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Motivation: What motives allow you to do

• Relate phenomena in different cohomology theories.

• “Linearize” algebraic varieties

• Import algebraic topology into algebraic geometry



Outline

• Algebraic cycles and pure motives

• Mixed motives as universal arithmetic cohomology of smooth

varieties

• The triangulated category of mixed motives

• Tate motives, Galois groups and multiple zeta-values



Algebraic cycles and pure motives



For X ∈ Sm/k, set

zq(X) := Z[{W ⊂ X, closed, irreducible, codimXW = q}],
the codimension q algebraic cycles on X. Set |

∑
i niWi| = ∪iWi.

We have:

• A partially defined intersection product: W · W ′ ∈ zq+q′(X)
for W ∈ zq(X), W ′ ∈ zq′(X) with codimX(|W | ∩ |W ′|) = q + q′.

• A partially defined pull-back for f : Y → X: f∗(W ) ∈ zq(Y )
for W ∈ zq(X) with codimY f−1(|W |) = q.

• A well-defined push-forward f∗ : zq(Y ) → zq+d(X) for f :
Y → X proper, d = dimX − dimY , satisfying the projection
formula:

f∗(f∗(x) · y) = x · f∗(y).



Rational equivalence.

For X ∈ Sm/k, W, W ′ ∈ zq(X), say W ∼rat W ′ if ∃Z ∈ zq(X × A1)
with

W −W ′ = (i∗0 − i∗1)(Z).

Set CHq(X) := zq(X)/ ∼rat.

The intersection product ·, pull-back f∗ and push-forward f∗ are
well-defined on CH∗. Thus, we have the graded-ring valued func-
tor

CH∗ : Sm/kop → Graded Rings

which is covariantly functorial for projective maps f : Y → X,
and satisfies the projection formula:

f∗(f∗(x) · y) = x · f∗(y).



Correspondences.

For X, Y ∈ SmProj/k, set

Cork(X, Y )n := CHdimX+n(X × Y ).

Composition: For Γ ∈ Cork(X, Y )n, Γ′ ∈ Cork(Y, Z)m,

Γ′ ◦ Γ := pXZ∗(p
∗
XY (Γ) · p∗Y Z(Γ′)) ∈ Cork(X, Z)n+m.

We have Homk(Y, X) → Cork(X, Y )0 by

f 7→ Γt
f .



The category of pure Chow motives

1. SmProj/kop → Cork: Send X to h(X), f to Γt
f , where

HomCor(h(X), h(Y )) := Cork(X, Y )⊗Q.

2. Cork → Meff(k): Add images of projectors (pseudo-abelian
hull).

3. Meff(k) → M(k): Invert tensor product by the Lefschetz mo-
tive L.

The composition SmProj/kop → Cork → Meff(k) → M(k) yields
the functor

h : SmProj/kop → M(k).



• These are tensor categories with h(X)⊗ h(Y ) = h(X × Y ).
• h(P1) = Q⊕ L in Meff(k).
• In M(k), write M(n) := M ⊗ L⊗−n. Then

HomM(k)(h(Y )(m), h(X)(n)) = Cork(X, Y )n−m ⊗Q.

• M(k) is a rigid tensor category, with dual

h(X)(n)∨ = h(X)(dimX − n).

• Can use M(k) to give a simple proof of the Lefschetz fixed point
formula and to show that the topological Euler characteristic
χH(X) is independent of the Weil cohomology H.

• Can use other “adequate” equivalence relations ∼, e.g. ∼num,
to form M∼(k). Mnum(k) is a semi-simple abelian category
(Jannsen).



Mixed Motives



Bloch-Ogus cohomology. This is a bi-graded cohomology the-
ory:

X 7→ ⊕p,qH
p(X,Γ(q)).

on Sm/k, with

1. Gysin isomorphisms H
p
W (X,Γ(q)) ∼= Hp−2d(W,Γ(q − d)) for

i : W → X a closed codimension d embedding in Sm/k.

2. Natural 1st Chern class homomorphism c1 : Pic(X) → H2(X,Γ(1))

3. Natural cycle classes Z 7→ clq(Z) ∈ H
2q
|Z|(X,Γ(q)) for Z ∈

zq(X).

4. Homotopy invariance Hp(X,Γ(q)) ∼= Hp(X × A1,Γ(q)).



Consequences

• Mayer-Vietoris sequence

• Projective bundle formula:

H∗(P(E),Γ(∗)) = ⊕r
i=0H∗(X,Γ(∗))ξi

for E → X of rank r + 1, ξ = c1(O(1)).

