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I.  Introduction to elliptic curves 
 

 Let F(x,y) be a degree-three polynomial in two variables, x and y.  A curve with the equation 

F(x,y)=0 is an elliptic curve if and only if it contains at least one point with rational coefficients, and the 

partial derivatives of F are never simultaneously equal to 0.  Elliptic curves are exciting to study because 

they are the next simplest kind of curve after lines and conics.  People know almost everything there is to 

know about lines and conics, but there are still many unsolved problems dealing with elliptic curves.  

Another reason why elliptic curves are interesting is because the points on any elliptic curve constitute a 

group1. 

 By doing certain changes of variables, every elliptic curve with rational coefficients can be 

expressed in the form y2 = x3 + ax2 + bx + c.  The changes of variables that are necessary to convert an 

arbitrary cubic equation to this form are very tedious, so I will not elaborate on them. 

 More generally, every elliptic curve can be expressed in the form  

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.  An equation of this form is called a Weierstrass equation.  For a 

given elliptic curve E, the Weierstrass equation with the smallest discriminant is called the minimal 

Weierstrass equation of the elliptic curve E.  This equation is sometimes used instead of the equation of the 

form y2 = x3 + ax2 + bx + c. 

 I will now describe the group law of the points on an elliptic curve E that is expressed in the form 

y2 = x3 + ax2 + bx + c.  If P and Q are two points on E and if l is the line joining them, then P+Q is defined 

to be the reflection across the x-axis of the third point at which l intersects E.  Since we can tell by looking 

at the equation of E that E is symmetric across the x-axis, it is clear that P+Q lies on E.  This proves that the 

group has closure.  The identity element of the group is the “point at infinity” (the point where all vertical 

lines meet), which we denote by the letter O.  The inverse of the point (x,y) is the point (x,-y). 

                                                           
1 A group G is a set of objects endowed with one operation (e.g., addition or multiplication) and satisfying 
four properties:  (1) G contains an identity element, (2) G contains the inverse of every object it contains, 
(3) the group operation of G is associative, and (4) G is closed under its group operation.  For future 
reference, a subset of a group that is in itself a group is called a subgroup. 
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II.  Reducing an elliptic curve modulo p and computing its conductor 
 

 In this paper, we are concerned with elliptic curves whose coefficients are rational numbers.  By 

multiplying the entire equation by the coefficents’ greatest common denominator, we come up with a cubic 

whose coefficients are integers.  If we like, we can reduce all these coefficients modulo some prime number 

p, to see what happens.  If Ep has no singularities (points at which both partial derivatives are zero), then p 

is called a “prime of good reduction” for the equation of E that we are using.  If Ep has one or more 

singularities, then p is called a “prime of bad reduction” for the equation of E that we are using.  There are 

two types of singularities that primes of bad reduction might cause, nodes (places where the curve crosses 

itself) and cusps. 

 It is easy to show that an elliptic curve with equation y2 = x3 + ax2 + bx + c has singularities if and 

only if f(x) = x3 + ax2 + bx + c has multiple roots, which is the same thing as saying that the discriminant of 

f is 0.  Since only finitely many primes can divide the discriminant, there are only finitely many primes p 

such that the discriminant is equal to 0 mod p.  Therefore, every elliptic curve E has only finitely many 

primes of bad reduction. 

 If we are using a minimal Weierstrass equation to define E, we can associate to E an integer that is 

called the conductor of E.  The conductor of E is an integer whose only prime divisors are E’s primes of 

bad reduction.  If Ep has a node, then the conductor of E is divisible by p but not by p2.  If Ep has a cusp and 

p>3, then the conductor of E is divisible by p2 (but not by p3).  However, if Ep has a cusp for  

p = 2 or 3, then the problem is not so simple, and we must resort to a much more complicated algorithm 

(discovered by John Tate) to compute the conductor of E.  Of course, we can get a computer program like 

PARI to perform Tate’s algorithm for us, since that’s what computers are for. 

 To use PARI to find the conductor of a curve with equation y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, 

enter the command “ellglobalred(ellinit([a1,a2,a3,a4,a6]).”  Your computer will then output a number, 

followed by a vector and another number.  For our purposes, the vector and the second number will be 

irrelevant; the first number will be the conductor of the curve. 

