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BOOK REVIEW

Rational points on elliptic curves, by Joseph H. Silverman and John T. Tate. Un-
dergraduate Texts in Mathematics, Springer-Verlag, New York and Berlin, 1992
(first ed. 1989), x+281 pp., $29.95. ISBN 0-387-97825-9

Fermat’s Last Theorem provides the latest answer to the question: Why study
elliptic curves? Suppose that p is an odd prime and that a, b, and c are relatively
prime nonzero integers for which ap + bp + cp = 0. In [7], Frey predicted that the
elliptic curve with equation y2 = x(x − ap)(x + bp) would be incompatible with
the Taniyama-Shimura conjecture, a central conjecture about elliptic curves which
states that elliptic curves over Q are modular in the sense that they arise from
modular forms. After Serre analyzed Frey’s construction, the second reviewer was
able to confirm Frey’s prediction. (See [23, 24] and [21, 22].) As we write this
review, A. Wiles has just announced a proof of the Taniyama-Shimura conjecture
for a large class of elliptic curves over Q, including the semistable ones, those with
the simplest type of “bad reduction” [30]. Since Frey’s elliptic curves are semistable,
Fermat’s Last Theorem follows as a corollary.

Those indifferent to Fermat’s Last Theorem might nonetheless be attracted by
other applications of elliptic curves. For example, elliptic curves are used in factor-
ing integers, cf. [18]. Elliptic curves play a central role in the solution, by Goldfeld,
Gross, and Zagier, of Gauss’s class number problem [11, pp. 231–232]. Elliptic
curves underly the theory of elliptic functions and modular forms. They figure
prominently in many articles in Communications in mathematical physics and in
the recent book From number theory to physics [28]. This list of examples could be
expanded easily.

The theory of elliptic curves belongs to an important branch of mathematics
called arithmetical algebraic geometry (or “arithmetic” for short). Arithmetic is
a synthesis of algebraic number theory and algebraic geometry: it is the study
of number theory in a geometric situation. For instance, consider again Fermat’s
equation ap+bp+cp = 0, where a, b, and c are nonzero integers. Solving it amounts
to finding all pairs of rational numbers x and y which satisfy xp + yp = 1. One
can make considerable progress toward solving this equation by algebraic number
theory (see, e.g., [9, 8, 26]). As soon as we start thinking about rational points
on the curve xp + yp = 1, however, we have probably stepped into the world of
arithmetical algebraic geometry.

The simplest objects of algebraic geometry are points, lines, and conics. Next
in complexity come the elliptic curves: curves of genus one, furnished with a dis-
tinguished rational point. Already for these we are faced with a plethora of deep
open questions.
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Let E be an elliptic curve, and let E(Q) be the set of points on the curve with
rational coordinates. We can realize E as the projective plane curve associated
with a cubic equation y2 = x3 + ax + b. Then E(Q) becomes the set of pairs
of rational numbers which satisfy this equation, augmented by a single “point at
infinity” O on E. The well-known “chord and tangent” process endows E(Q) with
the structure of an abelian group, in which O is the zero-element. This group,
now known as the Mordell-Weil group, was studied by Poincaré and by Mordell,
who proved in 1922 that E(Q) is finitely generated and, therefore, isomorphic to
the direct sum of a finite abelian group E(Q)tors and a free abelian group Zr(E) of
finite rank. The integer r(E) is known as the rank of E over Q.

A number of unsolved problems concern r(E). First of all, there is at present no
known effective algorithm which calculates r(E). Secondly, one suspects that r(E)
is unbounded as E varies among all elliptic curves over Q. Although recent exam-
ples [6] show that the rank can be 19 or even higher, it is not known whether r(E)
can be arbitrarily large. (The group E(Q)tors has bounded order; more precisely, a
theorem of Mazur [19] states that E(Q)tors is limited to fifteen possibilities. Also,
E(Q)tors is easy to compute in any specific example.)

Other problems about elliptic curves concern the L-function L(E, s), which bears
the same relation toE as does the Riemann zeta function to Z. The function L(E, s)
is defined by a Euler product which converges to an analytic function on the half-
plane <(s) > 3/2. One conjectures that L(E, s) extends to an analytic function on
the entire complex plane. This statement is a direct consequence of the Taniyama-
Shimura conjecture; conversely, Weil [29] showed that the conjecture follows from
an appropriate statement about the analytic behavior of L(E, s) and its variants.
Until recently, it was generally thought that all results of this nature were too hard
to prove. Now that we know that semistable elliptic curves over Q are modular,
we imagine that the full Taniyama-Shimura conjecture is within reach.

