{k} has as basis the modular forms $G_{4}^{a} G_{6}^{b}$, where a, b are all pairs of nonnegative integers such that $4 a+6 b=k$.

Proof. We first prove by induction that the modular forms $G_{4}^{a} G_{6}^{b}$ generate M_{k}, the cases $k \leq 12$ being clear (e.g., when $k=0$ we have $a=b=0$ and basis 1). Choose some pair of integers a, b such that $4 a+6 b=k$ (it is an elementary exercise to show these exist). The form $g=G_{4}^{a} G_{6}^{b}$ is not a cusp form, since it is nonzero at ∞. Now suppose $f \in M_{k}$ is arbitrary. Since $M_{k}=S_{k} \oplus \mathbb{C} G_{k}$, there is $\alpha \in \mathbb{C}$ such that $f-\alpha g \in S_{k}$. Then by Theorem 1.5.3, there is $h \in M_{k-12}$ such that $f-\alpha g=\Delta h$. By induction, h is a polynomial in G_{4} and G_{6} of the required type, and so is Δ, so f is as well.

Suppose there is a nontrivial linear relation between the $G_{4}^{a} G_{6}^{b}$ for a given k. By multiplying the linear relation by a suitable power of G_{4} and G_{6}, we may assume that that we have such a nontrivial relation with $k \equiv 0(\bmod 12)$. Now divide the linear relation by $G_{6}^{k / 12}$ to see that G_{4}^{3} / G_{6}^{2} satisfies a polynomial with coefficients in \mathbb{C}. Hence G_{4}^{3} / G_{6}^{2} is a root of a polynomial, hence a constant, which is a contradiction since the q-expansion of G_{4}^{3} / G_{6}^{2} is not constant.

Algorithm 1.5.7 (Basis).
Given integers n and k, this algorithm computes a basis of q-expansions for the complex vector space $M_{k} \bmod q^{n}$. The q-expansions output by this algorithm have coefficients in \mathbb{Q}.

1. [Simple Case] If $k=0$ output the basis with just 1 in it, and terminate; otherwise if $k<4$ or k is odd, output the empty basis and terminate.
2. [Power Series] Compute E_{4} and $E_{6} \bmod q^{n}$ using the formula from (1.4.2) and the definition (1.4.1) of Bernoulli numbers.
3. [Initialize] Set $b \leftarrow 0$.
4. [Enumerate Basis] For each integer b between 0 and $\lfloor k / 6\rfloor$, compute $a=$ $(k-6 b) / 4$. If a is an integer, compute and output the basis element $E_{4}^{a} E_{6}^{b}$ $\bmod q^{n}$. When we compute, e.g., E_{4}^{a}, do the computation by finding E_{4}^{m} $\left(\bmod q^{n}\right)$ for each $m \leq a$, and save these intermediate powers, so they can be reused later, and likewise for powers of E_{6}.

Proof. This is simply a translation of Theorem 1.5.6 into an algorithm, since E_{k} is a nonzero scalar multiple of G_{k}. That the q-expansions have coefficients in \mathbb{Q} is Equation 1.4.2.

Example 1.5.8. We compute a basis for M_{24}, which is the space with smallest weight whose dimension is bigger than 1 . It has as basis $E_{4}^{6}, E_{4}^{3} E_{6}^{2}$, and E_{6}^{4}, whose explicit expansions are

$$
\begin{aligned}
E_{4}^{6} & =\frac{1}{191102976000000}+\frac{1}{132710400000} q+\frac{203}{44236800000} q^{2}+\cdots \\
E_{4}^{3} E_{6}^{2} & =\frac{1}{3511517184000}-\frac{1}{12192768000} q-\frac{377}{4064256000} q^{2}+\cdots \\
E_{6}^{4} & =\frac{1}{64524128256}-\frac{1}{32006016} q+\frac{241}{10668672} q^{2}+\cdots
\end{aligned}
$$

In Section 1.7, we will discuss properties of the reduced row echelon form of any basis for M_{k}, which have better properties than the above basis.