• Chern classes cq(E) ∈ H2q(X,Γ(q)) for vector bundles E → X.

• Push-forward f∗ : Hp(Y,Γ(q)) → Hp+2d(X,Γ(q + d)) for
f : Y → X projective, d = codimf .



Examples.

• X 7→ ⊕p,qH
p
ét(X, Q`(q)) or H

p
ét(X, Z`(q)) or H

p
ét(X, Z/n(q)).

• for k ↪→ C, A ⊂ C, X 7→ ⊕p,qHp(X(C), (2πi)qA)

or Hp(X(C), (2πi)qA/n).

• for k ↪→ C, A ⊂ R, X 7→ ⊕p,qH
p
D(XC, A(q)).

• X 7→ ⊕p,qH
p
A(X, Q(q)) := K2q−p(X)(q).



Beilinson’s conjectures

• There should exist an abelian rigid tensor category of mixed
motives over k, MM(k), with Tate objects Z(n), and a functor
h : Sm/kop → Db(MMk), satisfying

h(Spec k) = Z(0); Z(n)⊗ Z(m) = Z(n + m); Z(n)∨ = Z(−n),

• MM(k)Q should admit a faithful tensor functor

ω : MM(k)Q → finite-dim’l Q-vector spaces.

i.e. MM(k)Q should be a Tannakian category.

• Set

Hp
µ(X, Z(q)) := Extp

MM(k)(Z(0), h(X)(q))

:= HomDb(MM(k))(Z(0), h(X)(q)[p])

hi(X) := Hi(h(X))



One should have

1. Natural isomorphisms H
p
µ(X, Z(q))⊗Q ∼= K2q−p(X)(q).

2. The subcategory of semi-simple objects of MM(k) is Mnum(k)
and hi(X) is in Mnum(k) for X smooth and projective.

3. X 7→ h(X) satisfies Bloch-Ogus axioms in the category Db(MMk).

4. For each Bloch-Ogus theory, H∗(−,Γ(∗)), there is realization
functor

ReΓ : MM(k) → Ab.

ReΓ is an exact tensor functor, sending H
p
µ(X, Z(q)) to Hp(X,Γ(q)).

So: H∗
µ(−, Z(∗)) is the universal Bloch-Ogus theory.



Motivic complexes

Let Γmot(M) := HomMM(k)(Z(0), M). The derived functor

RΓmot(h(X)(q)) represents weight-q motivic cohomology:

Hp(RΓmot(h(X)(q))) = Hp
µ(X, Z(q)).

Even though MM(k) does not exist, one can try and construct

the complexes RΓmot(h(X)(q)).

Beilinson and Lichtenbaum gave conjectures for the structure of

these complexes (even before Beilinson had the idea of motivic

cohomology).

Bloch gave the first construction of a good candidate.



Bloch’s complexes:

Let ∆n := Spec k[t0, . . . , tn]/
∑

i ti − 1.

A face of ∆n is a subscheme F defined by ti1 = . . . = tin = 0.

n 7→ ∆n is a cosimplicial scheme.

Let δn
i : ∆n−1 → ∆n be the coface map to ti = 0.

Let

zq(X, n) = Z[{W ⊂ X×∆n, closed, irreducible, and for all faces

F, codimX×FW ∩ (X × F ) = q}] ⊂ zq(X ×∆n)

This defines Bloch’s cycle complex zq(X, ∗), with differential

dn =
n+1∑
i=0

(−1)iδ∗i : zq(X, n) → zq(X, n− 1).



Definition 1 The higher Chow groups CHq(X, p) are defined by

CHq(X, p) := Hp(z
q(X, ∗)).

Set H
p
Bl(X, Z(q)) := CHq(X,2q − p).

Theorem 1

(1) For X ∈ Sm/k there is a natural isomorphism CHq(X, p)Q
∼=

K2q−p(X)(q).

(2) X 7→ ⊕p,qH
p
Bl(X, Z(q)) is the universal Bloch-Ogus theory

on Sm/k.

So, H
p
Bl(X, Z(q)) is a good candidate for motivic cohomology.



Voevodsky’s triangulated category of motives

This is a construction of a model for Db(MM(k)) without con-

structing MM(k).

• Form the category of finite correspondences SmCor(k). Ob-

jects m(X) for X ∈ Sm/k.

HomSmCor(k)(m(X), m(Y )) = Z[{W ⊂ X×Y, closed, irreducible,

W → X finite and surjective.}]

Composition is composition of correspondences.

Note. For finite correspondences, the intersection product is

always defined, and the push-forward is also defined, even for

non-proper schemes.



