Gromov-Witten Invariants

Basic Notions seminar, Harvard University 26th April 2004

Tom Coates

Some motivation: two problems

- How many rational curves of degree d are there on a quintic threefold $Q \subset \mathbf{P}^{4}$?
- define the quintic threefold
- How many rational curves of degree d are there in \mathbf{P}^{2} which pass through $3 d-1$ general points?
- this is the degree of the relevant Severi variety

The first problem could make sense

We're thinking about degree- d holomorphic maps $f: \mathbf{P}^{1} \rightarrow Q$. The tangent space to the space of such maps is

$$
H^{0}\left(\mathbf{P}^{1}, f^{\star} T Q\right)
$$

Riemann-Roch says that we expect the dimension of the space of such maps to be 3

But this counts parametrized maps; we should regard two such maps f_{1}, f_{2} as the same if they differ by a reparametrization of the domain.
$\operatorname{Aut}\left(\mathbf{P}^{1}\right)$ is 3-dimensional, so we expect $\left\{f: \mathbf{P}^{1} \rightarrow Q\right\} / \sim$ to consist of isolated points.

The second problem could make sense

General approach:
$\{$ maps from n-pointed curves to $X\} / \sim \xrightarrow{\mathrm{ev}_{i}} X$
We want to compute

$$
\#\left(\mathrm{ev}_{1}^{-1}\left(p_{1}\right) \cap \ldots \cap \mathrm{ev}_{n}^{-1}\left(p_{n}\right)\right)
$$

Applying Riemann-Roch again, we expect that

$$
\operatorname{dim}_{\mathrm{C}}\{\mathrm{maps}\} / \sim=n+(1-g)\left(\operatorname{dim}_{\mathrm{C}} X-3\right)+\left\langle c_{1}(T X), d\right\rangle
$$

Take $X=\mathbf{P}^{2}$, degree $=d, n=3 d-1$. Then the expected dimension is $6 d-2$, so...

Compactifying our spaces of maps

Since we want to intersect cycles, we should compactify our spaces of maps.

Model example: Deligne-Mumford space $\overline{\mathcal{M}}_{g, n}$.

- compactification of the space of smooth curves of genus g with n distinct marked points

Definition of $\overline{\mathcal{M}}_{g, n}$: we allow nodal curves, but require stability.

- geometrically meaningful compactification
- these are smooth varieties ($g=0$) / orbifolds ($g>0$)

Examples: $\overline{\mathcal{M}}_{0,4}, \overline{\mathcal{M}}_{0,5}$

Moduli spaces of stable maps

Stability for $\overline{\mathcal{M}}_{g, n}$ says "no infinitesimal automorphisms".

We mimic this definition, but work over the base X.

Definition of the moduli space of stable maps $\overline{\mathcal{M}}_{g, n}(X, d)$:

- introduced by Kontsevich (1994)
- construct via Hilbert schemes; get a stack / orbispace

Key property: if X is a projective variety, $\overline{\mathcal{M}}_{g, n}(X, d)$ is compact.

Good examples

$\overline{\mathcal{M}}_{0, n}(X, 0)=X \times \overline{\mathcal{M}}_{0, n}$

- check: this has the expected dimension
$\overline{\mathcal{M}}_{0,0}\left(\mathrm{P}^{2}, 2\right)$ is the space of complete conics in P^{2}
- tiny subtlety: automorphisms

The moduli spaces $\overline{\mathcal{M}}_{0, n}\left(\mathbf{P}^{N}, d\right)$ are smooth orbifolds and have the expected dimension.

- see e.g. Fulton-Pandharipande, Notes on stable maps...

Bad examples

$\overline{\mathcal{M}}_{1,1}(X, 0)=X \times \overline{\mathcal{M}}_{1,1}$

- virtual dimension $=1$
- dimension $=\operatorname{dim} X+1$
$\overline{\mathcal{M}}_{1,0}\left(\mathrm{P}^{2}, 3\right)$
- "compactifying strata" have bigger dimension than the "main stratum"

In the general (non-convex) case, spaces of stable maps are usually also non-reduced and singular.

Properties

$\overline{\mathcal{M}}_{g, n}(X, d)$ is compact.
In the case where $X=\mathbf{P}^{N}$ and $g=0$:
$-\overline{\mathcal{M}}_{0, n}(X, d)$ is a smooth orbifold of the expected dimension

- the set $\mathcal{M}_{0, n}(X, d)$ of stable maps from smooth curves is open
- the complement is a divisor with normal crossings
- the set $\overline{\mathcal{M}}_{0, n}^{*}(X, d)$ of automorphism-free stable maps is open

In general, all this remains "virtually true".

