The Conjectures of Birch and Swinnerton-Dyer,
and of Tate

P. SWINNERTON-DYER

1. Introduction

In the last few years, it has become increasingly evident that the study
of the zeta-function of an algebraic variety can vield vzluable information
about that variety, some of which cannot easily e n=iained in any other
way. Most of this information is number-theorsiic — rhat is to say, it
refers to objects which depend on the ground ficid and which are only of
interest when the ground field is finitely generatec. Sut scme of it refers
to objects, such as the Néron-Severi group, wi:ch are also of interest to
classical algebraic geometers — and about which classical algebraic ge-
ometry has little to say.

The first indication of this should have been the pre-war work of SIEGEL
on quadratic forms. Indeed Siegel himself wrote of that work that he
hoped it would rescue the zeta-function from the neglect into which it
was falling. But the influence of fashion, and the deeper and apparently
more elegant reformulation of Siegel’s work by TAMAGAWA in terms of
measure theory, led to a general belief that zeta-functions were not €ssen-
tially involved in Siegel’s results. )

Siegel’s theorems were rigorously proved. Most of the subsequent work
is conjecture, based on the examination of special cases and on ex post
facto heuristic arguments which have been adequately described else-
where. The next step was the conjecture of BIRCH and SWINNERTON-DYER,
which connected the behaviour of the zeta-function of an elliptic ‘curxie
at s=1 with its number-theoretic properties. Here the zeta-function 18
inescapably involved, both because its behaviour at s=1 can only be ob-
tained by analytic continuation and because the conjecture involves not

only its leading coefficient but the order of its pole at s=1.
Most of the subsequent work is due to, or inspired by, TATE. He has




A% o > ( ;; es of Birch and Swinnerton-Dyer, and of Tate 133

] =
s

- for surfaces over ﬁmte fields he and ARTIN have gone far towards proving

thse comctres

2. Elliptic curves over QO

We define an ‘elliptic curve’ to be an Abelian variety of dimension 1.
Thus an elliptic curve over a field k is a complete non-singular curve of
genus 1 which is defined over k£ and which contains a distinguished point
D also defined over k; the curve then has the structure of an additive
group whose zero is D, and the group law is defined over k. We shall de-
note by I' an elliptic curve over Q, the field of rational numbers. The
restriction to Q is needed for the computations described in §§ 3 and 4;
the theoretical results quoted in the present section hold, with trivial
changes of notation, over an arbitrary algebraic number field.

To state Conjectures A and B, we must first define a satisfactory globa
L-series, or, which comes to the same thing, a satisfactory global zeta-
function associated with I'. The crude way to produce a global zeta-
function 1s to multiply together the local zeta-functions for all ‘good’
primes; this gives an Euler product with finitely many factors apparently
missing. For an elliptic curve, though not for a general Abelian variety,
the correct form for these missing factors is known. However, the con-
jectures are only concerned with the behaviour of the zeta-function near
s=1, and instead of supplying the missing factors as functions of s it is
therefore only necessary to supply their values at s=1. We now show
how to do this.

Let w be a differential of the first kind on I'. If I' 1s written in the

traditional form
y*=x>—Ax—B

then we can choose w =dx/2y; 1n any case w 1s unique up to multiplication
by a non-zero rational number, and the choice of this number does not
affect what follows. For almost all primes p, I' and w both have non-
degenerate reductions modulo p; hence they give rise to an elliptic curve

I', defined over GF (p), the finite field of p elements, and a differential of
the first kind w, on I',. The zeta-function of I', over GF(p) is

(1 —app ") (1 —&p~*)
(1=p)(1~p""%) ° &L

(AT, 5) =




S 3 a,, &' are defined by the statement that for q=p" there are just
< N,=p"—a) —a} + 1 (2.2)

pomts on F defined over GF(g). From the local zeta-functions (2.1) we
can form a crude global L-series

L(T,s)=T1{(1 —a,p™)(1 —a,p~)}*,

the product being taken over those primes p for which I" has a good re-
duction modulo p. The product is only known to converge in Rs>3; but
Weil has conjectured that L(I, s) can be analytically continued over the
whole complex plane, and that there is a functional equation connecting
L(s) and L(2—s). In what follows, it will be assumed that L(s) is at any
rate well defined in some neighbourhood of s=1.

