Motives

Basic Notions seminar, Harvard University
May 3, 2004

Marc Levine

Motivation: What motives allow you to do

- Relate phenomena in different cohomology theories.
- "Linearize" algebraic varieties
- Import algebraic topology into algebraic geometry

Outline

- Algebraic cycles and pure motives
- Mixed motives as universal arithmetic cohomology of smooth varieties
- The triangulated category of mixed motives
- Tate motives, Galois groups and multiple zeta-values

Algebraic cycles and pure motives

For $X \in \mathbf{S m} / k$, set
$z^{q}(X):=\mathbb{Z}\left[\left\{W \subset X\right.\right.$, closed, irreducible, $\left.\left.\operatorname{codim}_{X} W=q\right\}\right]$,
the codimension q algebraic cycles on X. Set $\left|\sum_{i} n_{i} W_{i}\right|=\cup_{i} W_{i}$. We have:

- A partially defined intersection product: $W \cdot W^{\prime} \in z^{q+q^{\prime}}(X)$ for $W \in z^{q}(X), W^{\prime} \in z^{q^{\prime}}(X)$ with $\operatorname{codim}_{X}\left(|W| \cap\left|W^{\prime}\right|\right)=q+q^{\prime}$.
- A partially defined pull-back for $f: Y \rightarrow X: f^{*}(W) \in z^{q}(Y)$ for $W \in z^{q}(X)$ with $\operatorname{codim}_{Y} f^{-1}(|W|)=q$.
- A well-defined push-forward $f_{*}: z^{q}(Y) \rightarrow z^{q+d}(X)$ for $f:$ $Y \rightarrow X$ proper, $d=\operatorname{dim} X-\operatorname{dim} Y$, satisfying the projection formula:

$$
f_{*}\left(f^{*}(x) \cdot y\right)=x \cdot f_{*}(y)
$$

Rational equivalence.

For $X \in \mathrm{Sm} / k, W, W^{\prime} \in z^{q}(X)$, say $W \sim_{r a t} W^{\prime}$ if $\exists Z \in z^{q}\left(X \times \mathbb{A}^{1}\right)$ with

$$
W-W^{\prime}=\left(i_{0}^{*}-i_{1}^{*}\right)(Z)
$$

Set $\mathrm{CH}^{q}(X):=z^{q}(X) / \sim_{\text {rat }}$.
The intersection product \cdot, pull-back f^{*} and push-forward f_{*} are well-defined on CH^{*}. Thus, we have the graded-ring valued functor

$$
\mathrm{CH}^{*}: \mathrm{Sm} / k^{\mathrm{Op}} \rightarrow \text { Graded Rings }
$$

which is covariantly functorial for projective maps $f: Y \rightarrow X$, and satisfies the projection formula:

$$
f_{*}\left(f^{*}(x) \cdot y\right)=x \cdot f_{*}(y) .
$$

Correspondences.

For $X, Y \in \operatorname{SmProj} / k$, set

$$
\operatorname{Cor}_{k}(X, Y)^{n}:=\mathrm{CH}^{\operatorname{dim} X+n}(X \times Y) .
$$

Composition: For $\Gamma \in \operatorname{Cor}_{k}(X, Y)^{n}, \Gamma^{\prime} \in \operatorname{Cor}_{k}(Y, Z)^{m}$,

$$
\Gamma^{\prime} \circ \Gamma:=p_{X Z *}\left(p_{X Y}^{*}(\Gamma) \cdot p_{Y Z}^{*}\left(\Gamma^{\prime}\right)\right) \in \operatorname{Cor}_{k}(X, Z)^{n+m} .
$$

We have $\operatorname{Hom}_{k}(Y, X) \rightarrow \operatorname{Cor}_{k}(X, Y)^{0}$ by

$$
f \mapsto \Gamma_{f}^{t} .
$$

The category of pure Chow motives

1. SmProj $/ k^{\text {Op }} \rightarrow$ Cor $_{k}$: Send X to $h(X), f$ to Γ_{f}^{t}, where $\operatorname{Hom}_{\mathrm{Cor}}(h(X), h(Y)):=\operatorname{Cor}_{k}(X, Y) \otimes \mathbb{Q}$.
2. Cor $_{k} \rightarrow \mathcal{M}^{\text {eff }}(k)$: Add images of projectors (pseudo-abelian hull).
3. $\mathcal{M}^{\text {eff }}(k) \rightarrow \mathcal{M}(k)$: Invert tensor product by the Lefschetz motive L.