 

III.  The Shimura-Taniyama Conjecture 
 

 Now, one thing that you immediately wonder after you have reduced E modulo p is:  What is the 

relationship between p and Np, the number of points mod p on Ep?  In trying to determine what this 

relationship is, mathematicians looked at the sequence of numbers {ap(E)}p, where ap(E) = p – Np + 1, and 

tried to find a pattern in the sequence.  No pattern was immediately obvious, and mathematicians were 

stymied by this problem for a very long time.  Then, in 1955, the brilliant Japanese mathematician Yutaka 

Taniyama conjectured that, for every elliptic curve E, there exists a modular form such that the sequence 

{ap(E)}p is related to the coefficients in the q-expansion of that modular form.  At first, nobody believed 
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Taniyama because modular forms and elliptic curves belong to two completely different branches of 

mathematics (complex analysis and number theory, respectively) and seem to have absolutely nothing to do 

with each other.  However, an overwhelming amount of examples supporting Taniyama’s claim quickly 

piled up, and people began to acknowledge that he might be right.  Goro Shimura helped Taniyama refine 

his conjecture, and it came to be known as the Shimura-Taniyama Conjecture. 

 Incidentally, Andre Weil helped publicize the conjecture by mentioning the idea in a paper he 

published in 1967.  (Towards the end of the paper, he naively asked the reader to prove the conjecture as an 

exercise.)  For this reason, some people call it the Shimura-Taniyama-Weil Conjecture. 

 To understand just how brilliant Taniyama must have been to espy this deep connection between 

modular forms and elliptic curves, it is necessary to know a bit about modular forms. 

 

IV.  Modular forms and their q-expansions 

 

 An unrestricted modular form is an analytic function whose domain consists of the complex 

numbers whose imaginary parts are positive.  An unrestricted modular form’s range is the set of all 

complex numbers.  f(z) is an unrestricted modular form of weight w if and only if f((az+b)/(cz+d)) = 

(cz+d)wf(z) for all 4-tuples (a,b,c,d) such that a, b, c, and d are the entries of a 2x2 integer matrix whose 

determinant is 1.  If we plug a=b=d=1 and c=0 into the above equation, we discover that f(z + 1) = f(z).  

This means that f is a periodic function (its period is 1).  Therefore, like all periodic functions, f can be 

expressed as a Fourier series.  A Fourier series is a way of expressing a periodic function as an infinite 

series of terms that have to do with sines and cosines. 

 Let z = J+Ki.  Now let’s expand f(z) into a Fourier series in the variable J.  We get: 
              ∞ 

  f(z) = Σ cn(K)e2πinJ, 

            n=-∞ 

 

   where cn(K) = the integral from –½ to ½ of f(J+Ki)e-2πinJdJ. 

 

 As Knapp shows in his book Elliptic Curves, e2πinJ = e2πin(z-Ki) = e2πn(iz+K) = e2πnK+2πniz 

= e2πnKe2πniz.  Thus, f(z) can be rewritten like this: 

 

 
              ∞ 
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  f(z) = Σ cn(K)e2πnKe2πniz. 

            n=-∞ 

 

 All we need to do now is show that cn(K)e2πnK is a constant in terms of K.  After that, we will be 

able to give this constant a nice name like an(f), and then we can express f(z) in the following form, which 

is called the q-expansion of f: 
              ∞ 

  f(z) = Σ an(f)e2πniz. 

            n=-∞ 

 An unrestricted modular form for which an(f) = 0 for all negative numbers n is called a modular 

form. 

 Below, I have paraphrased Knapp’s proof of why cn(K)e2πnK is a constant in terms of K, as it 

appears in his book Elliptic Curves (pp. 224-225).  It is rather technical, so, if you don’t like calculus, feel 

free to skip over it and go directly to Part V. 

 To show that cn(K)e2πnK is a constant in terms of K, Knapp first rewrites it as the integral from  

–½ to ½ of f(J+Ki)e-2πin(J+Ki)dJ.  He then tells us to visualize a rectangle whose horizontal sides stretch 

from J= -½ to ½ and whose vertical sides stretch from K = K1 to K2, where K1 and K2 are arbitrary real 

numbers. 