Let S be a finite set of primes which contains the infinite prime and any
finite prime modulo which I'" or w does not have a good reduction. For
any finite prime p, whether in S or not, we can form

M,(I)= f ] 1, (2.3)

I(Qp)
where Q,, is the field of p-adic numbers, [ (Q,) is the set of points on I
defined over Q,, | |, is the usual p-adic valuation, and p, 1s the usual

Haar measure on Q, which assigns measure I to the set of p-adic integers.
For the infinite prime we replace (2.3) by

M_(IN = Ja)

taken over all real points on I'. Now write
L3, 9) = T} [L0 - o™ (=& 7 @9
It is easily verified that for fixed S this does not depend on the particular

choice of w. Moreover, it does not depend significantly on the choice of
S: for if S,, S, are two such sets then

Lt (T, s)/L%,([,s)—»1 as s—1.

To prove this it is enough to note that if I and o both have a good re-
duction modulo p then

MP(F) o Np/P e (1 - CCPP#I) (1 - &pp-—l)'
Henceforth we shall denote by L*(I', s) any Euler product which d

(2.5)

iffers
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% rom L(i 3) fﬁnly m finitely many factors and which satisfies
B DML, 9)/LE(, )1 as s (2.6)

pte that we do not adopt the usual normalization condition that
L*(I' S)-'*l as s— + oo, preferring instead to normalize at s=1.

We next define the Tate-Safarevi¢ group III and the Weil-Chatelet
group WC; only the former of these occurs in the conjectures, but it 1s
natural to describe both together. Let & be the set of all principal homo-
geneous spaces over I'; in other words, an element of . 1s a complete
non-singular curve C of genus 1 defined over Q, together with a specific
identification of I" with its Jacobian. (Note that because I" has non-trivial
automorphisms, the curve C does not in itself determine the canonical
map C x C—T".) For any two elements C,, C, of &, write C; ~C; if there
exists a birational map C, — C, defined over Q for which the diagram

Ci XCiy—=C,; X0y

AN
-

is commutative. This defines an equivalence relation in % ; and the set of
equivalence classes in . is called the Weil-Chatelet set associated with I
It can be given the structure of a commutative group in a natural way:
for the details see WEIL [37]. This group is a torsion group, and 1ts identity
element is the equivalence class consisting of all curves C which contain
a rational point. Like most sets which unexpectedly have a natural group
structure, it can also be defined as a cohomology group:itis H'(G, I (Q)).
where Q is the algebraic closure of Q and G is the Galois group of Q/Q.

Now consider those curves C in %" which contain points defined over
each p-adic field including the reals; these are just the curves which can
play a significant part in an ‘infinite descent’ argument applied to I'. Such
curves precisely fill a certain number of equivalence classes in &, and
these classes form a subgroup of WC called the Tate-Safarevi¢ group III.
Unfortunately, very little is known about llI, and there is no curve I for
which it has completely determined. It is conjectured that it 1s always a
finite group; and CASSELS [5] has shown that when it is finite its order
must be a perfect square. It can be shown that III only contains finitely
many elements of any given order; and the bound for the number of these
elements, for a given I', is moderate and in principle constructive. There
is no certain way of finding these elements, because there is no certain
way of finding whether two curves in & are equivalent; in effect, this
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~ He wever, in practice one can usually find the elements of order 2 in III

for any particular elliptic curve I', and the elements of order 3 or 4 for

- suitably chosen curves I', without intolerable labour.