The composition SmProj/ k ○p $\rightarrow \operatorname{Cor}_{k} \rightarrow \mathcal{N}^{\text {eff }}(k) \rightarrow \mathcal{M}(k)$ yields the functor

$$
h: \text { SmProj } / k^{\mathrm{OP}} \rightarrow \mathcal{M}(k)
$$

- These are tensor categories with $h(X) \otimes h(Y)=h(X \times Y)$.
- $h\left(\mathbb{P}^{1}\right)=\mathbb{Q} \oplus L$ in $\mathcal{M}^{\text {eff }}(k)$.
- In $\mathcal{M}(k)$, write $M(n):=M \otimes L^{\otimes-n}$. Then

$$
\operatorname{Hom}_{\mathcal{N}(k)}(h(Y)(m), h(X)(n))=\operatorname{Cor}_{k}(X, Y)^{n-m} \otimes \mathbb{Q}
$$

- $\mathcal{M}(k)$ is a rigid tensor category, with dual

$$
h(X)(n)^{\vee}=h(X)(\operatorname{dim} X-n)
$$

- Can use $\mathcal{M}(k)$ to give a simple proof of the Lefschetz fixed point formula and to show that the topological Euler characteristic $\chi_{H}(X)$ is independent of the Weil cohomology H.
- Can use other "adequate" equivalence relations \sim, e.g. $\sim_{n u m}$, to form $\mathcal{M}_{\sim}(k)$. $\mathcal{M}_{n u m}(k)$ is a semi-simple abelian category (Jannsen).

Mixed Motives

Bloch-Ogus cohomology. This is a bi-graded cohomology theory:

$$
X \mapsto \oplus_{p, q} H^{p}(X,\ulcorner(q))
$$

on Sm / k, with

1. Gysin isomorphisms $H_{W}^{p}(X, \Gamma(q)) \cong H^{p-2 d}(W, \Gamma(q-d))$ for $i: W \rightarrow X$ a closed codimension d embedding in $\mathbf{S m} / k$.
2. Natural 1st Chern class homomorphism $c_{1}: \operatorname{Pic}(X) \rightarrow H^{2}(X, \Gamma(1))$
3. Natural cycle classes $Z \mapsto \mathrm{cl}^{q}(Z) \in H_{|Z|}^{2 q}(X, \Gamma(q))$ for $Z \in$ $z^{q}(X)$.
4. Homotopy invariance $H^{p}(X, \Gamma(q)) \cong H^{p}\left(X \times \mathbb{A}^{1}, \Gamma(q)\right)$.

Consequences

- Mayer-Vietoris sequence
- Projective bundle formula:

$$
H^{*}\left(\mathbb{P}(E),\ulcorner(*))=\oplus_{i=0}^{r} H^{*}\left(X,\ulcorner(*)) \xi^{i}\right.\right.
$$

for $E \rightarrow X$ of rank $r+1, \xi=c_{1}(\mathcal{O}(1))$.

- Chern classes $c_{q}(E) \in H^{2 q}(X, \Gamma(q))$ for vector bundles $E \rightarrow X$.
- Push-forward $f_{*}: H^{p}\left(Y,\ulcorner(q)) \rightarrow H^{p+2 d}(X,\ulcorner(q+d))\right.$ for $f: Y \rightarrow X$ projective, $d=\operatorname{codim} f$.

Examples.

