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Some motivation: two problems

• How many rational curves of degree d are there on a quintic

threefold Q ⊂ P4?

– define the quintic threefold

• How many rational curves of degree d are there in P2 which

pass through 3d− 1 general points?

– this is the degree of the relevant Severi variety



The first problem could make sense

We’re thinking about degree-d holomorphic maps f : P1 → Q.

The tangent space to the space of such maps is

H0(P1, f?TQ)

Riemann–Roch says that we expect the dimension of the space

of such maps to be 3

But this counts parametrized maps; we should regard two such

maps f1, f2 as the same if they differ by a reparametrization of

the domain.

Aut(P1) is 3-dimensional, so we expect {f : P1 → Q}/ ∼ to

consist of isolated points.



The second problem could make sense

General approach:

{maps from n-pointed curves to X} / ∼
evi−→ X

We want to compute

#
(

ev−1
1 (p1) ∩ . . . ∩ ev−1

n (pn)
)

Applying Riemann–Roch again, we expect that

dimC{maps}/ ∼ = n + (1− g)(dimC X − 3) + 〈c1(TX), d〉

Take X = P2, degree = d, n = 3d − 1. Then the expected

dimension is 6d− 2, so. . .



Compactifying our spaces of maps

Since we want to intersect cycles, we should compactify our
spaces of maps.

Model example: Deligne–Mumford space Mg,n.

– compactification of the space of smooth curves of genus g
with n distinct marked points

Definition of Mg,n: we allow nodal curves, but require stability.

– geometrically meaningful compactification

– these are smooth varieties (g = 0) / orbifolds (g > 0)

Examples: M0,4, M0,5



Moduli spaces of stable maps

Stability for Mg,n says “no infinitesimal automorphisms”.

We mimic this definition, but work over the base X.

Definition of the moduli space of stable maps Mg,n(X, d):

– introduced by Kontsevich (1994)

– construct via Hilbert schemes; get a stack / orbispace

Key property : if X is a projective variety, Mg,n(X, d) is compact.



Good examples

M0,n(X,0) = X ×M0,n

– check: this has the expected dimension

M0,0(P
2,2) is the space of complete conics in P2

– tiny subtlety: automorphisms

The moduli spaces M0,n(P
N , d) are smooth orbifolds and have

the expected dimension.

– see e.g. Fulton–Pandharipande, Notes on stable maps. . .



Bad examples

M1,1(X,0) = X ×M1,1

– virtual dimension = 1

– dimension = dimX + 1

M1,0(P
2,3)

– “compactifying strata” have bigger dimension than the “main

stratum”

In the general (non-convex) case, spaces of stable maps are usu-

ally also non-reduced and singular.



Properties

Mg,n(X, d) is compact.

In the case where X = PN and g = 0:

– M0,n(X, d) is a smooth orbifold of the expected dimension

– the set M0,n(X, d) of stable maps from smooth curves is open

– the complement is a divisor with normal crossings

– the set M
∗
0,n(X, d) of automorphism-free stable maps is open

In general, all this remains “virtually true”.

– virtual fundamental class: Li–Tian, Behrend–Fantechi



Gromov–Witten invariants

Definition

Example:
∫

M0,3(X,0)
ev?

1α ∧ ev?
2β ∧ ev?

3γ =
∫

X
α ∧ β ∧ γ

These are the structure constants for the cup product with re-

spect to the Poincaré pairing.

Example:
∫

M0,3d−1(P
2,d)

ev?
1P2 ∧ ev?

2P2 . . . ∧ ev?
3d−1P2

This gives the number of degree-d rational curves in P2 through

3d− 1 general points.



Topologically twisted non-linear sigma models

Fano or Calabi–Yau manifold X −→ topologically twisted NLσM

NLσM: fields are maps f : Σ → X (bosonic) plus sections of

spin bundles on the Riemann surface Σ (fermionic).

topological twisting: modify fields −→ supersymmetry

consequences:

– correlation functions of physical operators are independent

of the metric on Σ, so this is a ‘topological field theory”

– physical states ←→ cohomology classes on X

– get an associative product on the space of physical states



Algebra structure: what?

Pick a basis φ1, . . . , φN for H?(X), so that t ∈ H?(X) is

t = t1φ1 + . . . + tNφN

Define the genus-zero GW potential F0 : H?(X)→ C[[Q]] by

Φ(t) =
∑

n,d

∑

i1,...,in

Qd ti1 . . . tin
n!

