4-descent on the elliptic curve $y^{2}=x^{3}+7823$

Jennifer Balakrishnan

May 17, 2003

Abstract

We outline the refinement of the 4-descent used by Michael Stoll in [10] to find the Mordell-Weil generator of the elliptic curve $y^{2}=x^{3}+7823$. In general, given a 2-covering space of an elliptic curve, the procedure yields the set of everywhere locally soluble 4covering spaces lifting it.

1 Introduction

If E is an elliptic curve over \mathbb{Q}, then we know by a theorem of Mordell that its group of rational points is fi nitely generated. Thus, it is of interest to fi nd the set of generators of the Mordell-Weil group, the group of rational points on the elliptic curve $E(\mathbb{Q})$.

1.1 Points of finite order

In examining the Mordell-Weil group of $y^{2}=x^{3}+7823$, we know that it could potentially have nontrivial points of fi nite order.

However, by the Nagell-Lutz theorem, as 7823 is prime, $-7823^{\frac{1}{3}}$ is irrational, and so there are no rational points of order 2. Checking factors of the discriminant, we see that $y^{2}=x^{3}+$ 7823 has no points of any fi nite order. Thus, whatever rational points $y^{2}=x^{3}+7823$ has, these points have infi nite order

1.2 Points of infinite order

Through the work of Kolyvagin [7] and Gross-Zagier [6], we know that since the L-series of $E=y^{2}=x^{3}+7823$ has a simple zero at $s=1$, the group $E(\mathbb{Q})$ must be isomorphic to $\mathbb{Z} . E$ is thus of rank 1 and we have one rational point of infi nite order generating the Mordell-Weil group.

1.3 The Mordell-Weil generator of $y^{2}=x^{3}+7823$

Until January of 2002, the Mordell-Weil generators of all Mordell curves, those of the form $y^{2}=x^{3}+D$, for $|D| \leq 10,000$ had been found, except for $D=7823$. A table of this information can be found at [5]. Conspicuously absent was the case $D=7823$; fi nding the Mordell-Weil
generator of $y^{2}=x^{3}+7823$, which was known to have large height, had eluded previous methods of search. Nevertheless, Stoll's method [10] of 4-descents was successfully able to fi nd the generator with coordinates

$$
\begin{aligned}
& x=\frac{2263582143321421502100209233517777}{11981673410095561^{2}} \\
& y=\frac{186398152584623305624837551485596770028144776655756}{11981673410095561^{3}}
\end{aligned}
$$

2 2-descents

2.1 Background

We fi rst perform a 2-descent on $y^{2}=x^{3}+7823$, en route to Stoll's method of 4-descent, to fi nd a rational point on $y^{2}=x^{3}+7823$.

Recall that an exact sequence of groups is a sequence of maps $\phi_{i}: A_{i} \rightarrow A_{i+1}$ between groups A_{i} such that im $\phi_{i}=\operatorname{ker} \phi_{i+1}$. A short exact sequence is written as follows:

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

In performing the 2-descent, we wish to understand the short exact sequence

$$
0 \rightarrow E(\mathbb{Q}) / 2 E(\mathbb{Q}) \rightarrow S^{(2)}(E / \mathbb{Q}) \rightarrow \amalg(E / \mathbb{Q})[2] \rightarrow 0 .
$$

We shall explain the objects $S^{(2)}(E / \mathbb{Q})$ and $\amalg(E / \mathbb{Q})[2]$ as we encounter them in the process of carrying out the 2 -descent.

We begin by categorizing the principal homogeneous spaces associated to E : these are genus 1 (algebraic) curves D with a polynomial mapping $\phi: D \rightarrow E$, such that E is isomorphic to D over an extension of \mathbb{Q}. In the general 2-descent, the ϕ we consider are called 2-coverings and they have degree 4 . The curves D are might not have rational points, but when they do, these rational points map to rational points on E. Thus, we have a "descent" from $D \rightarrow E$.

A comprehensive listing of the 2-coverings can be easily computed using a program such as Cremona's mwrank [3]. In deciding which spaces we want to descend from to search globally (i.e., for our rational point), we should first consider the local question. Thus, we test local solubility: solubility over \mathbb{R} and over \mathbb{Q}_{p} for every p. The set of 2 -coverings which are locally soluble correspond to elements of the 2 -Selmer group. For those descendants that are found to be locally soluble, we consider the global question. Indeed, local solubility does not imply global solubility; those quartics that fail to satisfy the "Hasse principle," correspond to nontrivial elements of the Shafarevich-Tate group \amalg associated to the elliptic curve.