In the description which follows, it will be implicitly assumed that III
is finite. Conjectures A, B and C below, as they are stated here, do indeed
each imply that III is finite; for each of them contains a formula in which
the order of Il appears. However, the evidence for these conjectures can-
not really be regarded as evidence for the finiteness of Iil. In fact, each of
these formulae contains a term which is certainly associated with III and
whose value appears to be always a positive integer — and indeed a perfect
square. It is natural to identify this term with the order of III; but one
can give a more complicated interpretation of it which 1s equally com-
patible with the evidence and which would still make sense even if 1l were
sometimes infinite.

MOoRDELL [/6] has shown that I' (Q), the group of rational points on
I, is finitely generated; and in any particular case his proof gives an ex-
plicit bound for the number of generators. It is easy to find the elements
of finite order in I" (Q); see for example CASSELS (6], Theorem 22.1. There
s no certain method of calculating g, the rank of [’ (Q); but in practice
one can usually find g without intolerable labour by the method of infinite
descent. BIRCH and SWINNERTON-DYER [2] have given an alternative meth-
od of conducting the first descent, which avoids any use of algebraic num-
ber fields and is therefore suitable for machine computation. Moreover,
on the assumption that II is finite CASSELS [5] has shown that the differ-
ence between the number of first descents and the value of g is even; thus
the parity of g can be found even when g itself cannot.

Wecannow state the initial conjecture of BircH and SWINNERTON-D?{ER
[3]. This can be regarded primarily as giving a necessary and sufficient
condition for g =0 — that is, for I' (Q) to be finite.

Conjecture A. With the notation and definitions above,

(my/[r@Q)J* if ¢=9.
0

otherwise,

[*(r,1)=

where square brackets denote the order of a group. i

To produce a more detailed conjecture when g>0 we need a .m;am; ‘
of the density of the rational points on I. We first define the height .cl:; »
rational point on I, following the original approach of TATE as descr;tem
in [15]. Assume that I 1s embedded in projective space; and fix a sy
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" co-ordinates in that space. For any rational point P on I, write

o h(P) = log(max {|xol, |X1]5 -5 1x,13)

where (xo,X;, ..., X,) is that representation of P for which the x; are inte-

= gers with no common factor. If nP denotes the sum of 7 copies of Punder
~  the standard addition law on I', then

h(P) = lim n~*h(nP)

n-—+a

exists and is called the height of P. Moreover h(P) behaves like a quad-
ratic form, does not depend on the choice of a co-ordinate system in the
ambient projective space, and vanishes at just those points of I" (Q) which
are of finite order. We can derive from h(P) the bilinear form

h(P,P)=3%{h(P+ P')— h(P)— h(P")}.

The effect of a birational transformation of I' is to multiply h by a con-
stant; henceforth we normalize h by taking I" to be a non-singular plane
cubic curve. BIRCH has given an explicit formula (quoted in [25]) for
h(P) for curves of the form

x° 4 y° = Dz’ (2.7)

and presumably this can be modified to be valid for all elliptic curves.
Now let P,,..., P, be a base for I' (Q) modulo torsion, and write

R =det{h(P, P;)};

it is easy to show that R is positive and does not depend on the choice of
base. The natural generalization of Conjecture A is as follows; it was
first explicitly stated in STEPHENS [24], though its general shape had been

suggested earlier.
Conjecture B. With the notation and definitions above.

B, (IR

(s—1)2% as s—1.

[T (Q)rors ]

‘This of course includes Conjecture A : but so much of the evidence ap-
plies to the special case of Conjecture A that it is convenient to give both
statements explicitly. There is no curve I" for which Conjecture B has

-

10 Local Fields



" The Conjectures of Birch and Swinnerton-Dyer, and of Tate 137

Fin - h (P) = log(max {|xol, X1, ---s [Xal})

iere (xg, Xy, ..., X,) is that representation of P for which the x; are inte-

. gers with no common factor. If nP denotes the sum of n copies of Punder

E the standard addition law on I', then

E h(P)= lim n”*h(nP)

msts and is called the height of P. Moreover h(P) behaves like a quad-
ratic form, does not depend on the choice of a co-ordinate system in the
ambient projective space, and vanishes at just those points of I" (Q) which

are of finite order. We can derive from h(P) the bilinear form
h(P,P)=131{h(P+P)—h(P)—h(P)}.