1.6 Hecke Operators

Let k be an integer. Define the weight k right action of $\mathrm{GL}_{2}(\mathbb{Q})$ on functions f on \mathfrak{h} as follows. If $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{Q})$, let

$$
f \mid[\gamma]_{k}=\operatorname{det}(\gamma)^{k-1}(c z+d)^{-k} f(\gamma(z))
$$

One checks as an exercise that

$$
f\left|\left[\gamma_{1} \gamma_{2}\right]_{k}=\left(f \mid\left[\gamma_{1}\right]_{k}\right)\right|\left[\gamma_{2}\right]_{k},
$$

i.e., that this is a right group action. Also f is a weakly modular function if f is meromorphic and $f \mid[\gamma]_{k}=f$ for all $\gamma \in \operatorname{SL}_{2}(\mathbb{Z})$.

For any positive integer n, let

$$
S_{n}=\left\{\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \in M_{2}(\mathbb{Z}): a \geq 1, a d=n, \text { and } 0 \leq b<d\right\}
$$

Note that the set S_{n} is in bijection with the set of sublattices of \mathbb{Z}^{2} of index n, where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ corresponds to $L=\mathbb{Z} \cdot(a, b)+\mathbb{Z} \cdot(0, d)$, as one can see, e.g., by using Hermite normal form (the analogue of reduced row echelon form over \mathbb{Z}).

Definition 1.6.1 (Hecke Operator $T_{n, k}$). The nth Hecke operator $T_{n, k}$ of weight k is the operator on functions on \mathfrak{h} defined by

$$
T_{n, k}(f)=\sum_{\gamma \in S_{n}} f \mid[\gamma]_{k}
$$

Remark 1.6.2. It would make more sense to write $T_{n, k}$ on the right, e.g., $f \mid T_{n, k}$, since $T_{n, k}$ is defined using a right group action. However, if n, m are integers, then $T_{n, k}$ and $T_{m, k}$ commute, so it doesn't matter whether we consider the Hecke operators as acting on the right or left.

Proposition 1.6.3. If f is a weakly modular function of weight k, so is $T_{n, k}(f)$, and if f is also a modular function, then so is $T_{n, k}(f)$.

Proof. Suppose $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$. Since γ induces an automorphism of \mathbb{Z}^{2}, the set

$$
S_{n} \cdot \gamma=\left\{\delta \gamma: \delta \in S_{n}\right\}
$$

is also in bijection with the sublattices of \mathbb{Z}^{2} of index n. Then for each element $\delta \gamma \in S_{n} \cdot \gamma$, there is $\sigma \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\sigma \delta \gamma \in S_{n}$ (the element σ is the transformation of $\delta \gamma$ to Hermite normal form), and the set of elements $\sigma \delta \gamma$ is equal to S_{n}. Thus

$$
T_{n, k}(f)=\sum_{\sigma \delta \gamma \in S_{n}} f\left|[\sigma \delta \gamma]_{k}=\sum_{\delta \in S_{n}} f\right|[\delta \gamma]_{k}=T_{n, k}(f) \mid[\gamma]_{k}
$$

That f being holomorphic on \mathfrak{h} implies $T_{n, k}(f)$ is holomorphic on \mathfrak{h} follows because each $f \mid[\gamma]_{k}$ is holomorphic on \mathfrak{h}, and a finite sum of holomorphic functions is holomorphic.

