
This is page 103
Printer: Opaque this

6
Elliptic Curves

We introduce elliptic curves and describe how to put a group structure
on the set of points on an elliptic curve. We then apply elliptic curves to
two cryptographic problems—factoring integers and constructing public-
key cryptosystems. Elliptic curves are believed to provide good security
with smaller key sizes, something that is very useful in many applications,
e.g., if we are going to print an encryption key on a postage stamp, it
is helpful if the key is short! Finally, we consider elliptic curves over the
rational numbers, and briefly survey some of the key ways in which they
arise in number theory.

6.1 The Definition

Definition 6.1.1 (Elliptic Curve). An elliptic curve over a field K is a
curve defined by an equation of the form

y2 = x3 + ax + b,

where a, b ∈ K and −16(4a3 + 27b2) 6= 0.

The condition that −16(4a3 + 27b2) 6= 0 implies that the curve has no
“singular points”, which will be essential for the applications we have in
mind (see Exercise 6.1).

104 6. Elliptic Curves

0 1 2 3 4 5 6
0

1

2

3

4

5

6

∞

FIGURE 6.1. The Elliptic Curve y2 = x3 + x over Z/7Z

In Section 6.2 we will put a natural abelian group structure on the set

E(K) = {(x, y) ∈ K × K : y2 = x3 + ax + b} ∪ {O}

of K-rational points on an elliptic curve E over K. Here O may be thought
of as a point on E “at infinity”. In Figure 6.1 we graph y2 = x3 + x over
the finite field Z/7Z, and in Figure 6.2 we graph y2 = x3 + x over the field
K = R of real numbers.

Remark 6.1.2. If K has characteristic 2 (e.g., K = Z/2Z), then for any
choice of a, b, the quantity −16(4a3 + 27b2) ∈ K is 0, so according to Defi-
nition 6.1.1 there are no elliptic curves over K. There is a similar problem
in characteristic 3. If we instead consider equations of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

we obtain a more general definition of elliptic curves, which correctly allows
for elliptic curves in characteristic 2 and 3; these elliptic curves are popular
in cryptography because arithmetic on them is often easier to efficiently
implement on a computer.

6.2 The Group Structure on an Elliptic Curve

Let E be an elliptic curve over a field K, given by an equation y2 =
x3 + ax + b. We begin by defining a binary operation + on E(K).

Algorithm 6.2.1 (Elliptic Curve Group Law). Given P1, P2 ∈ E(K),
this algorithm computes a third point R = P1 + P2 ∈ E(K).

6.2 The Group Structure on an Elliptic Curve 105

-1 0 1 2
-2

-1

0

1

2

x

y

FIGURE 6.2. The Elliptic Curve y2 = x3 + x over R

1. [Is Pi = O?] If P1 = O set R = P2 or if P2 = O set R = P1 and
terminate. Otherwise write (xi, yi) = Pi.

2. [Negatives] If x1 = x2 and y1 = −y2, set R = O and terminate.

3. [Compute λ] Set λ =

{

(3x2
1 + a)/(2y1) if P1 = P2,

(y1 − y2)/(x1 − x2) otherwise.

4. [Compute Sum] Then R =
(

λ2 − x1 − x2,−λx3 − ν
)

, where ν = y1 −
λx1 and x3 = λ2 − x1 − x2 is the x-coordinate of R.

Note that in Step 3 if P1 = P2, then y1 6= 0; otherwise, we would have
terminated in the previous step.

We implement this algorithm in Section 7.6.1.

Theorem 6.2.2. The binary operation + defined above endows the set

E(K) with an abelian group structure, in which O is the identity element.

Before discussing why the theorem is true, we reinterpret + geomet-
rically, so that it will be easier for us to visualize. We obtain the sum
P1 + P2 by finding the third point P3 of intersection between E and the
line L determined by P1 and P2, then reflecting P3 about the x-axis. (This
description requires suitable interpretation in cases 1 and 2, and when
P1 = P2.) This is illustrated in Figure 6.3, in which (0, 2) + (1, 0) = (3, 4)

106 6. Elliptic Curves

on y2 = x3 − 5x + 4. To further clarify this geometric interpretation, we
prove the following proposition.