 

 

 

 

 

 

 

 cn(K)e2πnK is clearly the bottom part of the line integral of f(J+Ki)e-2πin(J+Ki) around this 

rectangle.  Note that one of the vertical sides of the rectangle is the integral from K2 to K1 of  

f(-½+Ki)e-2πin(-½+Ki)dK, while the other vertical side is the integral from K1 to K2 of 

f(½+Ki)e-2πin(½+Ki)dK.  Since f(z) = f(z+1), f(-½+Ki) = f(½+Ki).  Also, e-2πin(½+Ki) = 

 J
 -½ ½

K2 

  K

K1 
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= e-2πin(-½+Ki)e-2πin = e-2πin(-½+Ki) * 1 = e-2πin(-½+Ki).  Therefore, the two vertical sides cancel each 

other out.  Since the line integral around the whole rectangle is 0 (by a theorem of Cauchy), the bottom part 

of the line integral must equal the top part.  In other words, 

 

The integral from –½ to ½ of f(J+K1i)e-2πin(J+K
1
i)dJ = 

= the integral from –½ to ½ of f(J+K2i)e-2πin(J+K
2
i)dJ. 

 

 In other words, 

  cn(K1)e2πnK
1 = cn(K2)e2πnK

2. 

 

 Since K1 and K2 are arbitrary real numbers, this means that cn(K)e2πnK has the same value for all 

real numbers K.  We are done going through Knapp’s proof of why cn(K)e2πnK is a constant in terms of K.  

Now we are ready to restate the Shimura-Taniyama Conjecture using the vocabulary of modular forms and 

their q-expansions. 

 

V.  The Shimura-Taniyama Conjecture again 
 

 Before I can restate the Shimura-Taniyama Conjecture, I should tell you that the 2x2 integer 

matrices that we use to define modular forms can be restricted to subgroups of SL2(Z) called Hecke 

subgroups.  (SL2(Z) is the group of 2x2 integer matrices with determinant 1.)  The Hecke subgroup Г0(N) 

consists of all 2x2 integer matrices whose lower-left-hand entries are divisible by N.  The modular forms 

that are defined by the Hecke subgroup Г0(N) are said to have level N. 

 Recall that, in Part II, we defined ap(E) to be p – Np + 1.  Also, recall that we defined an(f) to be 

the nth coefficient of the q-expansion of the modular form f.  The Shimura-Taniyama Conjecture states that 

every elliptic curve E has a weight-two modular form f associated with it such that ap(E) = ap(f), for all 

“primes of good reduction” p.  Furthermore, the conductor of E equals the level of f.  Amazing but true!  

This tough conjecture was not fully proven until 1999, when Christophe Breuil, Brian Conrad, Fred 

Diamond, and Richard Taylor stepped forward with the long-awaited and long-sought proof. 

 The shorthand version of the Shimura-Taniyama Conjecture is, “All elliptic curves are modular.” 

 

Definition.  An elliptic curve is modular if and only if it has a weight-two 

modular form f associated with it such that ap(E) = ap(f) for all primes p of good 

reduction.  Furthermore, the conductor of E equals the level of f. 

 



 6

 Deep and wonderful as the Shimura-Taniyama Conjecture is in its own right, it is most famous for 

the important role it played in Andrew Wiles’s 1994 proof of Fermat’s Last Theorem. 

 

VI.  Fermat’s Last Theorem and the Frey curve 
 

 As we all know, Fermat’s Last Theorem asserts that if n is an integer greater than or equal to 3, 

then there exists no triple of integers (a,b,c) that satisfies both the equation an + bn = cn and the inequality 

abc ≠ 0.  (Note:  we are allowed to require that a, b, and c be relatively prime.  If a, b, and c shared a prime 

factor p, then we could get rid of p by dividing the whole equation an + bn = cn by pn.)  Although Fermat 

claimed to have come up with a proof of this theorem, no proof was found among his papers after he died.  

For centuries, mathematicians all over the world tried to prove Fermat’s Last Theorem themselves, but 

none succeeded. 

 Then, in 1985, Gerhard Frey, a German mathematician, suggested a method of proof that involves 

elliptic curves.  Frey pointed out that if there existed a triple of integers (a,b,c) such that an + bn = cn for  

n ≥ 3 and abc ≠ 0, then the curve defined by the equation y2 = x(x - an)(x + bn) would be an elliptic curve.  

This assertion is proven in the following paragraph. 

 Since abc ≠ 0, we know that a ≠ 0, b ≠ 0, and c ≠ 0.  This implies that an ≠ 0, bn ≠ 0, and cn ≠ 0.  