We will frequently drop k from the notation in $T_{n, k}$, since the weight k is implicit in the modular function to which we apply the Hecke operator. Thus we henceforth make the convention that if we write $T_{n}(f)$ and f is modular, then we mean $T_{n, k}(f)$, where k is the weight of f.
Proposition 1.6.4. On weight k modular functions we have

$$
\begin{equation*}
T_{m n}=T_{n} T_{m} \quad \text { if }(n, m)=1 \tag{1.6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{p^{n}}=T_{p^{n-1}} T_{p}-p^{k-1} T_{p^{n-2}}, \quad \text { if } p \text { is prime. } \tag{1.6.2}
\end{equation*}
$$

Proof. Let L be a lattice of index $m n$. The quotient \mathbb{Z}^{2} / L is an abelian group of order $m n$, and $(m, n)=1$, so \mathbb{Z}^{2} / L decomposes uniquely as a direct sum of a subgroup order m with a subgroup of order n. Thus there exists a unique lattice L^{\prime} such that $L \subset L^{\prime} \subset \mathbb{Z}^{2}$, and L^{\prime} has index m in \mathbb{Z}^{2}. Thus L^{\prime} corresponds to an element of S_{m}, and the index n subgroup $L \subset L^{\prime}$ corresponds to multiplying that element on the right by some uniquely determined element of S_{n}. We thus have

$$
\mathrm{SL}_{2}(\mathbb{Z}) \cdot S_{m} \cdot S_{n}=\mathrm{SL}_{2}(\mathbb{Z}) \cdot S_{m n}
$$

i.e., the set products of elements in S_{m} with elements of S_{n} equal the elements of $S_{m n}$, up to $\mathrm{SL}_{2}(\mathbb{Z})$-equivalence. It then follows from the definitions that for any f, we have $T_{m n}(f)=T_{n}\left(T_{m}(f)\right)$.

We will show that $T_{p^{n}}+p^{k-1} T_{p^{n-2}}=T_{p} T_{p^{n-1}}$. Suppose f is a weight k weakly modular function. Using that $f \mid[p]_{k}=\left(p^{2}\right)^{k-1} p^{-k} f=p^{k-2} f$, we have

$$
\sum_{x \in S_{p^{n}}} f\left|[x]_{k}+p^{k-1} \sum_{x \in S_{p^{n-2}}} f\right|[x]_{k}=\sum_{x \in S_{p^{n}}} f\left|[x]_{k}+p \sum_{x \in p S_{p^{n-2}}} f\right|[x]_{k}
$$

Also

$$
T_{p} T_{p^{n-1}}(f)=\sum_{y \in S_{p}} \sum_{x \in S_{p^{n-1}}} f\left|[x]_{k}\right|[y]_{k}=\sum_{x \in S_{p^{n-1}} \cdot S_{p}} f \mid[x]_{k}
$$

Thus it suffices to show that $S_{p^{n}}$ union p copies of $p S_{p^{n-2}}$ is equal to $S_{p^{n-1}} \cdot S_{p}$, where we consider elements up to $\mathrm{SL}_{2}(\mathbb{Z})$-equivalence.

Suppose L is a sublattice of \mathbb{Z}^{2} of index p^{n}, so L corresponds to an element of $S_{p^{n}}$. First suppose L is not contained in $p \mathbb{Z}^{2}$. Then the image of L in $\mathbb{Z}^{2} / p \mathbb{Z}^{2}=(\mathbb{Z} / p \mathbb{Z})^{2}$ is of order p, so if $L^{\prime}=p \mathbb{Z}^{2}+L$, then $\left[\mathbb{Z}^{2}: L^{\prime}\right]=p$ and $\left[L: L^{\prime}\right]=p^{n-1}$, and L^{\prime} is the only lattice with this property. Second suppose that $L \subset p \mathbb{Z}^{2}$ if of index p^{n}, and that $x \in S_{p^{n}}$ corresponds to L. Then every one of the $p+1$ lattices $L^{\prime} \subset \mathbb{Z}^{2}$ of index p contains L. Thus there are $p+1$ chains $L \subset L^{\prime} \subset \mathbb{Z}^{2}$ with $\left[\mathbb{Z}^{2}: L^{\prime}\right]=p$.