- $X \mapsto \oplus_{p, q} H_{e \mathrm{e}}^{p}\left(X, \mathbb{Q}_{\ell}(q)\right)$ or $H_{\mathrm{et}}^{p}\left(X, \mathbb{Z}_{\ell}(q)\right)$ or $H_{\mathrm{et}}^{p}(X, \mathbb{Z} / n(q))$.
- for $k \hookrightarrow \mathbb{C}, A \subset \mathbb{C}, X \mapsto \oplus_{p, q} H^{p}\left(X(\mathbb{C}),(2 \pi i)^{q} A\right)$ or $H^{p}\left(X(\mathbb{C}),(2 \pi i)^{q} A / n\right)$.
- for $k \hookrightarrow \mathbb{C}, A \subset \mathbb{R}, X \mapsto \oplus_{p, q} H_{\mathcal{D}}^{p}\left(X_{\mathbb{C}}, A(q)\right)$.
- $X \mapsto \oplus_{p, q} H_{\mathcal{A}}^{p}(X, \mathbb{Q}(q)):=K_{2 q-p}(X)^{(q)}$.

Beilinson's conjectures

- There should exist an abelian rigid tensor category of mixed motives over k, $\mathcal{M} \mathcal{M}(k)$, with Tate objects $\mathbb{Z}(n)$, and a functor $h: \mathrm{Sm} / k^{\mathrm{OP}} \rightarrow D^{b}\left(\mathcal{M N}_{k}\right)$, satisfying

$$
h(\text { Spec } k)=\mathbb{Z}(0) ; \mathbb{Z}(n) \otimes \mathbb{Z}(m)=\mathbb{Z}(n+m) ; \mathbb{Z}(n)^{\vee}=\mathbb{Z}(-n)
$$

- $\mathcal{M N}(k)_{\mathbb{Q}}$ should admit a faithful tensor functor

$$
\omega: \mathcal{M N}(k)_{\mathbb{Q}} \rightarrow \text { finite-dim'। } \mathbb{Q} \text {-vector spaces. }
$$

i.e. $\mathcal{M N M}(k)_{\mathbb{Q}}$ should be a Tannakian category.

- Set

$$
\begin{aligned}
H_{\mu}^{p}(X, \mathbb{Z}(q)) & :=\operatorname{Ext}_{\mathcal{M N C}(k)}^{p}(\mathbb{Z}(0), h(X)(q)) \\
& :=\operatorname{Hom}_{D^{b}(\mathcal{M N M}(k))}(\mathbb{Z}(0), h(X)(q)[p]) \\
h^{i}(X) & :=H^{i}(h(X))
\end{aligned}
$$

One should have

1. Natural isomorphisms $H_{\mu}^{p}(X, \mathbb{Z}(q)) \otimes \mathbb{Q} \cong K_{2 q-p}(X)^{(q)}$.
2. The subcategory of semi-simple objects of $\mathcal{M} \mathcal{M}(k)$ is $\mathcal{M}_{\text {num }}(k)$ and $h^{i}(X)$ is in $\mathcal{M}_{\text {num }}(k)$ for X smooth and projective.
3. $X \mapsto h(X)$ satisfies Bloch-Ogus axioms in the category $D^{b}\left(\mathcal{N 1}_{k}\right)$.
4. For each Bloch-Ogus theory, $H^{*}(-, \Gamma(*))$, there is realization functor

$$
\operatorname{Re}_{\Gamma}: \mathcal{M} \mathcal{M}(k) \rightarrow \mathbf{A b}
$$

Re_{Γ} is an exact tensor functor, sending $H_{\mu}^{p}(X, \mathbb{Z}(q))$ to $H^{p}(X, \Gamma(q))$. So: $H_{\mu}^{*}(-, \mathbb{Z}(*))$ is the universal Bloch-Ogus theory.