Since cn = an + bn, this is the same as saying that an ≠ 0, bn ≠ 0, and an + bn ≠ 0.  Another way of saying this 

is:  an ≠ 0, bn ≠ 0, and an ≠ -bn.  Since 0, an, and -bn are the three roots of the equation y2 = x(x - an)(x + bn), 

our three inequalities clearly imply that the three roots of this equation are distinct.  As we said earlier, a 

curve with three distinct roots (i.e., a curve with no multiple roots) has no singularities.  Therefore, the 

curve y2 = x(x - an)(x + bn), called the Frey curve, is an elliptic curve. 

 Notice that the Frey curve is purely hypothetical:  it does not really exist.  However, it would exist 

if Fermat’s Last Theorem were not true.  Therefore, proving that the Frey curve does not exist is equivalent 

to proving Fermat’s Last Theorem. 

 

VII. The contributions of Serre, Ribet, and Wiles 
 

 Let’s now return to the topic of modularity for a moment.  It is obviously impossible for an elliptic 

curve to be both modular and nonmodular:  an elliptic curve must be one or the other, but not both.  (The 

Shimura-Taniyama conjecture states that all elliptic curves are modular, but when Frey invented the Frey 

curve in 1985, the Shimura-Taniyama conjecture had not been proven yet.)  If someone were to prove that 

the Frey curve is both modular and nonmodular, that would immediately imply that the Frey curve does not 

exist.  And if the Frey curve does not exist, then Fermat’s Last Theorem must be true. 

 In fact, this is exactly how Fermat’s Last Theorem was proven.  In 1986, with some help from 

Jean-Pierre Serre, Kenneth Ribet proved that the Frey curve is nonmodular.  Then, in 1994, to great 

acclaim, the Englishman Andrew Wiles (with help from his student Richard Taylor) proved that the Frey 
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curve is modular.  Together, Ribet’s and Wiles’s proofs show that the Frey curve does not exist.   Thus, the 

combined efforts of Taniyama, Shimura, Frey, Serre, Ribet, and Wiles, Taylor, and many others resulted in 

a proof of Fermat’s Last Theorem over three centuries after Fermat’s death. 

 Actually, Wiles did more than prove that the Frey curve is modular; he proved that all semistable 

elliptic curves are modular.  By definition, an elliptic curve is semistable if and only if its conductor has no 

perfect square divisors.  If we look again at the definition of a conductor, we can see that an elliptic curve E 

is semistable if and only if Ep does not have a cusp for any prime p>3.  Since having a cusp is the same 

thing as having a triple root, an alternative definition of a semistable elliptic curve is “an elliptic curve E for 

which Ep does not have a triple root for any prime p>3.” 

 It is easy to show that the Frey curve is semistable.  First, let E be the Frey curve.  Next, assume E 

is not semistable.  Then Ep has a triple root for some prime p>3.  Since 0, an, and bn are the roots of the Frey 

curve, Ep has a triple root if and only if 0 ≡ an ≡ -bn (mod p).  If 0 ≡ an ≡ -bn (mod p), then p divides both an, 

-bn, and cn (because cn = an + bn).  If p divides an, -bn, and cn, then p divides a, b, and c.  This contradicts our 

original assumption that a, b, c are relatively prime.  Hence, the Frey curve is semistable. 

 A great many elliptic curves are semistable.  So, by proving that all semistable elliptic curves are 

modular, Wiles made significant progress in humankind’s search for a proof of the Shimura-Taniyama 

Conjecture. 

 

VIII.  The Galois group Gal(L/Q) and how it acts on E[m] 
 

 Before we could ever hope to understand Ribet’s proof of the Frey curve’s nonmodularity, we first 

need to know a bit about Galois groups.  In this section, I will present the definitions of the Galois group 

Gal(L/Q) and the group E[m].  Afterwards, I will prove that if T is a function in Gal(L/Q), then T maps 

E[m] to E[m].  Additionally, I will prove that T preserves the group law of the elliptic curve E. 

 As you know, the letter Q represents the field of rational numbers.  If r is a root of a polynomial 

whose coefficients are in Q, then r is called an algebraic number.  The field of algebraic numbers is called 

the algebraic closure of Q and will be represented in this paper by the letter L.  Observe that L contains Q.  

 Let a and b be any two elements of L, and let c be any element of Q.  Consider a bijective map T: 

L  L that satisfies the following properties:  T(a)+T(b)=T(a+b), T(ab)=T(a)T(b), and T(c)=c.  It it is easy 

to show that the set of all functions T that satisfy these properties is a group, which we call the Galois 

group Gal(L/Q)2.  Notice that the properties imply (T(a))-1 = T(a-1). 