2.2 Cremona's algorithm for 2-descents

The following procedure is an implementation of the general 2-descent algorithm for elliptic curves, which can be found in more generality in Cremona's book [4]. For the underlying theory and proofs, we direct the reader to Silverman's [9]. Recall that the purpose of carrying out a 2-descent is to fi nd the homogeneous spaces D, which are given by equations of the form

$$
D: y^{2}=g(x)=a x^{4}+b x^{3}+c x^{2}+d x+e
$$

with $a, b, c, d, e \in \mathbb{Q}$. These a, b, c, d, e are defi ned in terms of I and J :

$$
\begin{aligned}
& I=12 a e-3 b d+c^{2} \\
& J=72 a c e+9 b c d-27 a d^{2}-27 e b^{2} c^{3}
\end{aligned}
$$

There could possibly be more than one set of (I, J). If $2^{6} \nmid J$, then we have just one (I, J) pair, namely $\left(c_{4}, 2 c_{6}\right)$. Otherwise, we have two (I, J) that we must consider: the original $\left(c_{4}, 2 c_{6}\right)$ and also $\left(2^{-4} c_{4}, 2^{-5} c_{6}\right)$.

Now consider the curve $E_{I, J}$ isomorphic to E :

$$
E_{I, J}: Y^{2}=F(X)=X^{3}-27 I X-27 J .
$$

This is the curve for which the descent will be used. After a point $\left(x^{\prime \prime}, y^{\prime \prime}\right)$ has been found on H, the descent map will take it to $\left(x^{\prime}, y^{\prime}\right)$ on $E_{I, J}$, and a simple transformation can be made to recover (x, y) on our original elliptic curve.

To find the map from D to E, we must fi rst consider covariants g and g_{6} attached to our $g \in D:$

$$
\begin{gathered}
g_{4}(X, Y)=\left(3 b^{2}-8 a c\right) X^{4}+4(b c-6 a d) X^{3} Y \\
+2\left(2 c^{2}-24 a e-3 b d\right) X^{2} Y^{2}+4(c d-6 b e) X Y^{3}+\left(3 d^{2}-8 c e\right) Y^{4} \\
g_{6}(X, Y)=\left(b^{3}+8 a^{2} d-4 a b c\right) X^{6}+2\left(16 a^{2} e+2 a b d-4 a c^{2}+b^{2} c\right) X^{5} Y+5\left(8 a b e+b^{2} d-4 a c d\right) X^{4} Y^{2} \\
+20\left(b^{2} e-a d^{2}\right) X^{3} Y^{3}-5\left(8 a d e+b d^{2}-4 b c e\right) X^{2} Y^{4}-2\left(16 a e^{2}+2 b d e-4 c^{2} e+c d^{2}\right) X Y^{5}-\left(d^{3}+8 b e^{2}-4 c d e\right) Y^{6}
\end{gathered}
$$

as well as two seminvariants p and r :

$$
\begin{gathered}
p=g_{4}(1,0)=3 b^{2}-8 a c \\
r=g_{6}(1,0)=b^{3}+8 a^{2} d-4 a b c
\end{gathered}
$$

Then our 2-covering map ξ takes rational points (x, y) on D to rational points on $E_{I, J}$ in the following manner:

$$
\xi:(x, y) \rightarrow\left(\frac{3 g_{4}(x, 1)}{(2 y)^{2}}, \frac{27 g_{6}(x, 1)}{(2 y)^{3}}\right)
$$

This 2-covering map ξ is a rational map of degree 4 from $D(\mathbb{Q})$ to $E_{I, J}(\mathbb{Q})$.
Now we wish to fi nd all such D associated with $E_{, J}$. Since the D are of degree 4 , we have the following possibilities:

- Type 1: 0 real roots,
- Type 2: 4 real roots, or
- Type 3: 2 real roots.

