Motives

Basic Notions seminar, Harvard University May 3, 2004

Marc Levine

Motivation: What motives allow you to do

- Relate phenomena in different cohomology theories.
- "Linearize" algebraic varieties
- Import algebraic topology into algebraic geometry

Outline

- Algebraic cycles and pure motives
- Mixed motives as universal arithmetic cohomology of smooth varieties
- The triangulated category of mixed motives
- Tate motives, Galois groups and multiple zeta-values

Algebraic cycles and pure motives

For $X \in \mathbf{Sm}/k$, set

 $z^q(X) := \mathbb{Z}[\{W \subset X, \text{ closed, irreducible, codim}_X W = q\}],$ the codimension q algebraic cycles on X. Set $|\sum_i n_i W_i| = \bigcup_i W_i$. We have:

- A partially defined intersection product: $W \cdot W' \in z^{q+q'}(X)$ for $W \in z^q(X)$, $W' \in z^{q'}(X)$ with $\operatorname{codim}_X(|W| \cap |W'|) = q + q'$.
- A partially defined pull-back for $f: Y \to X$: $f^*(W) \in z^q(Y)$ for $W \in z^q(X)$ with $\operatorname{codim}_Y f^{-1}(|W|) = q$.
- A well-defined push-forward $f_* : z^q(Y) \to z^{q+d}(X)$ for $f : Y \to X$ proper, $d = \dim X \dim Y$, satisfying the projection formula:

$$f_*(f^*(x) \cdot y) = x \cdot f_*(y).$$

Rational equivalence.

For $X \in \mathbf{Sm}/k$, $W, W' \in z^q(X)$, say $W \sim_{\mathsf{rat}} W'$ if $\exists Z \in z^q(X \times \mathbb{A}^1)$ with

$$W - W' = (i_0^* - i_1^*)(Z).$$

Set $CH^q(X) := z^q(X) / \sim_{\mathsf{rat}}$.

The intersection product \cdot , pull-back f^* and push-forward f_* are *well-defined* on CH^{*}. Thus, we have the graded-ring valued functor

$$CH^*$$
: $Sm/k^{op} \rightarrow Graded$ Rings

which is covariantly functorial for projective maps $f : Y \to X$, and satisfies the projection formula:

$$f_*(f^*(x) \cdot y) = x \cdot f_*(y).$$

Correspondences.

For $X, Y \in \mathbf{SmProj}/k$, set $\operatorname{Cor}_k(X, Y)^n := \operatorname{CH}^{\dim X + n}(X \times Y).$ Composition: For $\Gamma \in \operatorname{Cor}_k(X, Y)^n$, $\Gamma' \in \operatorname{Cor}_k(Y, Z)^m$, $\Gamma' \circ \Gamma := p_{XZ*}(p_{XY}^*(\Gamma) \cdot p_{YZ}^*(\Gamma')) \in \operatorname{Cor}_k(X, Z)^{n+m}.$

We have $\operatorname{Hom}_k(Y,X) \to \operatorname{Cor}_k(X,Y)^0$ by $f \mapsto \Gamma_f^t.$

The category of pure Chow motives

- 1. $\operatorname{SmProj}/k^{\operatorname{op}} \to \operatorname{Cor}_k$: Send X to h(X), f to Γ_f^t , where $\operatorname{Hom}_{\operatorname{Cor}}(h(X), h(Y)) := \operatorname{Cor}_k(X, Y) \otimes \mathbb{Q}$.
- 2. $\operatorname{Cor}_k \to \mathcal{M}^{\operatorname{eff}}(k)$: Add images of projectors (pseudo-abelian hull).
- 3. $\mathcal{M}^{\text{eff}}(k) \to \mathcal{M}(k)$: Invert tensor product by the Lefschetz motive *L*.