Motivic complexes

Let $\Gamma_{\text {mot }}(M):=\operatorname{Hom}_{\mathcal{M} \mathcal{M}(k)}(\mathbb{Z}(0), M)$. The derived functor $R \Gamma_{\operatorname{mot}}(h(X)(q))$ represents weight- q motivic cohomology:

$$
H^{p}\left(R \Gamma_{\operatorname{mot}}(h(X)(q))\right)=H_{\mu}^{p}(X, \mathbb{Z}(q)) .
$$

Even though $\mathcal{M} \mathcal{M}(k)$ does not exist, one can try and construct the complexes $R \Gamma_{\text {mot }}(h(X)(q))$.

Beilinson and Lichtenbaum gave conjectures for the structure of these complexes (even before Beilinson had the idea of motivic cohomology).

Bloch gave the first construction of a good candidate.

Bloch's complexes:

Let $\Delta^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] / \sum_{i} t_{i}-1$.
A face of Δ^{n} is a subscheme F defined by $t_{i_{1}}=\ldots=t_{i_{n}}=0$.
$n \mapsto \Delta^{n}$ is a cosimplicial scheme.
Let $\delta_{i}^{n}: \Delta^{n-1} \rightarrow \Delta^{n}$ be the coface map to $t_{i}=0$.
Let
$z^{q}(X, n)=\mathbb{Z}\left[\left\{W \subset X \times \Delta^{n}\right.\right.$, closed, irreducible, and for all faces $\left.\left.F, \operatorname{codim}_{X \times F} W \cap(X \times F)=q\right\}\right] \subset z^{q}\left(X \times \Delta^{n}\right)$
This defines Bloch's cycle complex $z^{q}(X, *)$, with differential

$$
d_{n}=\sum_{i=0}^{n+1}(-1)^{i} \delta_{i}^{*}: z^{q}(X, n) \rightarrow z^{q}(X, n-1) .
$$

Definition 1 The higher Chow groups $\mathrm{CH}^{q}(X, p)$ are defined by

$$
\mathrm{CH}^{q}(X, p):=H_{p}\left(z^{q}(X, *)\right) .
$$

Set $H_{B l}^{p}(X, \mathbb{Z}(q)):=\mathrm{CH}^{q}(X, 2 q-p)$.

Theorem 1

(1) For $X \in \mathrm{Sm} / k$ there is a natural isomorphism $\mathrm{CH}^{q}(X, p)_{\mathbb{Q}} \cong$ $K_{2 q-p}(X)^{(q)}$.
(2) $X \mapsto \oplus_{p, q} H_{B l}^{p}(X, \mathbb{Z}(q))$ is the universal Bloch-Ogus theory on Sm / k.

So, $H_{B l}^{p}(X, \mathbb{Z}(q))$ is a good candidate for motivic cohomology.

Voevodsky's triangulated category of motives

This is a construction of a model for $D^{b}(\mathcal{M} \mathcal{M}(k))$ without constructing $\mathcal{M} \mathcal{M}(k)$.

- Form the category of finite correspondences $\operatorname{SmCor}(k)$. Objects $m(X)$ for $X \in \operatorname{Sm} / k$.
$\operatorname{Hom}_{\text {SmCor }(k)}(m(X), m(Y))=\mathbb{Z}[\{W \subset X \times Y$, closed, irreducible, $W \rightarrow X$ finite and surjective. $\}$]

Composition is composition of correspondences.

Note. For finite correspondences, the intersection product is always defined, and the push-forward is also defined, even for non-proper schemes.

- Sending $f: X \rightarrow Y$ to $\Gamma_{f} \subset X \times Y$ defines

$$
m: \operatorname{Sm} / k \rightarrow \operatorname{SmCor}(k)
$$

Note. m is covariant, so we are constructing homological motives.