 Now let’s go back to looking at an elliptic curve E whose equation is of the form y2 = x3 + ax2 + 

bx + c.  Fix a positive integer m; then consider all points P on E for which mP = O.  A point P that 

                                                           
2 In general, if E is a field containing the field F, the Galois group Gal(E/F) is the group of all bijective 
maps U: E  E such that ∀ a,b  E and ∀ c  F, the following properties hold:  U(a)+U(b)=U(a+b), 
U(ab)=U(a)U(b), and U(c)=c. 
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satisfies this description is called an m-division point.  The set of all m-division points is denoted E[m]; it is 

a subgroup of E.  Notice that the coordinates of points in E[m] need not be real:  often, they are complex. 

 Since the coordinates of every point in E[m] are algebraic numbers3, each function T in Gal(L/Q) 

maps the points in E[m] to other points with coefficients in L.  It is clear that the image points lie on the 

curve E because 

 

  (T(x))3 + a(T(x))2 + bT(x) + c = T(x3) + aT(x2) + bT(x) + c 

            = T(x3) + T(a)T(x2) + T(b)T(x) + T(c) 

            = T(x3 + ax2 + bx + c) 

            = T(y2) 

            = (T(y))2. 

 

The same sort of reasoning can be used to show that, in general, given a polynomial g with rational 

coefficients, g(x,y) = 0 implies g(T(x),T(y)) = 0.  In other words, if the point P=(x,y) lies on the curve 

defined by the equation g(x,y) = 0, then so does the point T(P)=(T(x),T(y)). 

 It is possible to use the geometric description of the group law that was given in Part I to find 

explicit formulas for the coordinates of P+Q for all points P and Q.  According to these explicit formulas, 

each of the coordinates of mP can be expressed as the quotient of two polynomials with rational 

coefficients.  For example, the y-coordinate of mP can be expressed as f(x,y)/g(x,y), where f and g are 

polynomials with rational coefficients.  Clearly, mP = O implies that g(x,y) = 0.  But g(x,y) = 0 implies 

that g(T(x),T(y)) = 0, which in turn implies that mT(P) = O.  Hence, if P is in E[m], then so is T(P).  In 

other words, not only do the image points lie on the curve E (as we showed in the previous paragraph), but 

in fact they are elements of the subgroup E[m]. 

 We have just shown that each function T in Gal(L/Q) maps E[m] to E[m].  Now we will show that 

each function T in Gal(L/Q) preserves the group law of E[m].  The explicit formulas tell us that if P = 

(x1,y1), Q = (x2,y2), and P+Q = (x3,y3), then x3 = j(x1,y1,x2,y2) / k(x1,x2), where j and k are polynomials with 

rational coefficients.  So, the x-coordinate of T(P)+T(Q) is j(T(x1),T(y1),T(x2),T(y2)) / k(T(x1),T(x2)).   

However, 

 

 

 

  j(T(x1),T(y1),T(x2),T(y2)) / k(T(x1),T(x2)) = T(j(x1,y1,x2,y2)) / T(k(x1,x2))  

                                                           
3 This is true because, according to the explicit formulas, the y-coordinate of mP can be expressed as 
f(x,y)/g(y), where f and g are polynomials with rational coefficients and g depends only on the y-coordinate 

of P.  mP = O implies that g(y) = 0, which implies that the y-coordinate of a point in E[m] is an algebraic 
number.  And if the y-coordinate is an algebraic number, then so is the x-coordinate. 
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         = T(j(x1,y1,x2,y2)) * (T(k(x1,x2)))-1  

         = T(j(x1,y1,x2,y2)) * T(k(x1,x2)-1)  

         = T(j(x1,y1,x2,y2) * k(x1,x2)-1)  

         = T(j(x1,y1,x2,y2) / k(x1,x2))  

         = T(x3). 

 

So, the x-coordinate of T(P)+T(Q) is T(x3). 

 Similarly, it can be shown that the y-coordinate of T(P)+T(Q) is T(y3).  Thus, T(P)+T(Q) = 

(T(x3),T(y3)) = T(P+Q), which means that T preserves the group law of E.  We have hereby finished 

proving everything we set out to prove in this section. 

 

IX.  A matrix representation of Gal(L/Q) 
 

 Every elliptic curve E is associated with a unique lattice L in the complex plane.  (The method by 

which one finds the lattice L is too complicated to be included in this paper.)  The lattice L is generated by 

two complex numbers σ and τ:  i.e., L is the set of all complex numbers of the form aσ+bτ, where a and b 

are integers. 