The composition $\mathbf{SmProj}/k^{\mathsf{op}} \to \mathsf{Cor}_k \to \mathcal{M}^{\mathsf{eff}}(k) \to \mathcal{M}(k)$ yields the functor

$$h : \mathbf{SmProj}/k^{\mathsf{OP}} \to \mathcal{M}(k).$$

- These are tensor categories with $h(X) \otimes h(Y) = h(X \times Y)$.
- $h(\mathbb{P}^1) = \mathbb{Q} \oplus L$ in $\mathcal{M}^{\mathsf{eff}}(k)$.
- In $\mathcal{M}(k)$, write $M(n) := M \otimes L^{\otimes -n}$. Then

 $\operatorname{Hom}_{\mathcal{M}(k)}(h(Y)(m), h(X)(n)) = \operatorname{Cor}_{k}(X, Y)^{n-m} \otimes \mathbb{Q}.$

• $\mathcal{M}(k)$ is a *rigid* tensor category, with dual

$$h(X)(n)^{\vee} = h(X)(\dim X - n).$$

• Can use $\mathcal{M}(k)$ to give a simple proof of the Lefschetz fixed point formula and to show that the topological Euler characteristic $\chi_H(X)$ is independent of the Weil cohomology H.

• Can use other "adequate" equivalence relations \sim , e.g. \sim_{num} , to form $\mathcal{M}_{\sim}(k)$. $\mathcal{M}_{num}(k)$ is a semi-simple abelian category (Jannsen).

Mixed Motives

Bloch-Ogus cohomology. This is a *bi-graded* cohomology theory:

$$X \mapsto \oplus_{p,q} H^p(X, \Gamma(q)).$$

on \mathbf{Sm}/k , with

- 1. Gysin isomorphisms $H^p_W(X, \Gamma(q)) \cong H^{p-2d}(W, \Gamma(q-d))$ for $i: W \to X$ a closed codimension d embedding in Sm/k.
- 2. Natural 1st Chern class homomorphism c_1 : Pic $(X) \rightarrow H^2(X, \Gamma(1))$
- 3. Natural cycle classes $Z \mapsto \operatorname{cl}^q(Z) \in H^{2q}_{|Z|}(X, \Gamma(q))$ for $Z \in z^q(X)$.
- 4. Homotopy invariance $H^p(X, \Gamma(q)) \cong H^p(X \times \mathbb{A}^1, \Gamma(q))$.

Consequences

- Mayer-Vietoris sequence
- Projective bundle formula:

$$H^*(\mathbb{P}(E), \Gamma(*)) = \bigoplus_{i=0}^r H^*(X, \Gamma(*))\xi^i$$

for $E \to X$ of rank $r+1$, $\xi = c_1(\mathfrak{O}(1))$.

- Chern classes $c_q(E) \in H^{2q}(X, \Gamma(q))$ for vector bundles $E \to X$.
- Push-forward $f_* : H^p(Y, \Gamma(q)) \to H^{p+2d}(X, \Gamma(q+d))$ for $f : Y \to X$ projective, $d = \operatorname{codim} f$.

Examples.

- $X \mapsto \bigoplus_{p,q} H^p_{\text{\'et}}(X, \mathbb{Q}_{\ell}(q))$ or $H^p_{\text{\'et}}(X, \mathbb{Z}_{\ell}(q))$ or $H^p_{\text{\'et}}(X, \mathbb{Z}/n(q))$.
- for $k \hookrightarrow \mathbb{C}$, $A \subset \mathbb{C}$, $X \mapsto \bigoplus_{p,q} H^p(X(\mathbb{C}), (2\pi i)^q A)$ or $H^p(X(\mathbb{C}), (2\pi i)^q A/n)$.
- for $k \hookrightarrow \mathbb{C}$, $A \subset \mathbb{R}$, $X \mapsto \bigoplus_{p,q} H^p_{\mathcal{D}}(X_{\mathbb{C}}, A(q))$.
- $X \mapsto \bigoplus_{p,q} H^p_{\mathcal{A}}(X, \mathbb{Q}(q)) := K_{2q-p}(X)^{(q)}.$