Form the category of bounded complexes and the homotopy category

$$
\operatorname{Sm} / k \rightarrow \operatorname{SmCor}(k) \rightarrow C^{b}(\operatorname{SmCor}(k)) \rightarrow K^{b}(\operatorname{SmCor}(k))
$$

$K^{b}(\operatorname{SmCor}(k))$ is a triangulated category with distinguished triangles the Cone sequences of complexes:

$$
A \xrightarrow{f} B \rightarrow \text { Cone }(f) \rightarrow A[1] .
$$

Set

$$
\mathbb{Z}(1):=\left(m\left(\mathbb{P}^{1}\right)^{0} \rightarrow m(\operatorname{Spec} k)^{1}\right)[-2]
$$

- Form the category of effective geometric motives $D M_{\mathrm{gm}}^{\mathrm{eff}}(k)$ from $K^{b}(\operatorname{SmCor}(k))$ by inverting the maps

1. (homotopy invariance) $m\left(X \times \mathbb{A}^{1}\right) \rightarrow m(X)$
2. (Mayer-Vietoris) For $U, V \subset X$ open, with $X=U \cup V$,

$$
(m(U \cap V) \rightarrow m(U) \oplus m(V)) \rightarrow m(X)
$$

and taking the pseudo-abelian hull.
$D M_{\mathrm{gm}}^{\mathrm{eff}}(k)$ has a tensor structure with $m(X) \otimes m(Y)=m(X \times Y)$.

- Form the category of geometric motives $D M_{\mathrm{gm}}(k)$ from $D M_{\mathrm{gm}}^{\mathrm{eff}}(k)$ by inverting $\otimes \mathbb{Z}(1)$.

Categorical motivic cohomology

Definition 2 Let $\mathbb{Z}(n):=\mathbb{Z}(1)^{\otimes n}$. For $X \in \operatorname{Sm} / k$, set

$$
H^{p}(X, \mathbb{Z}(q)):=\operatorname{Hom}_{D M_{\mathrm{gm}}(k)}(m(X), \mathbb{Z}(q)[p])
$$

Theorem 2

(1) $D M_{\mathrm{gm}}(k)$ is a rigid triangulated tensor category with Tate objects $\mathbb{Z}(n)$.
(2) $X \mapsto m(X)^{\vee}$ satisfies the Bloch-Ogus axioms (in $D M_{\mathrm{gm}}(k)$). (3) There are natural isomorphisms $H^{p}(X, \mathbb{Z}(q)) \cong H_{B l}^{p}(X, \mathbb{Z}(q))$.
(4) There are realization functors for the étale theory and for the mixed Hodge theory.

Mixed Tate Motives

The triangulated category of mixed Tate motives

Let $D T M(k) \subset D M_{\mathrm{gm}}(k)_{\mathbb{Q}}$ be the full triangulated subcategory generated by the Tate objects $\mathbb{Q}(n) . D T M(k)$ is like the derived category of Tate MHS.
$\operatorname{DTM}(k)$ has a weight filtration: Define full triangulated subcategories $W_{\leq n} D T M(k), W^{>n} D T M(k)$ and $W_{=n} D T M(k)$ of $D T M(k)$:
$W^{>n} \operatorname{DTM}(k)$ is generated by the $\mathbb{Q}(m)[a]$ with $m<-n$
$W_{\leq n} \operatorname{DTM}(k)$ is generated by the $\mathbb{Q}(m)[a]$ with $m \geq-n$
$W={ }_{n} \operatorname{DTM}(k)$ is generated by the $\mathbb{Q}(-n)[a]$.
There are exact "truncation" functors

$$
\begin{aligned}
& W^{>n}: \operatorname{DTM}(k) \rightarrow W^{>n} \operatorname{DTM}(k), \\
& W_{\leq n}: \operatorname{DTM}(k) \rightarrow W_{\leq n} \operatorname{DTM}(k) .
\end{aligned}
$$

There is a natural distinguished triangle

$$
W_{\leq n} X \rightarrow X \rightarrow W^{>n} X \rightarrow W_{\leq n} X[1]
$$

and a natural tower (the weight filtration)

$$
0=W_{\leq N-1} X \rightarrow W_{\leq N} X \rightarrow \ldots \rightarrow W_{\leq M-1} X \rightarrow W_{\leq M} X=X
$$