If $\Delta<0$, then all D are Type 3; Types 1 and 2 homogeneous spaces are encountered when $\Delta>0$. In the case of $y^{2}=x^{3}+7823$, the discriminant Δ is $-16 \cdot 27 \cdot 7823^{2}<0$ and thus all homogeneous spaces will be Type 3. For a thorough development of how one can fi nd bounds on the coeffi cients of D, we refer the reader to [1]. We summarize the bounds given there for Type 3 D:

Consider the resolvent cubic $\theta^{3}-3 I \theta+J=0$, with discriminant $27 \Delta, D=4 I^{3}-J^{2} \neq 0$. Again, since $\Delta<0$, this cubic has one real root θ; this θ is involved in the bounds of a, b, c as follows:

$$
\begin{gathered}
\frac{1}{3} \theta-\sqrt{\frac{4}{27}\left(\theta^{2}-I\right)} \leq a \leq \frac{1}{3} \theta+\sqrt{\frac{4}{27}\left(\theta^{2}-I\right)} \\
-2|a|<b \leq 2|a| \\
\frac{9 a^{2}-2 a \theta+\frac{1}{3}\left(4 I-\theta^{2}\right)+3 b^{2}}{8|a|} \leq c \cdot \operatorname{sign}(a) \leq \frac{4 a \theta+3 b^{2}}{8|a|} .
\end{gathered}
$$

Recalling that $r=g_{6}(1,0)=b^{3}+8 a^{2} d-4 a b c$, we can find d and e :

$$
\begin{aligned}
d & =\frac{r-b^{3}+4 a b c}{8 a^{2}} \\
e & =\frac{I+3 b d-c^{2}}{12 a} .
\end{aligned}
$$

Thus, given a pair (I, J), we see that all possible 2 -coverings can be found by running a simple computer search for a, b, c, d, e.

2.3 Running the algorithm on mwrank

The above procedure has been implemented by Cremona in the program mwrank [3]. Thus, for the elliptic curve $y^{2}=x^{3}+7823$, we use mwrank to fi nd these coeffi cients a, b, c, d, e and hence, the 2 -covering spaces.

The following is the mwrank output:

```
Enter curve: [0,0,0,0,7823]
Curve [0,0,0,0,7823] :
Basic pair: I=0, J=-211221 disc=-44614310841
Two (I,J) pairs Looking for quartics with I = 0, J = -211221
Looking for Type 3 quartics:
Trying positive a from 1 up to 17
Trying negative a from -1 down to -11
Finished looking for Type 3 quartics.
Looking for quartics with I = 0, J = -13518144
Looking for Type 3 quartics:
Trying positive a from 1 up to 68
(30,-12,48,116,-18) --nontrivial...--new (B) #1
(41,-16,-6,112,-11) --nontrivial...--equivalent to (B) #1
```

```
Trying negative a from -1 down to -45
(-11,-20,408,1784,2072) --nontrivial...--equivalent to (B) #1
(-18,-28,312,996,838) --nontrivial...--equivalent to (B) #1
Finished looking for Type 3 quartics.
```

As seen above, mwrank fi nds that, up to equivalence, there is one 2-covering space:

$$
D: y^{2}=-18 x^{4}+116 x^{3}+48 x^{2}-12 x+30 .
$$

Now, to fi nd a fi nd a rational point on D, we first check for local solubility. mwrank verifi es that D is locally soluble. Nevertheless, local solubility does not imply global solubility, and this check must be performed as well. However, even if a rational point exists on D, it could be of rather large height, and hence, diffi cult to fi nd in a limited search region. In practice, when running a search over a fi xed region, we cannot tell the difference between a quartic that has a large rational solution and one that does not have any rational solutions. This poses computational obstacles. The former challenge is precisely the situation encountered with $y^{2}=x^{3}+7823$: the Gross-Zagier theorem tells us that the canonical height of the Mordell-Weil generator should be about 77.6. Thus, even though a 2 -descent allows us to consider a smaller search region on the covering space, as we have a degree 4 map taking a point on D to a point on E, points on D might not be small enough, computationally speaking. Thus we must take another descent, hopefully resulting in a practical computation to fi nd the Mordell-Weil generator.

3 4-descents

3.1 Background

In the 2-descent, we considered the short exact sequence

$$
0 \rightarrow E(\mathbb{Q}) / 2 E(\mathbb{Q}) \rightarrow S^{(2)}(E / \mathbb{Q}) \rightarrow \amalg(E / \mathbb{Q})[2] \rightarrow 0
$$

Similarly, with the 4-descent we have the sequence

$$
0 \rightarrow E(\mathbb{Q}) / 4 E(\mathbb{Q}) \rightarrow S^{(4)}(E / \mathbb{Q}) \rightarrow \amalg(E / \mathbb{Q})[4] \rightarrow 0
$$

Recall that the purpose of the 2-descent was to fi nd the locally soluble principle homogeneous spaces D that lifted the elliptic curve E, resulting in maps $\phi: D \rightarrow E$. These D, members of $S^{(2)}(E / \mathbb{Q})$, were found to be quartics. Thus, in carrying out the 4-descent, we wish to find the locally soluble principle homogeneous spaces C lifting D, ultimately resulting in the map $\phi^{\prime}: C \rightarrow D \rightarrow E$.