 A function called the Weierstrass℘ function defines a one-to-one correspondence between the set 

S ={aσ+bτ, where a and b are real numbers between 0 and 1} and the points with complex coefficients on 

E.  The set S can be pictured as a parallelogram in the complex plane, whose vertices are located at the 

points 0, σ, τ, and σ+τ.  In their book Rational Points on Elliptic Curves (pp. 43-45), Silverman and Tate 

show how this parallelogram can be used to prove that E[m] is the direct product of two cyclic groups of 

order m.  I do not feel like paraphrasing this proof, so if you want to see it, pick up a copy of Silverman’s 

and Tate’s book. 

 What do we mean when we say that E[m] is the direct product of two cyclic groups?  We mean 

that the entire group E[m] can be generated by just two of its elements.  Two elements of E[m], ω1 and 

ω2, are generators of E[m] if and only if, for all m-division points P, there exist a and b in (Z/mZ) such 

that P = aω1 + bω2. 

 Let T be an element of Gal(L/Q).  In Part VIII, we showed that if P is in E[m], so is T(P).  Hence, 

for all P in E[m], there exist a and b in (Z/mZ) such that T(P) = aω1 + bω2.  In particular, there exist aT, 

bT, cT, and dT in (Z/mZ) such that T(ω1) = aTω1 + bTω2 and T(ω2) = cTω1 + dTω2.  These two equations 

can be expressed in matrix form, like this: 

 

 

 



 10

  T(ω1)  aT bT ω1 

       = 

  T(ω2)  cT dT ω2   . 

 

 Let P and Q be two arbitrary points in E[m].  We know there exist e, f, g, and h in (Z/mZ) such 

that 

 

  P  e f ω1 

    = 

  Q  g h ω2  . 

 

 Therefore, 

 

  T(P)  e f T(ω1)  e f aT bT ω1 

     =        = 

  T(Q)  g h T(ω2)  g h cT dT ω2   . 

 

 

   aT bT 

 We say that   is the matrix representation of the transformation T. 

   cT dT 

 

 Notice that, since T is a linear transformation by definition, its matrix representation is determined 

by the way it acts on the “basis” of (Z/mZ) x (Z/mZ):  i.e., the way it acts on ω1 and ω2. 

 We have just shown that every element T of Gal(L/Q) can be represented by a 2x2 matrix with 

entries in (Z/mZ).  Let’s call that matrix ρE,m(T).  Now we will show that if S and T are two elements of 

Gal(L/Q), then ρE,m(S◦T) is equal to the matrix product of ρE,m(S) and ρE,m(T). 
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  aS◦T bS◦T ω1  S(T(ω1)) 

     = 

  cS◦T dS◦T ω2  S(T(ω2)) 

 

      aS bS T(ω1) 

     =  

      cS dS T(ω2) 

 

      aS bS aT bT ω1 

     = 

      cS dS cT dT ω2   . ڤ 

 

 One thing remains to be pointed out before we can go on to the next section.  It is a well-known 

fact of linear algebra that the trace of a matrix is invariant under a change of basis.  Hence, the trace of the 

matrix ρE,m(T) is, in an important way, characteristic of T. 

 

X.  The Frobenius automorphism σp 

 

 Let H be the set of all functions S in Gal(L/Q) such that ρ(S) is the 2x2 identity matrix I2.  If T is 

an element of Gal(L/Q) and S is an element of H, then T◦S◦T-1 is an element of H, because  

 

    ρ(T◦S◦T-1) = ρ(T)ρ(S)ρ(T-1) 

   = ρ(T) I2 ρ(T-1)  

   = ρ(T)ρ(T-1)  

   = ρ(T)T-1)  

   = ρ(identity)  

   = I2. 

 

Furthermore, it is easy to show that if S ≠ R, then T)S)T-1 ≠ T)R)T-1.  This proves that H is a normal 

subgroup of Gal(L/Q).  By the Fundamental Theorem of Galois Theory, this implies that there exists a field 

K such that K contains Q, K is contained in L, and the Galois group Gal(K/Q) is isomorphic to 

Gal(L/Q)/H.  For every “prime of good reduction” p such that p does not divide m, there exists a very 



 12

useful element of Gal(K/Q), called the Frobenius automorphism σp.  In the next few paragraphs, I will 

describe this element of Gal(K/Q). 