Let $\operatorname{gr}_{n}^{W} X$ be the cone of $W_{\leq n-1} X \rightarrow W_{\leq n} X$. The category $W={ }_{n} D T M(k)$ is equivalent to $D^{b}($ f.diml. $\mathbb{Q}-\mathrm{v} . \mathrm{s}$.), so we have the exact functor

$$
\operatorname{gr}_{n}^{W}: D T M(k) \rightarrow D^{b} \text { (f.dimı. } \mathbb{Q} \text {-v.s.) }
$$

The vanishing conjectures

Suppose there were an abelian category of Tate motives over k, $T M(k)$, containing the Tate objects $\mathbb{Q}(n)$, and with $\operatorname{DTM}(k) \cong$ $D^{b}(T M(k))$. Then
$K_{2 q-p}(k)^{(q)}=\operatorname{Hom}_{D T M(k)}(\mathbb{Q}(0), \mathbb{Q}(q)[p])=\operatorname{Ext}_{T M(k)}^{p}(\mathbb{Q}(0), \mathbb{Q}(q))$.
Thus: $K_{2 q-p}(k)^{(q)}=0$ for $p<0$. This is the weak form of

Conjecture 1 (Beilinson-Soulé vanishing) For every field k, $K_{2 q-p}(k)^{(q)}=0$ for $p \leq 0$, except for the case $p=q=0$.

Theorem 3 Suppose the vanishing conjecture holds for a field k. Then there is a non-degenerate t-structure on $\operatorname{DTM}(k)$ with heart $T M(k)$ containing and generated by the Tate objects $\mathbb{Q}(n)$.

The Tate motivic Galois group

Theorem 4 Suppose k satisfies $B-S$ vanishing.
(1) The weight-filtration on $D T M(k)$ induces an exact weightflitration on $T M(k)$.
(2) The functors gr_{n}^{W} induce a faithful exact tensor functor $\omega:=\oplus_{n} \mathrm{gr}_{n}^{W}: T M(k) \rightarrow f$. dim'l graded \mathbb{Q}-vector spaces.

Corollary 1 Suppose k satisfies $B-S$ vanishing. Then there is a graded pro-unipotent algebraic group $\mathcal{U}_{k}^{\operatorname{mot}}$ over \mathbb{Q}, and an equivalence of $T M(k) \otimes_{\mathbb{Q}} K$ with the graded representations of $\mathcal{U}_{k}^{\mathrm{mot}}(K)$, for all fields $K \supset \mathbb{Q}$.

In fact $\mathcal{U}_{k}^{\text {mot }}=\operatorname{Aut}(\omega)$.

Let $\mathcal{L}_{k}^{\text {mot }}$ be the Lie algebra of $\mathcal{U}_{k}^{\text {mot }}$. For each field $K \supset \mathbb{Q}$, $\mathcal{L}_{k}^{\text {mot }}(K)$ is a graded pro-Lie algebra over K and

$$
\operatorname{GrRep}_{K} \mathcal{L}_{k}^{\operatorname{mot}}(K) \cong T M(k) \otimes_{\mathbb{Q}} K
$$

Example. Let k be a number field. Then k satisfies $\mathrm{B}-\mathrm{S}$ vanishing. $\mathcal{L}_{k}^{\text {mot }}$ is the free pro-Lie algebra on $\prod_{n \geq 1} H^{1}(k, \mathbb{Q}(n))^{\vee}$, with $H^{1}(k, \mathbb{Q}(n))^{\vee}$ in degree $-n$. Note that

$$
H^{1}(k, \mathbb{Q}(n))= \begin{cases}\mathbb{Q}^{r_{1}+r_{2}} & n>1 \text { odd } \\ \mathbb{Q}^{r_{2}} & n>1 \text { even } \\ k^{\times} \otimes \mathbb{Q} & n=1\end{cases}
$$

Definition 3 Let k be a number field. S a set of primes. Set $\mathcal{L}_{\mathcal{O}_{k, S}}^{\mathrm{mot}}:=\mathcal{L}_{k}^{\mathrm{mot}} /<k_{S}^{\times} \otimes \mathbb{Q}^{\vee}>$. Set $T M\left(\mathcal{O}_{k, S}\right):=\operatorname{GrRep} \mathcal{L}_{\mathcal{O}_{k, S}}^{\mathrm{mot}}$.