Beilinson's conjectures

• There should exist an abelian rigid tensor category of *mixed* motives over k, $\mathcal{MM}(k)$, with Tate objects $\mathbb{Z}(n)$, and a functor $h: \mathbf{Sm}/k^{\mathrm{op}} \to D^b(\mathcal{MM}_k)$, satisfying

 $h(\operatorname{Spec} k) = \mathbb{Z}(0); \ \mathbb{Z}(n) \otimes \mathbb{Z}(m) = \mathbb{Z}(n+m); \ \mathbb{Z}(n)^{\vee} = \mathbb{Z}(-n),$

• $\mathcal{MM}(k)_{\mathbb{O}}$ should admit a faithful tensor functor

 $\omega: \mathcal{MM}(k)_{\mathbb{Q}} \to \text{finite-dim'l } \mathbb{Q}\text{-vector spaces.}$

i.e. $\mathcal{MM}(k)_{\mathbb{O}}$ should be a *Tannakian category*.

• Set

$$H^p_{\mu}(X, \mathbb{Z}(q)) := \mathsf{Ext}^p_{\mathcal{M}\mathcal{M}(k)}(\mathbb{Z}(0), h(X)(q))$$
$$:= \mathsf{Hom}_{D^b(\mathcal{M}\mathcal{M}(k))}(\mathbb{Z}(0), h(X)(q)[p])$$
$$h^i(X) := H^i(h(X))$$

One should have

- 1. Natural isomorphisms $H^p_{\mu}(X,\mathbb{Z}(q))\otimes \mathbb{Q}\cong K_{2q-p}(X)^{(q)}$.
- 2. The subcategory of semi-simple objects of $\mathcal{MM}(k)$ is $\mathcal{M}_{num}(k)$ and $h^i(X)$ is in $\mathcal{M}_{num}(k)$ for X smooth and projective.
- 3. $X \mapsto h(X)$ satisfies Bloch-Ogus axioms in the category $D^b(\mathcal{MM}_k)$.
- 4. For each Bloch-Ogus theory, $H^*(-, \Gamma(*))$, there is realization functor

$$\operatorname{Re}_{\Gamma} : \mathcal{MM}(k) \to \operatorname{Ab}.$$

Re_{Γ} is an exact tensor functor, sending $H^p_\mu(X,\mathbb{Z}(q))$ to $H^p(X,\Gamma(q))$. So: $H^*_\mu(-,\mathbb{Z}(*))$ is the *universal* Bloch-Ogus theory.

Motivic complexes

Let $\Gamma_{mot}(M) := \operatorname{Hom}_{\mathcal{MM}(k)}(\mathbb{Z}(0), M)$. The derived functor $R\Gamma_{mot}(h(X)(q))$ represents weight-q motivic cohomology:

$$H^p(R\Gamma_{\mathsf{mot}}(h(X)(q))) = H^p_{\mu}(X, \mathbb{Z}(q)).$$

Even though $\mathcal{MM}(k)$ does not exist, one can try and construct the complexes $R\Gamma_{mot}(h(X)(q))$.

Beilinson and Lichtenbaum gave conjectures for the structure of these complexes (even before Beilinson had the idea of motivic cohomology).

Bloch gave the first construction of a good candidate.

Bloch's complexes:

Let $\Delta^n := \operatorname{Spec} k[t_0, \ldots, t_n] / \sum_i t_i - 1$. A face of Δ^n is a subscheme F defined by $t_{i_1} = \ldots = t_{i_n} = 0$. $n \mapsto \Delta^n$ is a cosimplicial scheme. Let $\delta^n_i : \Delta^{n-1} \to \Delta^n$ be the coface map to $t_i = 0$.