The effect of a birational transformation of I' is to multiply & by a con-

stant; henceforth we normalize & by taking I" to be a non-singular plane

cubic curve. BIRCH has given an explicit formula (quoted in [25]) for
- h(P) for curves of the form

x3+y3=D:':'3 (2.7)

and presumably this can be modified to be valid for all elliptic curves.
Now let P,,..., P, be a base for I' (Q) modulo torsion, and write

R = det{h (P, P))};

it is easy to show that R is positive and does not depend on the choice of
base. The natural generalization of Conjecture A is as follows: it was
first explicitly stated in STEPHENS [24], though its general shape had been

suggested earlier.
Conjecture B. With the notation and definitions above.

~ [mR
[ (Q)rors ]

This of course includes Conjecture A : but so much of the evidence ap-
plies to the special case of Conjecture A that it is convenient to give both
- statements explicitly. There is no curve I" for which Conjecture B has
‘been proved to hold, because there is no curve for which III is completely
~ determined; however, the supporting evidence is very strong. The direct
~ evidence is of three kinds: '
% m Local Fields

L* (T, s)

s(s—1)f as s—1.
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() invariance under isogeny;

(i) calculations of L*(I', s) near s=1:

(i11) deductions from the functional equation of L* (T, 5). Moreover,
the}‘c 1s some analogy with the work of SIEGEL and TAMAGAWA on quad-
ratic forms, and a close analogy with the work of ARTIN and TATE on
surfaces over finite fields described in § 6 below.

Let I'’ be an elliptic curve which is isogenous to I" over Q. Cassels has
shown that if Conjecture B holds for I' it also holds for I"’. All the terms
in Conjecture B except for g are liable to change under 1sogeny. However,
in each case the ratio between the values of a term for I' and for I"’ is
easier to determine than the two values themselves: in particular, the
change in L* (I, 5) comes entirely from the factors M ,(I') corresponding
to the bad primes. CASSELS’ result is therefore a purely algebraic one,
which does not involve s and which in particular throws no i ght on the
problem of analytic continuation.

Experiment shows that L*(I', 1) cannot be satisfactorily calculated
either by numerical analytic continuation or by setting s=1 in (2.4) and
truncating the infinite product at a suitable point. It is known however
that L*(I', s) can be analytically continued across Rs=3 when one of
two conditions holds; and in these cases L* (I, 1) can be calculated. These
conditions are that I" admits complex multiplication, discussed in § 3, or
that I' can be parametrized by elliptic modular functions, discussed in
§ 4. Here we consider just what the resulting figures show. Write

L*(Fﬂ S)=a0+al(5_ 1)—1'—{12{5 =2 ]}2+...

It can be shown, under either condition, that a,=L* (I, 1) is a rational
number, for whose denominator an explicit bound can be given; since it
can be computed to any desired accuracy, it can be found exactly even
though the computations themselves are not exact. By contrast, 1t 1s only
practicable to compute the g, with n> 0 to two or three significant figures;
and no theoretical statement about them is known. For curves with com-
plex multiplication the numerical results are given in [3] and [24]. Of the
2024 curves for which L*(I', 1) has been calculated, there are 1744 for
which the value of g is also known. Of these, 984 have L*(I', 1)=0 and
g>0, in accordance with Conjecture A; the other 760 have g=0 and
L*(I', 1)>0, and for these it is natural to use the formula of Conjecture A
to give a hypothetical value of [III]. In each case the value is a perfect
square, in accordance with the result of CAsSeLs [5]. Moreover, for each
such curve either the 2-component or the 3-component of III was found
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i the course of finding g and these agree with the hypothetical values of
[II]. There are 355 curves for which g>0 and both R and the a, with

n>0 have been calculated. These support the stronger Conjecture B, with
the same interpretation of [II1] as above, and with two minor reservations.