Proposition 6.2.3 (Geometric group law). Suppose Pi = (xi, yi), i =
1, 2 are distinct point on an elliptic curve y2 = x3+ax+b, and that x1 6= x2.

Let L be the unique line through P1 and P2. Then L intersects the graph

of E at exactly one other point

Q =
(

λ2 − x1 − x2, λx3 + ν
)

,

where λ = (y1 − y2)/(x1 − x2) and ν = y1 − λx1.

Proof. The line L through P1, P2 is y = y1 + (x − x1)λ. Substituting this
into y2 = x3 + ax + b we get

(y1 + (x − x1)λ)2 = x3 + ax + b.

Simplifying we get f(x) = x3−λ2x2+· · · = 0, where we omit the coefficients
of x and the constant term since they will not be needed. Since P1 and P2

are in L∩E, the polynomial f has x1 and x2 as roots. By Proposition 2.5.2,
the polynomial f can have at most three roots. Writing f =

∏

(x−xi) and
equating terms, we see that x1 + x2 + x3 = λ2. Thus x3 = λ2 − x1 − x2, as
claimed. Also, from the equation for L we see that y3 = y1 + (x3 − x1)λ =
λx3 + ν, which completes the proof.

To prove Theorem 6.2.2 means to show that + satisfies the three axioms
of an abelian group with O as identity element: existence of inverses, com-
mutativity, and associativity. The existence of inverses follows immediately
from the definition, since (x, y)+ (x,−y) = O. Commutativity is also clear
from the definition of group law, since in parts 1–3, the recipe is unchanged
if we swap P1 and P2; in part 4 swapping P1 and P2 does not change the
line determined by P1 and P2, so by Proposition 6.2.3 it does not change
the sum P1 + P2.

It is more difficult to prove that + satisfies the associative axiom, i.e.,
that (P1 + P2) + P3 = P1 + (P2 + P3). This fact can be understood from at
least three points of view. One is to reinterpret the group law geometrically
(extending Proposition 6.2.3 to all cases), and thus transfer the problem
to a question in plane geometry. This approach is beautifully explained
with exactly the right level of detail in [ST92, §I.2]. Another approach is to
use the formulas that define + to reduce associativity to checking specific
algebraic identities; this is something that would be extremely tedious to do
by hand, but can be done using a computer (also tedious). A third approach
(see e.g. [Sil86] or [Har77]) is to develop a general theory of “divisors on
algebraic curves”, from which associativity of the group law falls out as a
natural corollary. The third approach is the best, because it opens up many
new vistas; however we will not pursue it further because it is beyond the
scope of this book.

6.3 Integer Factorization Using Elliptic Curves 107

-3 -2 -1 0 1 2 3 4
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

L

L′

(1, 0)

(0, 2)

(3,−4)

(3, 4)

FIGURE 6.3. The Group Law: (1, 0) + (0, 2) = (3, 4) on y2 = x3
− 5x + 4

6.3 Integer Factorization Using Elliptic Curves

In 1987, Hendrik Lenstra published the landmark paper [Len87] that intro-
duces and analyzes the Elliptic Curve Method (ECM), which is a powerful
algorithm for factoring integers using elliptic curves. Lenstra’s method is
also described in [ST92, §IV.4], [Dav99, §VIII.5], and [Coh93, §10.3].

Lenstra’s algorithm is well suited for finding
“medium sized” factors of an integer N , which
today means 10 to 20 decimal digits. The ECM
method is not directly used for factoring RSA chal-
lenge numbers (see Section 1.1.3), but it is used on
auxiliary numbers as a crucial step in the “number
field sieve”, which is the best known algorithm for
hunting for such factorizations. Also, implementa-
tion of ECM typically requires little memory. Lenstra

6.3.1 Pollard’s (p − 1)-Method

Lenstra’s discovery of ECM was inspired by Pollard’s (p−1)-method, which
we describe in this section.