Let

 $z^{q}(X,n) = \mathbb{Z}[\{W \subset X \times \Delta^{n}, \text{closed, irreducible, and for all faces} F, \text{codim}_{X \times F} W \cap (X \times F) = q\}] \subset z^{q}(X \times \Delta^{n})$

This defines Bloch's cycle complex $z^q(X, *)$, with differential

$$d_n = \sum_{i=0}^{n+1} (-1)^i \delta_i^* : z^q(X, n) \to z^q(X, n-1).$$

Definition 1 The higher Chow groups $CH^q(X, p)$ are defined by

$$\mathsf{CH}^q(X,p) := H_p(z^q(X,*)).$$

Set $H^p_{Bl}(X,\mathbb{Z}(q)) := CH^q(X,2q-p).$

Theorem 1

(1) For $X \in \text{Sm}/k$ there is a natural isomorphism $\text{CH}^q(X,p)_{\mathbb{Q}} \cong K_{2q-p}(X)^{(q)}$.

(2) $X \mapsto \bigoplus_{p,q} H^p_{Bl}(X, \mathbb{Z}(q))$ is the universal Bloch-Ogus theory on Sm/k.

So, $H^p_{Bl}(X,\mathbb{Z}(q))$ is a good candidate for *motivic cohomology*.

Voevodsky's triangulated category of motives

This is a construction of a model for $D^b(\mathcal{MM}(k))$ without constructing $\mathcal{MM}(k)$.

• Form the category of *finite correspondences* SmCor(k). Objects m(X) for $X \in Sm/k$.

 $Hom_{SmCor(k)}(m(X), m(Y)) = \mathbb{Z}[\{W \subset X \times Y, \text{ closed, irreducible,} W \to X \text{ finite and surjective.}\}]$

Composition is composition of correspondences.

Note. For finite correspondences, the intersection product is *always* defined, and the push-forward is also defined, even for non-proper schemes.

• Sending $f: X \to Y$ to $\Gamma_f \subset X \times Y$ defines

$$m: \mathbf{Sm}/k \to \mathbf{SmCor}(k).$$

Note. m is covariant, so we are constructing *homological* motives.

Form the category of bounded complexes and the homotopy category

 $Sm/k \rightarrow SmCor(k) \rightarrow C^{b}(SmCor(k)) \rightarrow K^{b}(SmCor(k)).$ $K^{b}(SmCor(k))$ is a triangulated category with distinguished triangles the Cone sequences of complexes:

$$A \xrightarrow{f} B \to \operatorname{Cone}(f) \to A[1].$$

Set

$$\mathbb{Z}(1) := (m(\mathbb{P}^1)^0 \to m(\operatorname{Spec} k)^1)[-2]$$

• Form the category of *effective geometric motives* $DM_{gm}^{eff}(k)$ from $K^b(SmCor(k))$ by inverting the maps

1. (homotopy invariance) $m(X \times \mathbb{A}^1) \to m(X)$

2. (*Mayer-Vietoris*) For $U, V \subset X$ open, with $X = U \cup V$, $(m(U \cap V) \rightarrow m(U) \oplus m(V)) \rightarrow m(X),$

and taking the pseudo-abelian hull.

 $DM_{qm}^{eff}(k)$ has a tensor structure with $m(X) \otimes m(Y) = m(X \times Y)$.

• Form the category of *geometric motives* $DM_{gm}(k)$ from $DM_{gm}^{eff}(k)$ by inverting $\otimes \mathbb{Z}(1)$.

Categorical motivic cohomology

Definition 2 Let $\mathbb{Z}(n) := \mathbb{Z}(1)^{\otimes n}$. For $X \in \text{Sm}/k$, set $H^p(X, \mathbb{Z}(q)) := \text{Hom}_{DM_{\text{gm}}(k)}(m(X), \mathbb{Z}(q)[p])$

Theorem 2

(1) $DM_{gm}(k)$ is a rigid triangulated tensor category with Tate objects $\mathbb{Z}(n)$.

(2) $X \mapsto m(X)^{\vee}$ satisfies the Bloch-Ogus axioms (in $DM_{gm}(k)$). (3) There are natural isomorphisms $H^p(X, \mathbb{Z}(q)) \cong H^p_{Bl}(X, \mathbb{Z}(q))$. (4) There are realization functors for the étale theory and for the mixed Hodge theory.