The chains $L \subset L^{\prime} \subset \mathbb{Z}^{2}$ with $\left[\mathbb{Z}^{2}: L^{\prime}\right]=p$ and $\left[\mathbb{Z}^{2}: L\right]=p^{n-1}$ are in bijection with the elements of $S_{p^{n-1}} \cdot S_{p}$. On the other hand the union of $S_{p^{n}}$ with p copies of $p S_{p^{n-2}}$ corresponds to the lattices L of index p^{n}, but with those that contain $p \mathbb{Z}^{2}$ counted $p+1$ times. The structure of the set of chains $L \subset L^{\prime} \subset \mathbb{Z}^{2}$ that we derived in the previous paragraph gives the result.

Corollary 1.6.5. The Hecke operator $T_{p^{n}}$, for prime p, is a polynomial in T_{p}. If n, m are any integers then $T_{n} T_{m}=T_{m} T_{n}$.

Proof. The first statement is clear from (1.6.2), and this gives commutativity when m and n are both powers of p. Combining this with (1.6.1) gives the second statement in general.

Remark 1.6.6. Emmanuel Kowalski made the following remark on the number theory lists in June 2004 when asked about the polynomials $f_{n}(X)$ such that $T_{p^{n}}=f_{n}\left(T_{p}\right)$.

If you normalize the Hecke operators by considering

$$
S_{n, k}=n^{-(k-1) / 2} T_{n, k}
$$

then the recursion on the polynomials $P_{r}(X)$ such that $S_{p^{r}, k}=$ $P_{r}\left(S_{p, k}\right)$ becomes

$$
X P_{r}=P_{r+1}+P_{r-1}
$$

which is the recursion satisfied by the Chebychev polynomials U_{r} such that

$$
U_{r}(2 \cos t)=\frac{\sin ((r+1) t)}{\sin (t)}
$$

Alternatively, those give the characters of the symmetric powers of the standard representation of $\mathrm{SL}_{2}(\mathbb{R})$, evaluated on a rotation matrix

$$
\left(\begin{array}{rr}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right)
$$

For references, see for instance [Iwa97, p. 97] or [Ser97, p. 78, p. 81], and there are certainly many others.

Proposition 1.6.7. Suppose $f=\sum_{n \in \mathbb{Z}} a_{n} q^{n}$ is a modular function of weight k. Then

$$
T_{n}(f)=\sum_{m \in \mathbb{Z}}\left(\sum_{1 \leq c \mid(n, m)} c^{k-1} a_{m n / c^{2}}\right) q^{m}
$$

In particular, if $n=p$ is prime, then

$$
T_{p}(f)=\sum_{m \in \mathbb{Z}}\left(a_{m p}+p^{k-1} a_{m / p}\right) q^{m}
$$

where $a_{m / p}=0$ if $m / p \notin \mathbb{Z}$.
The proposition is not that difficult to prove (or at least the proof is easy to follow), and is proved in [Ser73, §VII.5.3] by writing out $T_{n}(f)$ explicitly and using that $\sum_{0 \leq b<d} e^{2 \pi i b m / d}$ is d if $d \mid m$ and 0 otherwise. A corollary of Proposition 1.6.7 is that T_{n} preserves M_{k} and S_{k}.
Corollary 1.6.8. The Hecke operators preserve M_{k} and S_{k}.
Remark 1.6.9. (Elkies) We knew this already—for M_{k} it's Proposition 1.6.3, and for S_{k} it's easy to show directly that if $f(i \infty)=0$ then $T_{n} f$ also vanishes at $i \infty$.