• Sending f : X → Y to Γf ⊂ X × Y defines

m : Sm/k → SmCor(k).

Note. m is covariant, so we are constructing homological mo-
tives.

Form the category of bounded complexes and the homotopy
category

Sm/k → SmCor(k) → Cb(SmCor(k)) → Kb(SmCor(k)).

Kb(SmCor(k)) is a triangulated category with distinguished tri-
angles the Cone sequences of complexes:

A
f−→ B → Cone(f) → A[1].

Set

Z(1) := (m(P1)0 → m(Spec k)1)[−2]



• Form the category of effective geometric motives DMeff
gm(k)

from Kb(SmCor(k)) by inverting the maps

1. (homotopy invariance) m(X × A1) → m(X)

2. (Mayer-Vietoris) For U, V ⊂ X open, with X = U ∪ V ,

(m(U ∩ V ) → m(U)⊕m(V )) → m(X),

and taking the pseudo-abelian hull.

DMeff
gm(k) has a tensor structure with m(X)⊗m(Y ) = m(X×Y ).

• Form the category of geometric motives DMgm(k) from DMeff
gm(k)

by inverting ⊗Z(1).



Categorical motivic cohomology

Definition 2 Let Z(n) := Z(1)⊗n. For X ∈ Sm/k, set

Hp(X, Z(q)) := HomDMgm(k)(m(X), Z(q)[p])

Theorem 2

(1) DMgm(k) is a rigid triangulated tensor category with Tate

objects Z(n).

(2) X 7→ m(X)∨ satisfies the Bloch-Ogus axioms (in DMgm(k)).

(3) There are natural isomorphisms Hp(X, Z(q)) ∼= H
p
Bl(X, Z(q)).

(4) There are realization functors for the étale theory and for

the mixed Hodge theory.



Mixed Tate Motives



The triangulated category of mixed Tate motives

Let DTM(k) ⊂ DMgm(k)Q be the full triangulated subcategory
generated by the Tate objects Q(n). DTM(k) is like the derived
category of Tate MHS.

DTM(k) has a weight filtration: Define full triangulated subcate-
gories W≤nDTM(k), W>nDTM(k) and W=nDTM(k) of DTM(k):

W>nDTM(k) is generated by the Q(m)[a] with m < −n
W≤nDTM(k) is generated by the Q(m)[a] with m ≥ −n
W=nDTM(k) is generated by the Q(−n)[a].

There are exact “truncation” functors

W>n : DTM(k) → W>nDTM(k),
W≤n : DTM(k) → W≤nDTM(k).



There is a natural distinguished triangle

W≤nX → X → W>nX → W≤nX[1]

and a natural tower (the weight filtration)

0 = W≤N−1X → W≤NX → . . . → W≤M−1X → W≤MX = X.

Let grWn X be the cone of W≤n−1X → W≤nX. The category

W=nDTM(k) is equivalent to Db(f.diml. Q-v.s.), so we have the

exact functor

grWn : DTM(k) → Db(f.diml. Q-v.s.).



The vanishing conjectures

Suppose there were an abelian category of Tate motives over k,

TM(k), containing the Tate objects Q(n), and with DTM(k) ∼=
Db(TM(k)). Then

K2q−p(k)
(q) = HomDTM(k)(Q(0), Q(q)[p]) = Extp

TM(k)(Q(0), Q(q)).

Thus: K2q−p(k)
(q) = 0 for p < 0. This is the weak form of

Conjecture 1 (Beilinson-Soulé vanishing) For every field k,

K2q−p(k)
(q) = 0 for p ≤ 0, except for the case p = q = 0.

Theorem 3 Suppose the vanishing conjecture holds for a field

k. Then there is a non-degenerate t-structure on DTM(k) with

heart TM(k) containing and generated by the Tate objects Q(n).



The Tate motivic Galois group

Theorem 4 Suppose k satisfies B-S vanishing.

(1) The weight-filtration on DTM(k) induces an exact weight-
flitration on TM(k).

(2) The functors grWn induce a faithful exact tensor functor

ω := ⊕ngrWn : TM(k) → f. dim’l graded Q-vector spaces.

Corollary 1 Suppose k satisfies B-S vanishing. Then there is
a graded pro-unipotent algebraic group Umot

k over Q, and an
equivalence of TM(k) ⊗Q K with the graded representations of
Umot

k (K), for all fields K ⊃ Q.

In fact Umot
k = Aut(ω).