Mixed Tate Motives

The triangulated category of mixed Tate motives

Let $DTM(k) \subset DM_{gm}(k)_{\mathbb{Q}}$ be the full triangulated subcategory generated by the Tate objects $\mathbb{Q}(n)$. DTM(k) is like the derived category of Tate MHS.

DTM(k) has a weight filtration: Define full triangulated subcategories $W_{< n}DTM(k)$, $W^{>n}DTM(k)$ and $W_{= n}DTM(k)$ of DTM(k):

 $W^{>n}DTM(k)$ is generated by the $\mathbb{Q}(m)[a]$ with m < -n $W_{\leq n}DTM(k)$ is generated by the $\mathbb{Q}(m)[a]$ with $m \geq -n$ $W_{=n}DTM(k)$ is generated by the $\mathbb{Q}(-n)[a]$.

There are exact "truncation" functors

 $W^{>n}$: $DTM(k) \rightarrow W^{>n}DTM(k)$, $W_{\leq n}$: $DTM(k) \rightarrow W_{\leq n}DTM(k)$. There is a natural distinguished triangle

$$W_{\leq n}X \to X \to W^{>n}X \to W_{\leq n}X[1]$$

and a natural tower (the weight filtration)

$$0 = W_{\leq N-1}X \to W_{\leq N}X \to \ldots \to W_{\leq M-1}X \to W_{\leq M}X = X.$$

Let $gr_n^W X$ be the cone of $W_{\leq n-1}X \to W_{\leq n}X$. The category $W_{\equiv n}DTM(k)$ is equivalent to $D^b(f.diml. \mathbb{Q}-v.s.)$, so we have the exact functor

$$\operatorname{gr}_n^W : DTM(k) \to D^b(f.diml. \mathbb{Q}-v.s.).$$

The vanishing conjectures

Suppose there were an abelian category of Tate motives over k, TM(k), containing the Tate objects $\mathbb{Q}(n)$, and with $DTM(k) \cong D^b(TM(k))$. Then

$$K_{2q-p}(k)^{(q)} = \operatorname{Hom}_{DTM(k)}(\mathbb{Q}(0), \mathbb{Q}(q)[p]) = \operatorname{Ext}_{TM(k)}^{p}(\mathbb{Q}(0), \mathbb{Q}(q)).$$

Thus: $K_{2q-p}(k)^{(q)} = 0$ for $p < 0$. This is the weak form of

Conjecture 1 (Beilinson-Soulé vanishing) For every field k, $K_{2q-p}(k)^{(q)} = 0$ for $p \le 0$, except for the case p = q = 0.

Theorem 3 Suppose the vanishing conjecture holds for a field k. Then there is a non-degenerate t-structure on DTM(k) with heart TM(k) containing and generated by the Tate objects $\mathbb{Q}(n)$.

The Tate motivic Galois group

Theorem 4 Suppose k satisfies B-S vanishing.

(1) The weight-filtration on DTM(k) induces an exact weight-filtration on TM(k).

(2) The functors gr_n^W induce a faithful exact tensor functor $\omega := \bigoplus_n gr_n^W : TM(k) \to f.$ dim'l graded Q-vector spaces.

Corollary 1 Suppose k satisfies B-S vanishing. Then there is a graded pro-unipotent algebraic group $\mathcal{U}_k^{\text{mot}}$ over \mathbb{Q} , and an equivalence of $TM(k) \otimes_{\mathbb{Q}} K$ with the graded representations of $\mathcal{U}_k^{\text{mot}}(K)$, for all fields $K \supset \mathbb{Q}$.

In fact $\mathcal{U}_k^{\text{mot}} = \text{Aut}(\omega)$.