Relations with $G_{k}:=\operatorname{Gal}(\bar{k} / k)$
k : a number field
q. uni- $\operatorname{Rep}_{\ell}\left(G_{k}\right):=$ finite dim'l \mathbb{Q}_{ℓ} filtered rep'n of G_{k}, with nth graded quotient being $\chi_{\mathrm{cycl}}^{\otimes-n}$.

Let $\mathcal{L}_{k, \ell}$ be the associated graded Lie algebra, $\mathcal{L}_{k, S, \ell}$ the quotient corresponding to the unramified outside S representations.

The \mathbb{Q}_{ℓ}-étale realization of $D M_{\mathrm{gm}}(k)$ gives a functor Reét $, \ell: T M(k) \rightarrow \mathrm{q}$. uni-Rep $\left(G_{k}\right)$, so

$$
\operatorname{Re}_{\mathrm{et}, \ell}^{*}: \mathcal{L}_{k, S, \ell} \rightarrow \mathcal{L}_{\mathcal{O}_{k, S \cup \ell}}^{\operatorname{mot}}\left(\mathbb{Q}_{\ell}\right)
$$

Example. $\quad k=\mathbb{Q}, S=\emptyset . \quad \mathcal{L}_{\mathbb{Z}}^{m o t}$ is the free Lie algebra on generators $s_{3}, s_{5}, \ldots, \underset{\mathbb{L}, \ell}{\mathcal{L}, \ell t}$ has one additional generator $s_{1}^{(\ell)}$ in degree -1.

Application

Consider the action of $G_{\mathbb{Q}}$ on $\pi_{1}^{\text {geom }}\left(\mathbb{P}^{1} \backslash\{0,1, \infty\}\right)=\widehat{F}_{2}$ via the split exact sequence

$$
1 \rightarrow \pi_{1}^{\text {geom }}\left(\mathbb{P}^{1} \backslash\{0,1, \infty\}\right) \rightarrow \pi_{1}\left(\mathbb{P}_{\mathbb{Q}}^{1} \backslash\{0,1, \infty\}\right) \rightarrow G_{\mathbb{Q}} \rightarrow 1
$$

It is known that this action is pro-unipotent.
Conjecture 2 (Deligne-Goncharov) The image of $\operatorname{Lie}\left(G_{\mathbb{Q}}\right)$ in $\operatorname{Lie}\left(\operatorname{Aut}\left(\pi_{1}^{\text {geom }}\left(\mathbb{P}^{1} \backslash\{0,1, \infty\}\right)\right)\right.$) is free, generated by certain elements $\tilde{s}_{2 n+1}$ of weight $2 n+1, n=1,2, \ldots$.

Theorem 5 (Hain-Matsumoto) The image of $\operatorname{Lie}\left(G_{\mathbb{Q}}\right)$ in $\operatorname{Lie}\left(\operatorname{Aut}\left(\pi_{1}^{g e o m}\left(\mathbb{P}^{1} \backslash\{0,1, \infty\}\right)\right)\right)$ is generated by the $\tilde{s}_{2 n+1}$.

Idea: Factor the action of $\operatorname{Lie}\left(G_{\mathbb{Q}}\right)$ through $\mathcal{L}_{\mathbb{Z}}^{\text {mot. }}$.