108 6. Elliptic Curves

Definition 6.3.1 (Power smooth). Let B be a positive integer. If n is
a positive integer with prime factorization n =

∏

pei

i , then n is B-power

smooth if pei

i ≤ B for all i.

Thus 30 = 2 · 3 · 5 is B power smooth for B = 5, 7, but 150 = 2 · 3 · 52 is
not 5-power smooth (it is B = 25-power smooth).

We will use the following algorithm in both the Pollard p−1 and elliptic
curve factorization methods.

Algorithm 6.3.2 (Least Common Multiple of First B Integers).
Given a positive integer B, this algorithm computes the least common multiple
of the positive integers up to B.

1. [Sieve] Using, e.g., the Sieve of Eratosthenes (Algorithm 1.2.3), compute
a list P of all primes p ≤ B.

2. [Multiply] Compute and output the product
∏

p∈P ⌊logp(B)⌋.

Proof. Let m = lcm(1, 2, . . . , B). Then

ordp(m) = max({ordp(n) : 1 ≤ n ≤ B}) = ordp(p
r),

where pr is the largest power of p that satisfies pr ≤ B. Since pr ≤ B <
pr+1, we have r = ⌊logp(B)⌋.

We implement Algorithm 6.3.2 in Section 7.6.2.
Let N be a positive integer that we wish to factor. We use the Pollard

(p − 1)-method to look for a nontrivial factor of N as follows. First we
choose a positive integer B, usually with at most six digits. Suppose that
there is a prime divisor p of N such that p− 1 is B-power smooth. We try
to find p using the following strategy. If a > 1 is an integer not divisible
by p then by Theorem 2.1.12,

ap−1 ≡ 1 (mod p).

Let m = lcm(1, 2, 3, . . . , B), and observe that our assumption that p− 1 is
B-power smooth implies that p − 1 | m, so

am ≡ 1 (mod p).

Thus
p | gcd(am − 1, N) > 1.

If gcd(am−1, N) < N also then gcd(am−1, N) is a nontrivial factor of N . If
gcd(am − 1, N) = N , then am ≡ 1 (mod qr) for every prime power divisor
qr of N . In this case, repeat the above steps but with a smaller choice of B
or possibly a different choice of a. Also, it is a good idea to check from
the start whether or not N is not a perfect power Mr, and if so replace N
by M . We formalize the algorithm as follows:

6.3 Integer Factorization Using Elliptic Curves 109

Algorithm 6.3.3 (Pollard p − 1 Method). Given a positive integer N
and a bound B, this algorithm attempts to find a nontrivial factor m of N .
(Each prime p | m is likely to have the property that p−1 is B-power smooth.)

1. [Compute lcm] Use Algorithm 6.3.2 to compute m = lcm(1, 2, . . . , B).

2. [Initialize] Set a = 2.

3. [Power and gcd] Compute x = am − 1 (mod N) and g = gcd(x,N).

4. [Finished?] If g 6= 1 or N , output g and terminate.

5. [Try Again?] If a < 10 (say), replace a by a + 1 and go to step 3.
Otherwise terminate.

We implement Algorithm 6.3.3 in Section 7.6.2.
For fixed B, Algorithm 6.3.3 often splits N when N is divisible by a

prime p such that p−1 is B-power smooth. Approximately 15% of primes p
in the interval from 1015 and 1015 +10000 are such that p−1 is 106 power-
smooth, so the Pollard method with B = 106 already fails nearly 85% of
the time at finding 15-digit primes in this range (see also Exercise 7.14).
We will not analyze Pollard’s method further, since it was mentioned here
only to set the stage for the elliptic curve factorization method.

The following examples illustrate the Pollard (p − 1)-method.

Example 6.3.4. In this example, Pollard works perfectly. Let N = 5917.
We try to use the Pollard p − 1 method with B = 5 to split N . We have
m = lcm(1, 2, 3, 4, 5) = 60; taking a = 2 we have

260 − 1 ≡ 3416 (mod 5917)

and

gcd(260 − 1, 5917) = gcd(3416, 5917) = 61,

so 61 is a factor of 5917.