Let $\mathcal{L}_k^{\text{mot}}$ be the Lie algebra of $\mathcal{U}_k^{\text{mot}}$. For each field $K \supset \mathbb{Q}$, $\mathcal{L}_k^{\text{mot}}(K)$ is a graded pro-Lie algebra over K and

$$\operatorname{GrRep}_K \mathcal{L}_k^{\operatorname{mot}}(K) \cong TM(k) \otimes_{\mathbb{Q}} K.$$

Example. Let k be a number field. Then k satisfies B-S vanishing. $\mathcal{L}_k^{\text{mot}}$ is the free pro-Lie algebra on $\prod_{n\geq 1} H^1(k, \mathbb{Q}(n))^{\vee}$, with $H^1(k, \mathbb{Q}(n))^{\vee}$ in degree -n. Note that

$$H^{1}(k, \mathbb{Q}(n)) = \begin{cases} \mathbb{Q}^{r_{1}+r_{2}} & n > 1 \text{ odd} \\ \mathbb{Q}^{r_{2}} & n > 1 \text{ even} \\ k^{\times} \otimes \mathbb{Q} & n = 1. \end{cases}$$

Definition 3 Let k be a number field. S a set of primes. Set $\mathcal{L}_{\mathcal{O}_{k,S}}^{\text{mot}} := \mathcal{L}_{k}^{\text{mot}} / \langle k_{S}^{\times} \otimes \mathbb{Q}^{\vee} \rangle$. Set $TM(\mathcal{O}_{k,S}) := GrRep \mathcal{L}_{\mathcal{O}_{k,S}}^{\text{mot}}$.

Relations with $G_k := Gal(\overline{k}/k)$

k: a number field q. uni-Rep_{ℓ}(G_k) := finite dim'l \mathbb{Q}_ℓ filtered rep'n of G_k , with *n*th graded quotient being $\chi_{cycl}^{\otimes -n}$.

Let $\mathcal{L}_{k,\ell}$ be the associated graded Lie algebra, $\mathcal{L}_{k,S,\ell}$ the quotient corresponding to the unramified outside S representations.

The \mathbb{Q}_{ℓ} -étale realization of $DM_{gm}(k)$ gives a functor $\operatorname{Re}_{\acute{\operatorname{et}},\ell}: TM(k) \to q$. uni- $\operatorname{Rep}(G_k)$, so

$$\operatorname{\mathsf{Re}}^*_{\operatorname{\acute{e}t},\ell} : \mathcal{L}_{k,S,\ell} \to \mathcal{L}^{\operatorname{mot}}_{\mathcal{O}_{k,S\cup\ell}}(\mathbb{Q}_\ell).$$

Example. $k = \mathbb{Q}$, $S = \emptyset$. $\mathcal{L}_{\mathbb{Z}}^{\text{mot}}$ is the free Lie algebra on generators $s_3, s_5, \ldots, \mathcal{L}_{\mathbb{Z},\ell}^{\text{mot}}$ has one additional generator $s_1^{(\ell)}$ in degree -1.

Application

Consider the action of $G_{\mathbb{Q}}$ on $\pi_1^{\text{geom}}(\mathbb{P}^1 \setminus \{0, 1, \infty\}) = \hat{F}_2$ via the split exact sequence

$$1 \to \pi_1^{\text{geom}}(\mathbb{P}^1 \setminus \{0, 1, \infty\}) \to \pi_1(\mathbb{P}^1_{\mathbb{Q}} \setminus \{0, 1, \infty\}) \to G_{\mathbb{Q}} \to 1.$$

It is known that this action is pro-unipotent.

Conjecture 2 (Deligne-Goncharov) The image of $Lie(G_{\mathbb{Q}})$ in $Lie(Aut(\pi_1^{geom}(\mathbb{P}^1 \setminus \{0, 1, \infty\})))$ is free, generated by certain elements \tilde{s}_{2n+1} of weight 2n + 1, n = 1, 2, ...