Example 1.6.10. Recall that

$$
E_{4}=\frac{1}{240}+q+9 q^{2}+28 q^{3}+73 q^{4}+126 q^{5}+252 q^{6}+344 q^{7}+\cdots
$$

Using the formula of Proposition 1.6.7, we see that

$$
T_{2}\left(E_{4}\right)=\left(1 / 240+2^{3} \cdot(1 / 240)\right)+9 q+\left(73+2^{3} \cdot 1\right) q^{2}+\cdots=9 E_{4}
$$

Since M_{k} has dimension 1, and we have proved that T_{2} preserves M_{k}, we know that T_{2} acts as a scalar. Thus we know just from the constant coefficient of $T_{2}\left(E_{4}\right)$ that $T_{2}\left(E_{4}\right)=9 E_{4}$. More generally, $T_{p}\left(E_{4}\right)=\left(1+p^{3}\right) E_{4}$, and even more generally

$$
T_{n}\left(E_{k}\right)=\sigma_{k-1}(n) E_{k},
$$

for any integer $n \geq 1$ and even weight $k \geq 4$.
Example 1.6.11. The Hecke operators T_{n} also preserve the subspace S_{k} of M_{k}. Since S_{12} has dimension 1, this means that Δ is an eigenvector for all T_{n}. Since the coefficient of q in the q-expansion of Δ is 1 , the eigenvalue of T_{n} on Δ is the nth coefficient of Δ. Moreover the function $\tau(n)$ that gives the nth coefficient of Δ is a multiplicative function. Likewise, one can show that the series E_{k} are eigenvectors for all T_{n}, and because in this book we normalize E_{k} so that the coefficient of q is 1 , the eigenvalue of T_{n} on E_{k} is the coefficient $\sigma_{k-1}(n)$ of q^{n}.

1.7 The Victor Miller Basis

Lemma 1.7.1 (Victor Miller). The space S_{k} has a basis f_{1}, \ldots, f_{d} such that if $a_{i}\left(f_{j}\right)$ is the ith coefficient of f_{j}, then $a_{i}\left(f_{j}\right)=\delta_{i, j}$ for $i=1, \ldots, d$. Moreover the f_{j} all lie in $\mathbb{Z}[[q]]$.

This is a straightforward construction involving E_{4}, E_{6} and Δ. The following proof is copied almost verbatim from [Lan95, Ch. X, Thm. 4.4], which is in turn presumably copied from the first lemma of Victor Miller's thesis.
Proof. Let $d=\operatorname{dim} S_{k}$. Since $B_{4}=-1 / 30$ and $B_{6}=1 / 42$, we note that

$$
F_{4}=-8 / B_{4} \cdot E_{4}=1+240 q+2160 q^{2}+6720 q^{3}+17520 q^{4}+\cdots
$$

and

$$
F_{6}=-12 / B_{6} \cdot E_{6}=1-504 q-16632 q^{2}-122976 q^{3}-532728 q^{4}+\cdots
$$

have q-expansions in $\mathbb{Z}[[q]]$ with leading coefficient 1 . Choose integers $a, b \geq 0$ such that

$$
4 a+6 b \leq 14 \quad \text { and } \quad 4 a+6 b \equiv k \quad(\bmod 12),
$$

with $a=b=0$ when $k \equiv 0(\bmod 12)$, and let

$$
g_{j}=\Delta^{j} F_{6}^{2(d-j)+a} F_{4}^{b}, \quad \text { for } j=1, \ldots, d .
$$

Then

$$
a_{j}\left(g_{j}\right)=1, \quad \text { and } \quad a_{i}\left(g_{j}\right)=0 \quad \text { when } \quad i<j .
$$

Hence the g_{j} are linearly independent over \mathbb{C}, and thus form a basis for S_{k}. Since F_{4}, F_{6}, and Δ are all in $\left.\mathbb{Z}[q]\right]$, so are the g_{j}. The f_{i} may then be constructed from the g_{j} by Gauss elimination. The coefficients of the resulting power series lie in \mathbb{Z} because each time we clear a column we use the power series g_{j} whose leading coefficient is 1 (so no denominators are introduced).