Example 6.3.5. In this example, we replace B by larger integer. Let N =
779167. With B = 5 and a = 2 we have

260 − 1 ≡ 710980 (mod 779167),

and gcd(260 − 1, 779167) = 1. With B = 15, we have

m = lcm(1, 2, . . . , 15) = 360360,

2360360 − 1 ≡ 584876 (mod 779167),

and

gcd(2360360 − 1, N) = 2003,

so 2003 is a nontrivial factor of 779167.

110 6. Elliptic Curves

Example 6.3.6. In this example, we replace B by a smaller integer. Let
N = 4331. Suppose B = 7, so m = lcm(1, 2, . . . , 7) = 420,

2420 − 1 ≡ 0 (mod 4331),

and gcd(2420 − 1, 4331) = 4331, so we do not obtain a factor of 4331. If we
replace B by 5, Pollard’s method works:

260 − 1 ≡ 1464 (mod 4331),

and gcd(260 − 1, 4331) = 61, so we split 4331.

Example 6.3.7. In this example, a = 2 does not work, but a = 3 does. Let
N = 187. Suppose B = 15, so m = lcm(1, 2, . . . , 15) = 360360,

2360360 − 1 ≡ 0 (mod 187),

and gcd(2360360 − 1, 187) = 187, so we do not obtain a factor of 187. If we
replace a = 2 by a = 3, then Pollard’s method works:

3360360 − 1 ≡ 66 (mod 187),

and gcd(3360360 − 1, 187) = 11. Thus 187 = 11 · 17.

6.3.2 Motivation for the Elliptic Curve Method

Fix a positive integer B. If N = pq with p and q prime and p− 1 and q− 1
are not B-power smooth, then the Pollard (p − 1)-method is unlikely to
work. For example, let B = 20 and suppose that N = 59 ·101 = 5959. Note
that neither 59 − 1 = 2 · 29 nor 101 − 1 = 4 · 25 is B-power smooth. With
m = lcm(1, 2, 3, . . . , 20) = 232792560, we have

2m − 1 ≡ 5944 (mod N),

and gcd(2m − 1, N) = 1, so we do not find a factor of N .
As remarked above, the problem is that p−1 is not 20-power smooth for

either p = 59 or p = 101. However, notice that p − 2 = 3 · 19 is 20-power
smooth. Lenstra’s ECM replaces (Z/pZ)∗, which has order p − 1, by the
group of points on an elliptic curve E over Z/pZ. It is a theorem that

#E(Z/pZ) = p + 1 ± s

for some nonnegative integer s < 2
√

p (see e.g., [Sil86, §V.1] for a proof).
(Also every value of s subject to this bound occurs, as one can see using
“complex multiplication theory”.) For example, if E is the elliptic curve

y2 = x3 + x + 54

over Z/59Z then by enumerating points one sees that E(Z/59Z) is cyclic
of order 57. The set of numbers 59 + 1± s for s ≤ 15 contains 14 numbers
that are B-power smooth for B = 20 (see Exercise 7.14). Thus working
with an elliptic curve gives us more flexibility. For example, 60 = 59+1+0
is 5-power smooth and 70 = 59 + 1 + 10 is 7-power smooth.

6.3 Integer Factorization Using Elliptic Curves 111

FIGURE 6.4. Hendrik Lenstra

6.3.3 Lenstra’s Elliptic Curve Factorization Method

Algorithm 6.3.8 (Elliptic Curve Factorization Method). Given a
positive integer N and a bound B, this algorithm attempts to find a nontrivial
factor m of N . Carry out the following steps:

1. [Compute lcm] Use Algorithm 6.3.2 to compute m = lcm(1, 2, . . . , B).

2. [Choose Random Elliptic Curve] Choose a random a ∈ Z/NZ such that
4a3 + 27 ∈ (Z/NZ)∗. Then P = (0, 1) is a point on the elliptic curve
y2 = x3 + ax + 1 over Z/NZ.