Since the values of @, and R are only approximate, so is that which is ob-

tained for [II] from the formula. However this value is always close to a
small integer, and so the hypothetical value of [II] is unambiguous.

Again, for g>1 Conjecture B requires that a; =0 and direct calculation
can only show that this holds approximately. When g =2 we can use the
functional equation for L*(I", s) and the exactly verifiable statement a, =0
to prove that g, =0; but in the two relevant cases when g=3 there is no
known way to prove a, =0, though the calculations make this plausible.
As yet, there is only one curve without complex multiplication for which
the value of L*(I', 1) is known. This case is fully described in § 4; it sup-
ports Conjecture A provided that III is trivial, which there 1s no reason

to doubt.
In describing the functional equation, it is convenient to write

A*(s) = (2n)~* I (s) L* (I, s). (2.8)

WEIL has conjectured that for a suitable choice of the factors correspond-
ing to the bad primes,

A¥(s)=¢f ' T AT (2 — ). (2.9)

Here ¢ =+ 1 and fis the conductor of I', so that /is a product of suitable
powers of the finite bad primes; for the precise definition of / see [/7]
or [/9]. In general, no formula for ¢ is known; but DEURING has shown
that if I' admits complex multiplication then L*(I,s) 1s essentially a
Hecke L-series with GroBencharaktere, and hence (2.9) holds with an
explicitly defined e. Evidently L*(I', 5s) has a zero of odd order at s=1 if
¢=—1, and of even order if e= + 1. According to Conjecture B, L*i T, )
has a zero of order g at s=1. For I" of the form '

y*=x> - Dx (2.10)

or of the form (2.7), which correspond to the two simplest cases of com-
plex multiplication, BIRcH and STEPHENS [/] have shown that the number
of first descents is even when e=+ 1 and odd when ¢ — — | ; this supports
the conjecture in view of the theorem of CASSELS quoted above, that pro-
vided III 1s finite the number of first descents has the same parity as g.

NERON [/7] has given a birationally invariant theory of the reduction



C curves o p. This appears, inter alia, to give the right form
nf E,?{I‘ 5) corresponding to the bad primes; and I am

to TATE for pointing out to me that it also gives a simpler defi-

d ﬁf the corresponding factors M,(I') than that of (2.3). In fact
.*’ H shows that there is an essentially unique model for I" of the form

‘where 4, u, a, B, y are integers and the discriminant of the equation (2.11)
is as small as possible. For this model, every I', is an irreducible curve.
Write

L,(s)={(1—-ap")(1 —&p~ ")}

with the o, &, of (2.1) if I',, is non-singular;
L,(s)=(1-p"")"

if I', has an ordinary double-point with distinct rational tangents;

L,(s)y=(1+p™)"’

if I', has an ordinary double point with irrational tangents; and

L,(s)=1

if I', has a cusp. Moreover, let ¢, be the number of irreducible compo-
nents of multiplicity 1 in the Neron fibre associated with the reduciion of
(2.11) modulo p; thus ¢, =1 whenever I', 1s non- -singular. TATE has shown

that

M, (I') = ¢,/ L, (1)
for all primes p, which generalizes (2.5). In view of this, the correct defi-
nition of L*(I', s) is presumably

(I, 5) = (M, (D) [T e} ™ TIL,(9)

Here the term in curly brackets has been introduced to preserve (2.6).
According to SERRE, this is the L-series for which the functional equation

(2.9) should hold.

3. Elliptic curves with complex multiplication

In this section we give an account of the calculation of L*(I', s) for

curves of the form

y? = x> — Dx (3.1)
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wm: D is a rational integer which we can take to be fourth-power-free.
Similar arguments apply to the other types of curve defined over Q which
MI complex multiplication, but the formulae differ. Detailed calcu-
~ lations have also been carried out by STEPHENS [24] for the curves (2.7),
and pupils of CASSELS are currently working on curves of the form

y2 = x> -+ 4Ax> + 2A%x

which admit complex multiplication by / (—2).
For the curve (3.1) the bad primes are just those which divide 2D. For
any other prime p it is known that

D D
Np‘: 7t 4 T 4

p+1 for p=3mod4,

where in the upper line (), denotes the biquadratic residue symbol in
Q(7) and 7,7 are primes in Q(7) such that p ==7 and

=1 mod(2 + 2i).