 Let p be a prime of good reduction that does not divide m.  Consider the ring of all algebraic 

integers in K (i.e., the set of all numbers in K that are roots of polynomials whose coefficients are integers 

and whose leading coefficient is 1).  It is often useful to look at prime ideals4 of this ring that contain p.  

Let’s choose one of these prime ideals and call it q.  Take a moment to convince yourself that Gal(K/Q) 

maps ideals to ideals and that, moreover, it maps prime ideals to prime ideals.  The subgroup of Gal(K/Q) 

consisting of functions that map q to itself is called the decomposition subgroup Dq. 

 Keeping the definition of Dq in mind, let’s now consider the field R/q; let’s call this field Fq.  The 

elements of Fq are equivalence classes of algebraic integers.  Two algebraic integers are in the same 

equivalence class if and only if the difference between them is an element of q. 

 It is useful to compare the field Fq with the field Fp.  The elements of Fp are equivalence classes of 

integers; two integers are in the same equivalence class if and only if the difference between them is a 

multiple of p.  These descriptions make it clear that Fq contains Fp.  Additionally, there is a Galois group 

Gal(Fq/Fp), and it is easy to show that the function fp(x) = xp is an element of this Galois group.  (Hint:  

Expand (x+y)p using the Binomial Theorem.) 

 To each element of Dq, we can associate an element of Gal(Fq/Fp).  Namely, if the function g(x) is 

an element of Dq, then we can associate to it the function h(x) = [g(x)], which, when its domain is restricted 

to algebraic integers in K, is an element of Gal(Fq/Fp).  (The brackets denote the equivalence class that g(x) 

is in.)  It is true (though it is too complicated to prove here) that this map from Dq and Gal(Fq/Fp) is an 

isomorphism.  Thus, there is exactly one element of Dq that is mapped to fp(x).  This element of Dq is called 

the Frobenius automorphism σp. 

 Since Dq is a subgroup of Gal(K/Q) and Gal(K/Q) is isomorphic to Gal(L/Q)/H, there exists an 

element of Gal(L/Q) whose restriction to K is σp.  Hence, just like every other element of Gal(L/Q), σp 

has a matrix representation.  The trace of the matrix ρE,m(σp) is independent of our choice of prime ideal q 

lying over p.  (Why is this true?  Well, if q and r are two prime ideals whose Frobenius elements are σp,q 

and σp,r respectively, then there is a theorem stating that there exists a matrix A such that (A)(σp,q )(A-1) = 

σp,r.  From this fact, it can be proved via linear algebra that σp,q and σp,r have the same trace.) 

 Interestingly, the trace of ρE,m(σp) is congruent to ap(E) modulo m.  Recall from Part III that 

ap(E) = p – Np + 1, where Np is the number of points mod p on Ep.  Recall, also, that the number ap(E) 

appears prominently in the Taniyama-Shimura Conjecture.  I bet you didn’t expect it to turn up in this 

seemingly irrelevant discussion about Galois groups and Frobenius automorphisms! 

                                                           
4 An ideal I of a ring R is a subset of R that is a group satisfying the following property:  if a  I and b  R, 
then ab  I and ba  I.  A prime ideal J is an ideal such that if c,d  R and cd  J, then c  J or d  J. 
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 In the next few paragraphs, I will present a proof of the congruence tr(ρE,m(σp)) = ap(E) (mod m). 

 Let V be a set whose only elements are the coordinates of the points on the curve Ep.  The 

algebraic closure of V is the set of all numbers that are roots of polynomials with coefficients in V.  The 

algebraic closure of Ep is the set of all points (x,y) such that x or y is an element of the algebraic closure of 

V.  In this paper, we will use the letter A to represent the algebraic closure of Ep. 

 Consider the function Frobp(x,y) = (xp,yp).  (This is essentially the Frobenius automorphism we 

were discussing earlier.)  It is easy to show that the function Frobp: A  A is an element of the Galois 

group Gal(L/Q).  Hence, it is the type of function that is called an automorphism.  Because every 

automorphism that acts on the algebraic closure of a field fixes the base field, Frobp(Ep) = Ep.  In other 

words, Ep is the kernel of Frobp – I, where I is the identity transformation.  It follows that Np is the number 

of elements in the kernel of Frobp – I.  Since the number of elements in the kernel of a transformation is the 

determinant of the matrix of that transformation, Np = det(ρE,m(Frobp – I)). 