3. [Compute Multiple] Attempt to compute mP using an elliptic curve
analogue of Algorithm 2.3.7. If at some point we cannot compute a sum
of points because some denominator in step 3 of Algorithm 6.2.1 is not
coprime to N , we compute the gcd of this denominator with N . If this
gcd is a nontrivial divisor, output it. If every denominator is coprime
to N , output “Fail”.

We implement Algorithm 6.3.8 in Section 7.6.2.
If Algorithm 6.3.8 fails for one random elliptic curve, there is an option

that is unavailable with Pollard’s (p−1)-method—we may repeat the above
algorithm with a different elliptic curve. With Pollard’s method we always
work with the group (Z/NZ)∗, but here we can try many groups E(Z/NZ)
for many curves E. As mentioned above, the number of points on E over
Z/pZ is of the form p + 1 − t for some t with |t| < 2

√
p; Algorithm 6.3.8

thus has a chance if p+1− t is B-power-smooth for some t with |t| < 2
√

p.

6.3.4 Examples

For simplicity, we use an elliptic curve of the form

y2 = x3 + ax + 1,

which has the point P = (0, 1) already on it.
We factor N = 5959 using the elliptic curve method. Let

m = lcm(1, 2, . . . , 20) = 232792560 = 11011110000000100001111100002,

112 6. Elliptic Curves

where x2 means x is written in binary. First we choose a = 1201 at random
and consider y2 = x3 + 1201x + 1 over Z/5959Z. Using the formula for
P+P from Algorithm 6.2.1 implemented on a computer (see Section 7.6) we
compute 2i ·P = 2i · (0, 1) for i ∈ B = {4, 5, 6, 7, 8, 13, 21, 22, 23, 24, 26, 27}.
Then

∑

i∈B 2iP = mP . It turns out that during no step of this computation
does a number not coprime to 5959 appear in any denominator, so we do
not split N using a = 1201. Next we try a = 389 and at some stage in
the computation we add P = (2051, 5273) and Q = (637, 1292). When
computing the group law explicitly we try to compute λ = (y1 − y2)/(x1 −
x2) in (Z/5959Z)∗, but fail since x1−x2 = 1414 and gcd(1414, 5959) = 101.
We thus find a nontrivial factor 101 of 5959.

For bigger examples and an implementation of the algorithm, see Sec-
tion 7.6.2.

6.3.5 A Heuristic Explanation

Let N be a positive integer and for simplicity of exposition assume that
N = p1 · · · pr with the pi distinct primes. It follows from Lemma 2.2.5 that
there is a natural isomorphism

f : (Z/NZ)∗ −→ (Z/p1Z)∗ × · · · × (Z/prZ)∗.

When using Pollard’s method, we choose an a ∈ (Z/NZ)∗, compute am,
then compute gcd(am−1, N). This gcd is divisible exactly by the primes pi

such that am ≡ 1 (mod pi). To reinterpret Pollard’s method using the
above isomorphism, let (a1, . . . , ar) = f(a). Then (am

1 , . . . , am
r) = f(am),

and the pi that divide gcd(am − 1, N) are exactly the pi such that am
i = 1.

By Theorem 2.1.12, these pi include the primes pj such that pj − 1 is
B-power smooth, where m = lcm(1, . . . ,m).

We will not define E(Z/NZ) when N is composite, since this is not
needed for the algorithm (where we assume that N is prime and hope for
a contradiction). However, for the remainder of this paragraph, we pretend
that E(Z/NZ) is meaningful and describe a heuristic connection between
Lenstra and Pollard’s methods. The significant difference between Pollard’s
method and the elliptic curve method is that the isomorphism f is replaced
by an isomorphism (in quotes)

“g : E(Z/NZ) → E(Z/p1Z) × · · · × E(Z/prZ)”

where E is y2 = x3 + ax + 1, and the a of Pollard’s method is replaced by
P = (0, 1). We put the isomorphism in quotes to emphasize that we have
not defined E(Z/NZ). When carrying out the elliptic curve factorization
algorithm, we attempt to compute mP and if some components of f(Q)
are O, for some point Q that appears during the computation, but others
are nonzero, we find a nontrivial factor of N .