Remark 1.7.2. The basis coming from Victor Miller's lemma is canonical, since it is just the reduced row echelon form of any basis. Also the integral linear combinations are precisely the modular forms of level 1 with integral q-expansion.
Remark 1.7.3. (Elkies)

1. If you have just a single form f in M_{k} to write as a polynomial in E_{4} and E_{6}, then it is wasteful to compute the Victor Miller basis. Instead, use the upper triangular basis $\Delta^{j} F_{6}^{2(d-j)+a} F_{4}^{b}$, and match coefficients from q^{0} to q^{d}. (Or use "my" recursion if f happens to be the Eisenstein series.)
2. When $4 \mid k$, the zeroth form f_{0} in the Miller basis is also the theta function of an extremal self-dual even lattice of dimension $2 k$ (if one exists). More generally, if a lattice is with c of extremality then its theta function differs from f_{0} by a linear combination of $f_{d}, f_{d-1}, \ldots, f_{d+1-c}$.
We extend the Victor Miller basis to all M_{k} by taking a multiple of G_{k} with constant term 1, and subtracting off the f_{i} from the Victor Miller basis so that the coefficients of $q, q^{2}, \ldots q^{d}$ of the resulting expansion are 0 . We call the extra basis element f_{0}.

Example 1.7.4. If $k=24$, then $d=2$. Choose $a=b=0$, since $k \equiv 0$ $(\bmod 12)$. Then

$$
g_{1}=\Delta F_{6}^{2}=q-1032 q^{2}+245196 q^{3}+10965568 q^{4}+60177390 q^{5}-\cdots
$$

and

$$
g_{2}=\Delta^{2}=q^{2}-48 q^{3}+1080 q^{4}-15040 q^{5}+\cdots
$$

We let $f_{2}=g_{2}$ and

$$
f_{1}=g_{1}+1032 g_{2}=q+195660 q^{3}+12080128 q^{4}+44656110 q^{5}-\cdots
$$

Example 1.7.5. When $k=36$, the Victor Miller basis, including f_{0}, is

$$
\begin{aligned}
& f_{0}=1+\quad 6218175600 q^{4}+15281788354560 q^{5}+\cdots \\
& f_{1}=\quad q+\quad 57093088 q^{4}+37927345230 q^{5}+\cdots \\
& f_{2}= \\
& f_{3}=
\end{aligned} \quad q^{2}+194184 q^{4}+\quad 7442432 q^{5}+\cdots .
$$

Algorithm 1.7.6 (Hecke Operator).
This algorithm computes a matrix for the Hecke operator T_{n} on the Victor Miller basis for M_{k}.

1. [Compute dimension] Set $d \leftarrow \operatorname{dim}\left(S_{k}\right)$, which we compute using Corollary 1.5.5.
2. [Compute basis] Using the algorithm implicit in Lemma 1.7.1, compute a basis f_{0}, \ldots, f_{d} for M_{k} modulo $q^{d n+1}$.
3. [Compute Hecke operator] Using the formula from Proposition 1.6.7, compute $T_{n}\left(f_{i}\right)\left(\bmod q^{d+1}\right)$ for each i.
4. [Write in terms of basis] The elements $T_{n}\left(f_{i}\right)\left(\bmod q^{d+1}\right)$ uniquely determine linear combinations of $f_{0}, f_{1}, \ldots, f_{d}\left(\bmod q^{d}\right)$. These linear combinations are trivial to find, since the basis of f_{i} are in reduced row echelon form. I.e., the combinations are just the first few coefficients of the power series $T_{n}\left(f_{i}\right)$.
5. [Write down matrix] The matrix of T_{n} acting from the left is the matrix whose rows are the linear combinations found in the previous step, i.e., whose rows are the coefficients of $T_{n}\left(f_{i}\right)$.