 Using linear algebra, it is child’s play to prove that, for all 2x2 matrices A, det(A-I) =  

det(A) – tr(A) + 1.  The reader may wish to prove this as an exercise. 

 Although it is too complicated to prove here, it is a fact that det(ρE,m(Frobp)) = p (mod m).  

Hence, 

 

   Np = det(ρE,m(Frobp – I)) 

         = det(ρE,m(Frobp)) – tr(ρE,m(Frobp)) + 1 

     = p – tr(ρE,m(Frobp)) + 1 (mod m). 

 

 Rearranging terms, we get:  tr(ρE,m(Frobp)) = p – Np + 1 (mod m).  Our proof is now complete. 

 

XI.  Ribet’s proof of Serre’s Level-Lowering Conjecture 
 

 Let us now return to the problem of proving that the Frey curve is nonmodular.  In 1985, Jean-

Pierre Serre made a famous conjecture that goes something like this: 

 Consider a modular form f, whose level is N.  According to a theorem of Shimura, we can 

associate to such a modular form an abelian variety.  An abelian variety is a group that is also the solution 

set of a system of polynomial equations.  Since every elliptic curve is a group as well as the solution set of 

a polynomial equation F(x,y) = 0, elliptic curves are said to be one-dimensional abelian varieties.  But there 

exist higher-dimensional abelian varieties as well. 

 Using methods somewhat similar to the ones we discussed in Sections VIII and IX, we can use the 

abelian variety of f to come up with a matrix representation of Gal(L/Q).  To help understand this better, 

let’s only consider the special case where the abelian variety of f is an elliptic curve E.  In this special case, 
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as you know, we can come up with a matrix representation ρE,m of Gal(L/Q).  We can choose m to be 

whatever we want, so let’s make it an odd prime number.  Then we can come up with another matrix 

representation of Gal(L/Q), which is called the semisimplication of ρE,m.  The semisimplification of ρE,m 

depends only on f and m, so we can name it ρf,m. 

 Let’s now suppose that ρf,m lacks a property called ramification at a prime p ≠ m that divides N.  

Also, suppose p2 does not divide N.  Serre’s conjecture states that there exists a modular form g, whose 

level is N/p, and a prime number h such that ρg,h is isomorphic to ρf,m.  This conjecture is sometimes 

called Serre’s Level-Lowering Conjecture. 

 Using the property tr(ρf,m(σp)) = ap(f) (mod m) that we proved earlier, Ribet proved Serre’s 

Level-Lowering Conjecture in 1986.  Keeping Ribet’s results in mind, let’s now talk again about the Frey 

curve y2 = x(x – am)(x + bm).  Recall that m is the exponent in Fermat’s Last Theorem.  (We can require that 

m be an odd prime.  Suppose m were composite.  Then, either m would be a power of 2, or m would equal 

qr, where r is an odd prime and q ≠ 1.  If m=qr, then am + bm = cm implies (aq)r + (bq)r = (cq)r, which 

means that we would be able to use r (an odd prime) instead of m.  If m were a power of 2, then it would 

equal 4s for some integer s.  Then am + bm = cm implies (as)4 + (bs)4 = (cs)4.  But it is easy to prove 

that there is no counterexample to Fermat’s Last Theorem in which 4 is the exponent.  So m cannot be a 

power of 2.) 

 Let’s denote the Frey curve by the letter E.  Then let’s consider the matrix representation ρE,m of 

Gal(L/Q).  It turns out that this representation is unramified at all odd primes p ≠ m.   

 Now, suppose the Frey curve is modular.  In other words, suppose that the Frey curve can be 

associated with a modular form f, whose level is some positive integer N.  According to a theorem of Goro 

Shimura and Martin Eichler, if the abelian variety associated to a modular form f is an elliptic curve E, then 

the level of f is equal to the conductor of E.  So, N is both the level of f and the conductor of the Frey 

curve.  And since the Frey curve is semistable, we know that p2 does not divide N, for all primes p that 

divide N.  This means that we can apply Serre’s Level-Lowering Conjecture. 

 According to the conjecture, we can find a modular form g whose level is lower than the level of f.  

By repeating this level-lowering process over and over, we can divide out all the odd prime factors of N, 

and we will eventually find a modular form whose level is 2.  But modular forms with level 2 do not exist.  

This is a contradiction; hence, the Frey curve cannot possibly be modular. 

 Ribet’s proof of the Frey’s curve nonmodularity paved the way for Wiles’s proof of Fermat’s Last 

Theorem. 
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