Assuming that L(E, s) has been analytically continued, we can discuss the be-
havior of L(E, s) at s = 1. The conjecture of Birch and Swinnerton-Dyer states (in
particular) that L(E, s) has a zero of order r(E) at s = 1. Theorems of Kolyvagin
[16] and Gross-Zagier [11] combine to prove most of this conjecture for modular el-
liptic curves of low rank; see [10] for a survey of results of this type. Again, because
of [30], the word “modular” becomes nearly irrelevant. At the present time, the
conjecture of Birch and Swinnerton-Dyer seems wide open for elliptic curves with
r(E) > 1.

Elliptic curves are extremely palpable objects, despite the variety and depth of
the problems that they pose. They are one-dimensional plane curves whose real
and complex loci can be visualized easily. They can also be tabulated: Cremona
[5] has made an extensive list of modular elliptic curves over Q and has amassed a
large amount of data for each curve on his list. (Cremona’s tables list the modular
elliptic curves of conductor < 1000; the conductor of an elliptic curve measures its
“bad reduction” modulo various primes.) Even the Taniyama-Shimura conjecture
can be stated in elementary terms [20].

The accessibility and importance of elliptic curves have made them favorites with
authors and readers. Two classic survey articles about elliptic curves are [1] and
[27]. Among the recent books which have focused primarily, or exclusively, on the
theory of elliptic curves are [2–4, 12–15, 17, 25].

Rational points on elliptic curves, by Silverman and Tate is a new undergraduate
book on elliptic curves; it will appeal to graduate students and to professional
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mathematicians, both specialists in the theory and outsiders who want to learn
more. The book grew out of a series of lectures given by the second author to an
audience of undergraduate mathematics majors in 1961. Those lectures centered
around a proof of the theorem of Mordell which was alluded to above: the finite
generation of E(Q). The first half of the book follows closely the 1961 lectures.
(As the authors explain in their preface, lecture notes were mimeographed in 1961
and have continued to circulate since.) New topics include the behavior of points
of finite order under reduction mod p, factorization of integers using elliptic curves,
points with integer coordinates on elliptic curves, and complex multiplication. The
authors conclude with an appendix on projective geometry.

The exposition of this book is extremely nonthreatening: the reader is addressed
directly as “you” and is invited to participate in a dialogue with the authors and
their theorems. There are a large number of exercises, of varying levels of diffi-
culty. These are important off-shoots of the text; quite a few are challenging. For
example, the Taniyama-Shimura conjecture is first mentioned in a beautiful sec-
tion of Chapter IV entitled “A Theorem of Gauss”. In that section the authors
derive Gauss’s formula for the number of solutions to x3 + y3 = 1 over the finite
field Fp and allude to the possibility of relating the analogous numbers for other
elliptic curves to certain holomorphic functions. Later, in Exercise 4.6, the reader
is called upon to formulate a conjecture linking the number of Fp-valued points
of y2 = x3 − 4x2 + 16 to the pth coefficient of the series obtained by expanding
q
∏∞
n=1(1−qn)2(1−q11n)2 in powers of q. (The authors include a doubly asterisked

invitation to prove the conjecture.)
The book’s exposition is rooted in the concrete: computations are carried out

explicitly, and the reader is encouraged to reproduce them and to experiment with
other examples. General results are often stated to orient the reader, but they are
not necessarily proved. For example, the chapter on complex multiplication begins
with a statement of the Kronecker-Weber theorem, which is illustrated by the fact
that the quadratic field Q(

√
p) lies in a cyclotomic extension of Q. The chapter

then explains how division points on rational elliptic curves lead to two-dimensional
representations of Gal(Q/Q). The authors show that division points on the elliptic
curve y2 = x3+x generate abelian extensions of Q(i) and conclude with a statement
of Kronecker’s Jugendtraum as it applies to Q(i): each abelian extension of Q(i)
is contained in a field generated by division points of y2 = x3 + x.

Although not required, a personal computer or programmable calculator will be
extremely useful for the numerical examples included in the book. In this connec-
tion, Silverman is distributing two computer packages which will interest readers.
The first is a stand-alone Macintosh application that serves as a calculator for el-
liptic curves. The second is a more recent Mathematica notebook, written by Paul
van Mulbregt and Silverman; it is distributed along with TEX documentation. In-
structions for obtaining these packages by mail are given in the book’s preface.
Alternatively, readers with Internet access can download the packages by ftp from
gauss.math.brown.edu—look in the directory ~ftp/dist/EllipticCurve. Also
available in this directory is a list of errata for the book. The list catalogs errors
which have come to the authors’ attention and in most cases supplies corrections.
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