We are curious as to what these elements of $S^{(4)}(E / \mathbb{Q})$ look like. ${ }^{1}$ We begin with an element D^{\prime} of $S^{(2)}(E / \mathbb{Q})$,homogenize, and make a change of variables so that our 2-covering is of the form $D: a Y^{2}=G(X, Z)$, with $G(X, Z)$ a binary quartic form with coeffi cients in $\mathbb{Z}, G(1,0)=1$ and $a \in \mathbb{Q}^{*}$ the coeffi cient of the quartic term of our original g.

We fi nd our 4-covering from the following equation:

$$
X-\theta Z=\varepsilon\left(x_{0}+x_{1} \theta+x_{2} \theta^{2}+x_{3} \theta^{3}\right)^{2}
$$

[^0]for, equating coeffi cients of θ^{j} yields that
$$
X=Q_{3}(x), Z=Q_{4}(x), 0=Q_{1}(x), 0=Q_{2}(x)
$$
where the Q_{j} are quadratic forms, given in terms of the variables x_{1}, \ldots, x_{4}. Now, since $Q_{1}(x)=$ $Q_{2}(x)=0$, we have an intersection of two quadric surfaces in \mathbb{P}^{3} as our 4-covering C. We shall represent these two quadric surfaces Q_{1} and Q_{2} by 4-by-4 matrices M_{1} and M_{2}.

Now consider the mapping from C to D. Given the matrices M_{1} and M_{2}, consider $M_{1}^{\prime}=\operatorname{adj}\left(M_{1}\right)$ and $M_{2}^{\prime}=\operatorname{adj}\left(M_{2}\right)$. Let d_{1} and d_{2} be the symmetric matrices determined by $\operatorname{adj}\left(t_{1} M_{1}^{\prime}+t_{2} M_{2}^{\prime}\right)=$ $t_{1}^{3} \sigma_{0}^{2} M_{1}^{\prime}+t_{1}^{2} t_{2} \sigma_{0} d_{1}+t_{1} t_{2}^{2} \sigma_{4} d_{2}+t_{2}^{3} \sigma_{4}^{2} M_{2}^{\prime}$. If $F_{1}(x)$ and $F_{2}(x)$ are quadratic forms such that $F_{1}(x)=x^{t} d_{1} x$ and $F_{2}(x)=x^{t} d_{2} x$, and x is a point where the two quadrics intersect, then we have the syzygy

$$
G^{2}=\sigma_{0} F_{1}^{4}-F_{1}^{3} F_{2} \sigma_{1}+F_{1}^{2} F_{2}^{2} \sigma_{2}-F_{1} F_{2}^{3} \sigma_{3}+F_{2}^{4} \sigma_{4}
$$

and a map ψ from C onto D given by

$$
(x, y) \rightarrow\left(\frac{-F_{1}(x)}{F_{2}(x)}, \frac{G(x)}{F_{2}(x)}\right) .
$$

It is simple to check that $\operatorname{det}\left(Q_{1}(x) t_{1}+Q_{2}(x) t_{2}\right)=a G\left(t_{1}, t_{2}\right)$, and thus we have a 4-descent extending the 2 -descent.

3.2 Result, sans Stoll's improvements

Again, fi nding a fi nite list of ψ and C is merely a computational task, but the resulting equations can be quite cumbersome. If these 4-coverings have large coeffi cients, then we run into the same problem we encountered with the 2-descent, searching for points remains a diffi culty.

For example, the 4-descent carried out on $E: y^{2}=x^{3}+7823$ results in the following matrices M_{1} and M_{2} :

$$
\begin{gathered}
M_{1}=\left(\begin{array}{cccc}
-22181252 & -12522843 & 485492211 & 2218020408 \\
-12522843 & 485492211 & 2218020408 & -2954387682 \\
485492211 & 2218020408 & -2954387682 & -65148580179 \\
2218020408 & -2954387682 & -65148580179 & -185865980697
\end{array}\right) \\
M_{2}=\left(\begin{array}{cccc}
383480 & 60588 & -9008739 & -37014651 \\
60588 & -9008739 & -37014651 & 71170650 \\
-9008739 & -37014651 & 7117650 & 1173510018 \\
-37014651 & 71170650 & 1173510018 & 2915000865
\end{array}\right)
\end{gathered}
$$

4 Stoll's method of 4-descent

Stoll begins his explanation with the caveat that it is "rather $a d$ hoc and with no theoretical underpinnings," but nevertheless "seems to work reasonably well in practice." Let the reader be forewarned.