Let Lmot
k be the Lie algebra of Umot

k . For each field K ⊃ Q,

Lmot
k (K) is a graded pro-Lie algebra over K and

GrRepKLmot
k (K) ∼= TM(k)⊗Q K.

Example. Let k be a number field. Then k satisfies B-S vanish-

ing. Lmot
k is the free pro-Lie algebra on

∏
n≥1 H1(k, Q(n))∨, with

H1(k, Q(n))∨ in degree −n. Note that

H1(k, Q(n)) =


Qr1+r2 n > 1 odd

Qr2 n > 1 even

k× ⊗Q n = 1.

Definition 3 Let k be a number field. S a set of primes. Set

Lmot
Ok,S

:= Lmot
k / < k×S ⊗Q∨ >. Set TM(Ok,S) := GrRep Lmot

Ok,S
.



Relations with Gk := Gal(k̄/k)

k: a number field
q. uni-Rep`(Gk) := finite dim’l Q` filtered rep’n of Gk, with nth
graded quotient being χ⊗−n

cycl .

Let Lk,` be the associated graded Lie algebra, Lk,S,` the quotient
corresponding to the unramified outside S representations.

The Q`-étale realization of DMgm(k) gives a functor
Reét,` : TM(k) → q. uni-Rep(Gk), so

Re∗ét,` : Lk,S,` → Lmot
Ok,S∪`

(Q`).

Example. k = Q, S = ∅. Lmot
Z is the free Lie algebra on

generators s3, s5, . . ., Lmot
Z,` has one additional generator s

(`)
1 in

degree -1.



Application

Consider the action of GQ on πgeom
1 (P1 \ {0,1,∞}) = F̂2 via the

split exact sequence

1 → πgeom
1 (P1 \ {0,1,∞}) → π1(P1

Q \ {0,1,∞}) → GQ → 1.

It is known that this action is pro-unipotent.

Conjecture 2 (Deligne-Goncharov) The image of Lie(GQ) in

Lie(Aut(πgeom
1 (P1 \ {0,1,∞}))) is free, generated by certain ele-

ments s̃2n+1 of weight 2n + 1, n = 1,2, . . ..

Theorem 5 (Hain-Matsumoto) The image of Lie(GQ) in

Lie(Aut(πgeom
1 (P1 \ {0,1,∞}))) is generated by the s̃2n+1.

Idea: Factor the action of Lie(GQ) through Lmot
Z .



Multiple zeta-values

Let LHdg be the C-Lie algebra governing Tate MHS. Since

Ext1MHS(Q, Q(n)) = C/(2πi)nQ,

Extp
MHS(Q, Q(n)) = 0; p ≥ 2

LHdg is the free graded pro-Lie algebra on
∏

n(C/(2πi)nQ)∨.

The Hodge realization gives the map of co-Lie algebras

ReHdg : (Lmot
Z )∨ → L∨Hdg,

so ReHdg(s
∨
2n+1) is a complex number (mod (2πi)2n+1Q). In

fact:

ReHdg(s
∨
2n+1) = ζ(2n + 1) mod (2πi)2n+1Q.



The element s∨2n+1 is just a generator for H1(SpecQ, Q(n +1)),
i.e, an extension

0 → Q(0) → E2n+1 → Q(n + 1) → 0,

and ReHdg(s
∨
2n+1) is the period of this extension. One can con-

struct more complicated “framed objects” in TM(Z) and get
other periods.

Using the degeneration divisors in M0,n, Goncharov and Manin
have constructed framed mixed Tate motives Z(k1, . . . , kr), kr ≥
2, with

Per(Z(k1, . . . , kr)) = ζ(k1, . . . , kr)

where ζ(k1, . . . , kr) is the multiple zeta-value

ζ(k1, . . . , kr) :=
∑

1≤n1<...<nr

1

n
k1
1 · · ·nkr

r

.

This leads to:



Theorem 6 (Terasoma) Let Ln be the Q-subspace of C gen-
erated by the ζ(k1, . . . , kr) with n =

∑
i ki. Then

dimQ Ln ≤ dn,

where dn is defined by d0 = 1, d1 = 0, d2 = 1 and di+3 =
di+1 + di.

Proof. The ζ(k1, . . . , kr) with n =
∑

i ki are periods of framed
mixed Tate motives M such that

S(M) := {i | grWi M 6= 0}
is supported in [0, n] and if i < j are in S(M), then j−i is odd and
≥ 3. Using the structure of Lmot

Z , one shows that the dimension
of such motives (modulo framed equivalence) is exactly dn. Thus
their space of periods has dimension ≤ dn.

Conjecture 3 (Zagier) dimQ Ln = dn.



Thank you