Proof. First note that we only have to compute a modular form f modulo $q^{d n+1}$ in order to compute $T_{n}(f)$ modulo q^{d+1}. This follows from Proposition 1.6.7, since in the formula the d th coefficient of $T_{n}(f)$ involves only $a_{d n}$, and smaller-indexed coefficients of f. The uniqueness assertion of Step 4 follows from Lemma 1.7.1 above.

Example 1.7.7. This is the Hecke operator T_{2} on M_{36} :

$$
\left(\begin{array}{ccrr}
34359738369 & 0 & 6218175600 & 9026867482214400 \\
0 & 0 & 34416831456 & 5681332472832 \\
0 & 1 & 194184 & -197264484 \\
0 & 0 & -72 & -54528
\end{array}\right)
$$

It has characteristic polynomial

$$
(x-34359738369) \cdot\left(x^{3}-139656 x^{2}-59208339456 x-1467625047588864\right),
$$

where the cubic factor is irreducible.
Conjecture 1.7.8 (Maeda). The characteristic polynomial of T_{2} on S_{k} is irreducible for any k.

Kevin Buzzard even observed that in many specific cases the Galois group of the characteristic polynomial of T_{2} is the full symmetric group (see [Buz96]). See also [FJ02] for more evidence for Maeda's conjecture.

1.8 The Complexity of Computing Fourier Coefficients

Let

$$
\begin{aligned}
\Delta= & \sum_{n=1}^{\infty} \tau(n) q^{n} \\
= & q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5}-6048 q^{6}-16744 q^{7} \\
& +84480 q^{8}-113643 q^{9}-115920 q^{10}+534612 q^{11}- \\
& 370944 q^{12}-577738 q^{13}+401856 q^{14}+1217160 q^{15}+ \\
& 987136 q^{16}-6905934 q^{17}+2727432 q^{18}+10661420 q^{19}+\cdots
\end{aligned}
$$

be the Δ-function.
Conjecture 1.8.1 (Edixhoven, et al.). There is an algorithm to compute $\tau(p)$, for prime p, that is polynomial-time in $\log (p)$. More generally, suppose $f=$ $\sum a_{n} q^{n}$ is an eigenform in some space $M_{k}(N, \varepsilon)$, where $k \geq 2$. Then there is an algoirthm to compute a_{p}, for p prime, in time polynomial in $\log (p)$.

Bas Edixhoven and his students have been working for years to apply sophisticated techniques from arithmetic geometry (e.g., étale cohomology, motives, Arakelov theory) in order to prove that such an algorithm exists (among other things), and he believes they are almost there. There is evidently a significant gap between proving existence of an algorithm that shold be polynomial time, and actually writing down such an algorithm with explicitly bounded running times. The ideas Edixhoven uses are very similar to the ones used for counting points on elliptic curves in polynomial time (the algorithm of Schoof, with refinements by Atkins and Elkies).

1.9 Exercises

1.1 Suppose $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a matrix with real entries and positive determinant. Prove that if $z \in \mathbb{C}$ is a complex number with positive imaginary part, then the imaginary part of $\gamma(z)=(a z+b) /(c z+d)$ is also positive.
1.2 (a) Prove that a polynomial is an analytic function on \mathbb{C}.
(b) Prove that a rational function (quotient of two polynomials) is a meromorphic function on \mathbb{C}.
1.3 Suppose f and g are weakly modular functions with $f \neq 0$.
(a) Prove that the product $f g$ is a weakly modular function.
(b) Prove that $1 / f$ is a weakly modular function.
(c) If f and g are modular functions, show that $f g$ is a modular function.
(d) If f and g are modular forms, show that $f g$ is a modular form.
1.4 Suppose f is a weakly modular function of odd weight k. Show that $f=0$.
1.5 (a) Prove that $\Gamma_{1}(N)$ is a group.
(b) Prove that $\Gamma_{1}(N)$ has finite index in $\mathrm{SL}_{2}(\mathbb{Z})$ (Hint: it contains the kernel of the homomorphism $\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$.)