The goal is to find matrices M_{1} and M_{2}^{\prime} with smaller entries, satisfying $\operatorname{det}\left(x M_{1}^{\prime}+M_{2}^{\prime}\right)=$ $g(x)$. The procedure begins with M_{1} : sending $x_{j} \rightarrow \sum_{i \neq j} a_{i} x_{j}$. This process is carried out for x_{1}, \ldots, x_{4}, until we end up with a satisfactorily smaller matrix. The same is done for M_{2}. Swapping M_{1} and M_{2} until no further improvements can be made, this procedure terminates. Next, a set of generators of $S L_{4}(\mathbb{Z})$ is chosen and applied to each of these matrices. If one of the matrices is made smaller, the above process is repeated for the smaller matrix.

This process, carried out on $E: y^{2}=x^{3}+7823$ results in the reduced 4-covering, given by the simultaneous equations as follows:

$$
\begin{aligned}
x_{1}^{2}+4 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{1} x_{4}-2 x_{2}^{2}-3 x_{3}^{2}+4 x_{3} x_{4}+x_{4}^{2} & =0 \\
x_{1}^{2}-6 x_{1} x_{4}+2 x_{2}^{2}+4 x_{2} x_{3}+3 x_{3}^{2}+2 x_{3} x_{4}+x_{4}^{2} & =0
\end{aligned}
$$

5 Finding the Mordell-Weil generator

As we found in section 2, carrying out a 2-descent on the curve $y^{2}=x^{3}+7823$ yields the following 2-covering space:

$$
C: y^{2}=-18 x^{4}+116 x^{3}+48 x^{2}-12 x+30
$$

The 4-covering space C lifting it, given by the following two equations:

$$
\begin{array}{r}
x_{1}^{2}+4 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{1} x_{4}-2 x_{2}^{2}-3 x_{3}^{2}+4 z_{3} x_{4}+x_{4}^{2}=0 \\
x_{1}^{2}-6 x_{1} x_{4}+2 x_{2}^{2}+4 x_{2} x_{3}+3 x_{3}^{2}+2 x_{3} x_{4}+x_{4}^{2}=0
\end{array}
$$

has the point $P=(-681: 116: 125:-142)$, from which we can fi nd the point

$$
Q=\left(\frac{53463613}{32109353}, \frac{23963346820191122}{32109353^{2}}\right)
$$

on D. This results in the Mordell-Weil generator on E, with coordinates

$$
\begin{aligned}
& x=\frac{2263582143321421502100209233517777}{11981673410095561^{2}} \\
& y=\frac{186398152584623305624837551485596770028144776655756}{11981673410095561^{3}}
\end{aligned}
$$

All of these computations were carried out with the MAGMA computer algebra system [2].

References

[1] B. J. Birch and H.P.F. Swinnerton-Dyer, Notes on elliptic curves. I., J. Reine Angew. Math. 212 (1963), 7-25.
[2] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265, Computational algebra and number theory (London, 1993).
[3] J. E. Cremona, mwrank (computer software), http://www.maths.nott.ac.uk/personal/jec/ftp/progs/.
[4] , Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997.
[5] J. Gebel, A. Pethö, and H. G. Zimmer, Data on Mordell's curve, http://diana.math.uni-sb.de/ simath/mordell/.
[6] B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), no. 2, 225-320.
[7] V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Birkhäuser Boston, Boston, MA, 1990, pp. 435-483.
[8] Siksek S. Merriman, J. R. and N. P. Smart, Explicit 4-descents on an elliptic curve, Acta. Arith. 77 (1996), 385-404.
[9] J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, 1992, Corrected reprint of the 1986 original.
[10] M. Stoll, Explicit 4-descent on an elliptic curve, http://www.faculty.iu-bremen.de/stoll/papers/4-descent.pdf.

[^0]: ${ }^{1}$ For a more rigorous approach to this investigation, see [8] and [10].