Theorem 5 (Hain-Matsumoto) The image of $Lie(G_{\mathbb{Q}})$ in $Lie(Aut(\pi_1^{geom}(\mathbb{P}^1 \setminus \{0, 1, \infty\})))$ is generated by the \tilde{s}_{2n+1} .

Idea: Factor the action of $\text{Lie}(G_{\mathbb{Q}})$ through $\mathcal{L}_{\mathbb{Z}}^{\text{mot}}$.

Multiple zeta-values

Let \mathcal{L}_{Hdg} be the $\mathbb{C}\text{-Lie}$ algebra governing Tate MHS. Since

$$\mathsf{Ext}^{1}_{MHS}(\mathbb{Q},\mathbb{Q}(n)) = \mathbb{C}/(2\pi i)^{n}\mathbb{Q},$$
$$\mathsf{Ext}^{p}_{MHS}(\mathbb{Q},\mathbb{Q}(n)) = 0; \ p \ge 2$$

 \mathcal{L}_{Hdg} is the free graded pro-Lie algebra on $\prod_n (\mathbb{C}/(2\pi i)^n \mathbb{Q})^{\vee}$.

The Hodge realization gives the map of co-Lie algebras

$$\mathsf{Re}_{\mathsf{Hdg}}:(\mathcal{L}^{\mathsf{mot}}_{\mathbb{Z}})^{\vee}\to\mathcal{L}^{\vee}_{\mathsf{Hdg}},$$

so $\operatorname{Re}_{\operatorname{Hdg}}(s_{2n+1}^{\vee})$ is a complex number (mod $(2\pi i)^{2n+1}\mathbb{Q}$). In fact:

$$\operatorname{Re}_{\operatorname{Hdg}}(s_{2n+1}^{\vee}) = \zeta(2n+1) \mod (2\pi i)^{2n+1} \mathbb{Q}.$$

The element s_{2n+1}^{\vee} is just a generator for $H^1(\operatorname{Spec} \mathbb{Q}, \mathbb{Q}(n+1))$, i.e., an extension

$$0 \to \mathbb{Q}(0) \to E_{2n+1} \to \mathbb{Q}(n+1) \to 0,$$

and $\operatorname{Re}_{\operatorname{Hdg}}(s_{2n+1}^{\vee})$ is the *period* of this extension. One can construct more complicated "framed objects" in $TM(\mathbb{Z})$ and get other periods.

Using the degeneration divisors in $\overline{\mathcal{M}}_{0,n}$, Goncharov and Manin have constructed framed mixed Tate motives $Z(k_1, \ldots, k_r)$, $k_r \geq 2$, with

$$\mathsf{Per}(Z(k_1,\ldots,k_r)) = \zeta(k_1,\ldots,k_r)$$

where $\zeta(k_1, \ldots, k_r)$ is the multiple zeta-value

$$\zeta(k_1,...,k_r) := \sum_{1 \le n_1 < ... < n_r} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}}$$

This leads to:

Theorem 6 (Terasoma) Let L_n be the \mathbb{Q} -subspace of \mathbb{C} generated by the $\zeta(k_1, \ldots, k_r)$ with $n = \sum_i k_i$. Then

 $\dim_{\mathbb{Q}} L_n \leq d_n,$

where d_n is defined by $d_0 = 1$, $d_1 = 0$, $d_2 = 1$ and $d_{i+3} = d_{i+1} + d_i$.

Proof. The $\zeta(k_1, \ldots, k_r)$ with $n = \sum_i k_i$ are periods of framed mixed Tate motives M such that

 $S(M) := \{i \mid \operatorname{gr}_i^W M \neq 0\}$

is supported in [0, n] and if i < j are in S(M), then j-i is odd and ≥ 3 . Using the structure of $\mathcal{L}_{\mathbb{Z}}^{\text{mot}}$, one shows that the dimension of such motives (modulo framed equivalence) is exactly d_n . Thus their space of periods has dimension $\leq d_n$.

Conjecture 3 (Zagier) $\dim_{\mathbb{Q}} L_n = d_n$.

Thank you