∫

M0,n(X,d)
ev?

1φi1 ∧ . . . ∧ ev?
nφin

This is a formal series in t1, . . . , tN and Q whose Taylor coeffi-

cients are genus-zero Gromov–Witten invariants.

Let gab = (φa, φb) — Poincaré pairing — and ∂a = ∂
∂ta. Then

φa ? φb = C c
ab (t)φc

where C c
ab (t) = ∂a∂b∂kΦ(t)gkc.



Algebra structure: why?

This algebra is manifestly commutative: ∂a∂b∂kΦ(t) = ∂b∂a∂kΦ(t).

For associativity, we need:

∂a∂b∂kΦ(t)gkl∂l∂c∂dΦ(t) = ∂a∂d∂kΦ(t)gkl∂l∂b∂cΦ(t)

There is a forgetful map ct : M0,n+4(X, d)→M0,4.

Now ∂a∂b∂c∂dΦ(t) is

∑ Qd ti1
...tin

n!

∫

M0,n+4(X,d)
ev?

1φa∧ev?
2φb∧ev

?
3φc∧ev?

4φd∧ev
?
5φi1
∧...∧ev?

n+4φin

Consider

∑ Qd ti1
...tin

n!

∫

M0,n+4(X,d)
(. . . as above. . . )∩[ct−1(λ)]

for λ ∈M0,4
∼= P1 and specialize to λ = 0, λ =∞.



Algebra structure: so what?

For P2, the potential Φ(x, y, z) is

∑

a,b,c,d≥0

Qdxaybzc

a!b!c!

∫

M0,a+b+c(P
2,d)

a
︷ ︸︸ ︷

ev?
11∧...∧

b
︷ ︸︸ ︷

ev?
a+1P∧...∧

c
︷ ︸︸ ︷

ev?
a+b+1P2∧...

The degree-zero part is 1
2x2z + 1

2xy2.

There are no other x’s: compute
∫

M0,a+b+c(P
2,d)

ev?
11 ∧ . . .

via

M0,a+b+c(P
2, d)→M0,a+b+c−1(P

2, d)→ pt



P2 example (continued)

Also,
∫

M0,a+b+c(P
2,d)

ev?
1P ∧ (stuff) = d

∫

M0,a+b+c−1(P
2,d)

(stuff)

so

Φ(x, y, z) =
1

2
x2z +

1

2
xy2 +

∑

d>0

Qdedy z3d−1

(3d− 1)!
Nd

where Nd is the number of rational curves of degree d in P2

which pass through 3d− 1 general points.

Write

ϕ(x, y, z) =
∑

d>0

Qdedy z3d−1

(3d− 1)!
Nd



P2 example (continued)

The WDVV (associativity) equations are equivalent to

ϕzzz = ϕ2
yyz − ϕyyyϕyzz

This gives the recursion

N(d) =
∑

k+l=d

N(k)N(l)k2l

[

l

(
3d− 4

3k − 2

)

− k

(
3d− 4

3k − 1

)]

for d ≥ 2.

Since N(1) = 1, we can solve:

d 1 2 3 4 5 6 7 8

N(d) 1 1 12 620 87304 26312976 14616808192 13525751027392
. . .



Mirror symmetry

Back to our first problem: counting curves on a quintic threefold.

Mirror symmetry (after Witten, Vafa, Hori): equivalence of the

topologically twisted NLσM with a topologically twisted Landau–

Ginzburg model.

In our Calabi–Yau case (Candelas, de la Ossa, Green, Parkes,

Greene, Plesser, Morrison,. . . ):

topologically twisted NLσM with target Q

l

B-twisted NLσM with target Q′, the “mirror of Q”



Why this helps

Recall that the coefficients of the associativity equations are

defined in terms of Gromov–Witten invariants of Q.

Solutions to analogous differential equations on the mirror side

can be written in terms of periods of Q′

∫

Γ⊂Q′
Ω

where Ω is the Calabi–Yau form on Q′.

These satisfy Picard–Fuchs differential equations, so we can

compute them.



Open problems

Find a satisfactory mathematical formulation of mirror symmetry

Higher-genus Gromov–Witten invariants:

– how to compute them

– their connection to enumerative geometry

– Gopakumar–Vafa conjecture

Connection to integrable systems



Thank you for coming