It follows after a little manipulation that

D A D G
LAl , §) = — | =] -- = - ,, 3.2
(L5) H{I (ﬂ )4 (NH)S} Z(g >4 (No )’ e

where N denotes the norm from Q(i) to Q, the product is taken over all

real or complex Gaussian primes and the sum over all Gaussian integers
subject to

Il

T

n=o0=1 mod(2+ 2i)

In each case. Now let 4=1mod(2+2/) be the odd part of

the square-free
kernel of D, and write in (3.2)

g=164u + o

where p runs through all Gaussian integers and p runs

through a certain
finite set. This gives, writing o =

0/16 4 for convenience,

L(I, s)=(]6d)1“23}:Z( ) “H_ij (3.3)
L+ o™

The sum over u does not involve the biquadratic residye

symbol, and i1t
can be analytically continued into Rs> ! 1

as follows. Write
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| ; ession in curly brackets is O (12"~ ") this defines an analytic
anction in Rs>1; and moreover

- 4 H _£+£2}
o 0 T R

p¥F0

is just the Weierstrass zeta-function with periods 1, i. On the other hand,
if Rs>3 we can rearrange (3.4) to give

&+ i 1

- - =y (a,s +&1-—SE =

Ia+u|2 ( ) ( ) (N].l)s
uF0

=Y (a, s) + 4a(l — s) {oai) ($)

the other terms in the sum cancelling in pairs. Substituting into (3.3) we
obtain

carmtuTE) () =20}

e

[

(3.3)

There are now two ways to proceed. For Conjecture A, we are only
interested in the value of L(I', 1) and can simply write s=11n (3.5). 1 his
gives a closed expression for L(I’, 1) in terms of values of the Weierstrass
elliptic functions with periods 1, 7. The resulting expression for L*(/", 1)
is well suited to computation; moreover since the number-theoretic prop-
erties of division values of the Weierstrass gp-functions are well known,
one can show that L*(I", 1) is rational and can give an explicit bound for
its denominator. For the full details, see [3].

For Conjecture B, on the other hand, we need to find the first few coet-
ficients in the power series expansion of L(I’, s) about s=1. It turns out
that except when 4=1, for which special devices are needed, we can

T e-beT

Assuming this, we can argue back fro (3.5) and (3.4) in a way which
shows that (3.3) converges in Rs>3 provided that the inner sum is taken
over p and the outer sum Over K. From this we can deduce convergent
series for the coefficients of the power series expansion of L(I, s) about
s=1. Unfortunately the convergence is not very strong; evet if one uses
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__ m from numerical analysis to accelerate the convergence, a large
~ amount of computer time is needed and the results are only accurate to
~ two or three significant figures. These calculations have not in fact been
carried out for curves of type (3.1), because the computer available when
the work reported in [3] was done was not fast enough. However,
STEPHENS has carried out the corresponding calculations for curves of the

form (2.7), on the Atlas I at Manchester University. |
Curves of the form (3.1) can be parametrized by modular functions,
and the methods described in the next section can therefore be applied

to them. These methods have only recently become available, and one has
too little experience of them yet to know how much labour they involve.
At the moment it seems that the methods of the present section are prefer-
able for calculating L(I', 1), but those of the next section are preferable
if further coefficients in the power series expansion of L(I’, s) are needed.
There 1s a third method of computing L(I', s) which deserves mention,
though as yet no one has tried to exploit it. We have already pointed cut
that for curves with complex multiplication L(I, s) is a Hecke L-series
with GroBlencharaktere. HECKE [/2] has shown that every such function
can be analytically continued over the whole plane, by expressing it in
terms of integrals involving theta-functions. These integrals are quite
convenient for numerical calculation. This approach has the disadvana pe
that it does not yield a closed formula for L(I', 1), and hence all the ;-
sults it produces are approximate. But it has the advantage that in PIInci-
ple it can be carried through for curves I' defined over an arbitrary alge-
braic number field, provided they admit complex multiplication. In con-
trast, the methods of the present section applied to (3.1) work only if the
ground field is Q or Q(7), and the methods of the next section apply only

to curves defined over Q.