- virtual fundamental class: Li-Tian, Behrend-Fantechi

Gromov-Witten invariants

Definition
Example:

$$
\int_{\overline{\mathcal{M}}_{0,3}(X, 0)} \operatorname{ev}_{1}^{\star} \alpha \wedge \operatorname{ev}_{2}^{\star} \beta \wedge \operatorname{ev}_{3}^{\star} \gamma=\int_{X} \alpha \wedge \beta \wedge \gamma
$$

These are the structure constants for the cup product with respect to the Poincaré pairing.

Example:

$$
\int_{\overline{\mathcal{M}}_{0,3 d-1}\left(\mathbf{P}^{2}, d\right)} \operatorname{ev}_{1}^{\star} P^{2} \wedge \operatorname{ev}_{2}^{\star} P^{2} \ldots \wedge \operatorname{ev}_{3 d-1}^{\star} P^{2}
$$

This gives the number of degree- d rational curves in \mathbf{P}^{2} through $3 d-1$ general points.

Topologically twisted non-linear sigma models

Fano or Calabi-Yau manifold $X \longrightarrow$ topologically twisted $\mathrm{NL} \sigma \mathrm{M}$
$\mathrm{NL} \sigma \mathrm{M}$: fields are maps $f: \Sigma \rightarrow X$ (bosonic) plus sections of spin bundles on the Riemann surface Σ (fermionic).
topological twisting: modify fields \longrightarrow supersymmetry
consequences:

- correlation functions of physical operators are independent of the metric on Σ, so this is a 'topological field theory"
- physical states \longleftrightarrow cohomology classes on X
- get an associative product on the space of physical states

Algebra structure: what?

Pick a basis $\phi_{1}, \ldots, \phi_{N}$ for $H^{\star}(X)$, so that $t \in H^{\star}(X)$ is

$$
t=t^{1} \phi_{1}+\ldots+t^{N} \phi_{N}
$$

Define the genus-zero GW potential $F^{0}: H^{\star}(X) \rightarrow \mathrm{C}[[Q]]$ by

$$
\Phi(t)=\sum_{n, d} \sum_{i_{1}, \ldots, i_{n}} \frac{Q^{d} t_{i_{1}} \ldots t_{i_{n}}}{n!} \int_{\overline{\mathcal{M}}_{0, n}(X, d)} \operatorname{ev}_{1}^{\star} \phi_{i_{1}} \wedge \ldots \wedge \mathrm{ev}_{n}^{\star} \phi_{i_{n}}
$$

This is a formal series in t^{1}, \ldots, t^{N} and Q whose Taylor coefficients are genus-zero Gromov-Witten invariants.

Let $g_{a b}=\left(\phi_{a}, \phi_{b}\right)$ - Poincaré pairing — and $\partial_{a}=\frac{\partial}{\partial t^{a}}$. Then

$$
\phi_{a} \star \phi_{b}=C_{a b}{ }^{c}(t) \phi_{c}
$$

where $C_{a b}{ }^{c}(t)=\partial_{a} \partial_{b} \partial_{k} \Phi(t) g^{k c}$.

Algebra structure: why?

This algebra is manifestly commutative: $\partial_{a} \partial_{b} \partial_{k} \Phi(t)=\partial_{b} \partial_{a} \partial_{k} \Phi(t)$.
For associativity, we need:

$$
\partial_{a} \partial_{b} \partial_{k} \Phi(t) g^{k l} \partial_{l} \partial_{c} \partial_{d} \Phi(t)=\partial_{a} \partial_{d} \partial_{k} \Phi(t) g^{k l} \partial_{l} \partial_{b} \partial_{c} \Phi(t)
$$

There is a forgetful map ct: $\overline{\mathcal{M}}_{0, n+4}(X, d) \rightarrow \overline{\mathcal{M}}_{0,4}$.
Now $\partial_{a} \partial_{b} \partial_{c} \partial_{d} \Phi(t)$ is

$$
\sum \frac{Q^{d} t_{i_{1} \ldots t} t_{i n}}{n!} \int_{\overline{\mathcal{M}}_{0, n+4}}(X, d) \operatorname{ev}_{1}^{\star} \phi_{a} \wedge \operatorname{ev}_{2}^{\star} \phi_{b} \wedge \operatorname{ev}_{3}^{\star} \phi_{c} \wedge \operatorname{ev}_{4}^{\star} \phi_{d} \wedge \operatorname{ev}_{5}^{\star} \phi_{i_{1}} \wedge \ldots \wedge \mathrm{ev}_{n+4}^{\star} \phi_{i_{n}}
$$

Consider

$$
\sum \frac{Q^{d} t_{i_{1}} \ldots t_{i_{n}}}{n!} \int_{\overline{\mathcal{M}}_{0, n+4}(X, d)}(\ldots \text { as above. } \ldots) \cap\left[\mathrm{ct}^{-1}(\lambda)\right]
$$

for $\lambda \in \overline{\mathcal{M}}_{0,4} \cong \mathbf{P}^{1}$ and specialize to $\lambda=0, \lambda=\infty$.