Multiple zeta-values

Let $\mathcal{L}_{H d g}$ be the \mathbb{C}-Lie algebra governing Tate MHS. Since

$$
\begin{gathered}
\operatorname{Ext}_{M H S}^{1}(\mathbb{Q}, \mathbb{Q}(n))=\mathbb{C} /(2 \pi i)^{n} \mathbb{Q} \\
\operatorname{Ext}_{M H S}^{p}(\mathbb{Q}, \mathbb{Q}(n))=0 ; p \geq 2
\end{gathered}
$$

$\mathcal{L}_{H d g}$ is the free graded pro-Lie algebra on $\prod_{n}\left(\mathbb{C} /(2 \pi i)^{n} \mathbb{Q}\right)^{\vee}$.
The Hodge realization gives the map of co-Lie algebras

$$
\operatorname{Re}_{H d g}:\left(\mathcal{L}_{\mathbb{Z}}^{m o t}\right)^{\vee} \rightarrow \mathcal{L}_{\mathrm{Hdg}}^{\vee}
$$

so $\operatorname{Re}_{H d g}\left(s_{2 n+1}^{\vee}\right)$ is a complex number $\left(\bmod (2 \pi i)^{2 n+1} \mathbb{Q}\right)$. In fact:

$$
\operatorname{Re}_{H d g}\left(s_{2 n+1}^{\vee}\right)=\zeta(2 n+1) \bmod (2 \pi i)^{2 n+1} \mathbb{Q}
$$

The element $s_{2 n+1}^{\vee}$ is just a generator for $H^{1}(\operatorname{Spec} \mathbb{Q}, \mathbb{Q}(n+1))$, i.e, an extension

$$
0 \rightarrow \mathbb{Q}(0) \rightarrow E_{2 n+1} \rightarrow \mathbb{Q}(n+1) \rightarrow 0,
$$

and $\operatorname{Re}_{\mathrm{Hdg}}\left(s_{2 n+1}^{\vee}\right)$ is the period of this extension. One can construct more complicated "framed objects" in $T M(\mathbb{Z})$ and get other periods.

Using the degeneration divisors in $\overline{\mathcal{M}}_{0, n}$, Goncharov and Manin have constructed framed mixed Tate motives $Z\left(k_{1}, \ldots, k_{r}\right), k_{r} \geq$ 2, with

$$
\operatorname{Per}\left(Z\left(k_{1}, \ldots, k_{r}\right)\right)=\zeta\left(k_{1}, \ldots, k_{r}\right)
$$

where $\zeta\left(k_{1}, \ldots, k_{r}\right)$ is the multiple zeta-value

$$
\zeta\left(k_{1}, \ldots, k_{r}\right):=\sum_{1 \leq n_{1}<\ldots<n_{r}} \frac{1}{n_{1}^{k_{1}} \cdots n_{r}^{k_{r}}} .
$$

This leads to:

Theorem 6 (Terasoma) Let L_{n} be the \mathbb{Q}-subspace of \mathbb{C} generated by the $\zeta\left(k_{1}, \ldots, k_{r}\right)$ with $n=\sum_{i} k_{i}$. Then

$$
\operatorname{dim}_{\mathbb{Q}} L_{n} \leq d_{n}
$$

where d_{n} is defined by $d_{0}=1, d_{1}=0, d_{2}=1$ and $d_{i+3}=$ $d_{i+1}+d_{i}$.

Proof. The $\zeta\left(k_{1}, \ldots, k_{r}\right)$ with $n=\sum_{i} k_{i}$ are periods of framed mixed Tate motives M such that

$$
S(M):=\left\{i \mid \mathrm{gr}_{i}^{W} M \neq 0\right\}
$$

is supported in $[0, n]$ and if $i<j$ are in $S(M)$, then $j-i$ is odd and ≥ 3. Using the structure of $\mathcal{L}_{\mathbb{Z}}^{\text {mot }}$, one shows that the dimension of such motives (modulo framed equivalence) is exactly d_{n}. Thus their space of periods has dimension $\leq d_{n}$.

Conjecture 3 (Zagier) $\operatorname{dim}_{\mathbb{Q}} L_{n}=d_{n}$.

Thank you