Algebra structure: so what?

For \mathbf{P}^{2}, the potential $\Phi(x, y, z)$ is

$$
\sum_{a, b, c, d \geq 0} \frac{Q^{d} x^{a} y^{b} z^{c}}{a!b!c!} \int_{\overline{\mathcal{M}}_{0, a+b+c}}\left(\mathbf{P}^{2}, d\right) \overbrace{\mathrm{ev}_{1}^{\star} 1 \wedge \ldots}^{a} \wedge \overbrace{\mathrm{ev}_{a+1}^{\star} P \wedge \ldots . .}^{b} \wedge \overbrace{\operatorname{ev}_{a+b+1}^{\star} P^{2} \wedge \ldots}^{c}
$$

The degree-zero part is $\frac{1}{2} x^{2} z+\frac{1}{2} x y^{2}$.
There are no other x 's: compute

$$
\int_{\overline{\mathcal{M}}_{0, a+b+c}\left(\mathbf{P}^{2}, d\right)} \operatorname{ev}_{1}^{\star} 1 \wedge \ldots
$$

via

$$
\overline{\mathcal{M}}_{0, a+b+c}\left(\mathbf{P}^{2}, d\right) \rightarrow \overline{\mathcal{M}}_{0, a+b+c-1}\left(\mathbf{P}^{2}, d\right) \rightarrow \mathrm{pt}
$$

P^{2} example (continued)

Also,

$$
\int_{\overline{\mathcal{M}}_{0, a+b+c}\left(\mathbf{P}^{2}, d\right)} \operatorname{ev}_{1}^{\star} P \wedge(\text { stuff })=d \int_{\overline{\mathcal{M}}_{0, a+b+c-1}}\left(\mathbf{P}^{2}, d\right) \text { (stuff) }
$$

so

$$
\Phi(x, y, z)=\frac{1}{2} x^{2} z+\frac{1}{2} x y^{2}+\sum_{d>0} Q^{d} e^{d y} \frac{z^{3 d-1}}{(3 d-1)!} N_{d}
$$

where N_{d} is the number of rational curves of degree d in \mathbf{P}^{2} which pass through $3 d-1$ general points.

Write

$$
\varphi(x, y, z)=\sum_{d>0} Q^{d} e^{d y} \frac{z^{3 d-1}}{(3 d-1)!} N_{d}
$$

P^{2} example (continued)

The WDVV (associativity) equations are equivalent to

$$
\varphi_{z z z}=\varphi_{y y z}^{2}-\varphi_{y y y} \varphi_{y z z}
$$

This gives the recursion

$$
N(d)=\sum_{k+l=d} N(k) N(l) k^{2} l\left[l\binom{3 d-4}{3 k-2}-k\binom{3 d-4}{3 k-1}\right]
$$

for $d \geq 2$.
Since $N(1)=1$, we can solve:

d	1	2	3	4	5	6	7	8	
$N(d)$	1	1	12	620	87304	26312976	14616808192	13525751027392	\cdots

Mirror symmetry

Back to our first problem: counting curves on a quintic threefold.

Mirror symmetry (after Witten, Vafa, Hori): equivalence of the topologically twisted NL $\sigma \mathrm{M}$ with a topologically twisted LandauGinzburg model.

In our Calabi-Yau case (Candelas, de la Ossa, Green, Parkes, Greene, Plesser, Morrison,...):
topologically twisted $\mathrm{NL} \sigma \mathrm{M}$ with target Q \downarrow
B-twisted $\mathrm{NL} \sigma \mathrm{M}$ with target Q^{\prime}, the "mirror of Q "

Why this helps

Recall that the coefficients of the associativity equations are defined in terms of Gromov-Witten invariants of Q.

Solutions to analogous differential equations on the mirror side can be written in terms of periods of Q^{\prime}

$$
\int_{\Gamma \subset Q^{\prime}} \Omega
$$

where Ω is the Calabi-Yau form on Q^{\prime}.

These satisfy Picard-Fuchs differential equations, so we can compute them.

Open problems

Find a satisfactory mathematical formulation of mirror symmetry

Higher-genus Gromov-Witten invariants:

- how to compute them
- their connection to enumerative geometry
- Gopakumar-Vafa conjecture

Connection to integrable systems

Thank you for coming