4. Elliptic curves parametrized
by modular functions

The work reported in this section has only been started very recently:
consequently the calculations are incomplete and most of the proofs are
missing. It is based on a conjecture of WEIL [32] and on theorems of
EICHLER (7] and SHIMURA [23]. There is as yet only one curve I" for which
the value of L*(I', 1) has been calculated by these methods, and the first
part of this section outlines this calculation. The second part describes
the general method, and those results which have so far been obtajned.
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i f f : Wh this section the usual conventions of modular function
Pﬁmm 7 is a complex variable, H is the upper half-plane
S, "f“fﬂ, and if ¢>0 is an integer then I'y(g) is the group of transforma-

- at+ b

ct+d

T =

where a, b, ¢, d are rational integers with ad—bc=1 and g|c.
Let j(7) be the fundamental elliptic modular function. The quotient
space H/I,(11) has genus 1, and the curve

T:y2+y=x3—x2-—10x—20 (4.1)

is a model for the associated function field C(j(t),j(117)). This is the
reduced model in the sense of NERON, and may be deduced from equation

(13) of FRICKE [8], p. 406. The only bad prime for I is p=11, for which in
the notation of § 2 we have

L11(5)=(1+“_s)_1a Cyp = 9.

With the canonical differential
dx

=2))-’,—1

ﬂ)

we can therefore write L*(I", s)=L(I', s)/5 M (I') where
L(l,s)=1+ 11757 TT{0 —op) (I - a,p %)) = am

say. Now SHIMURA has shown that if f (1)=Y a,e’™" then f(r)dr 1s
differential of the first kind on H/I'x(11) and is therefore a multiple of w;
comparing the coefficients of ¢2™* we obtain with the help of FRICKE

w = — 2nif (1) dt.

=3

By the Mellin transform formula we therefore have

100

j o, (4.2)

t=0

L(I,1)=—2ni Jf(r) dt =

r=ioco correspond respectively to the points

But the points t=0 and ‘ ‘ |
hich are S-division points: and it now

(—6,5) and (5,5) on I, both of W
follows easily that
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in agreement with the known results g =0, [I'(Q)] =5 and the conjectured
- results that HI is trivial and that Conjecture A holds for the curve (4.1).
It is no coincidence that the integral (4.2) can be explicitly evaluated in

this way. On the one hand, using standard notation
4(11 w,, @,)/4 (@, ®,)
!

is a modular function invariant under I'o(11) which has a ten-fold zero

at t=ioo and a ten-fold pole at t=0; hence (io0)—(0) is a 10-division

point on I'. On the other hand, x and y are rational functions of j(t) and

j(117) over Q; hence their values must be rational (or infinite) at =0 and

T =700, since these are both points about which j(t) and j(117) have power
series expansions with rational coefficients. These arguments, and the
known fact that [I"(Q)] =35, are enough to show that L(I', I)=inM _(I')
for some integer n; and by finding the actual points on I" which corre-
spond to t=0 and 7=/0c0 we see moreover that n=1 mod 5. The correct
value of » can now be found by crude numerical estimation, or more
elegantly by topological arguments based on a knowledge of where the
real points of I" correspond to on the Riemann surface H/I (11}

There are just 12 values of g for which H/I',(q) has genus 1. The values
of g and the corresponding curves I', in unreduced form, may be found
in [8]. Presumably similar arguments will work for each of then:.

The importance of this method, however, arises from a conjcciure of
WEIL. The justification of this conjecture is given in [32] and need not be

repeated here; but it should be emphasized that the theoretica rcasons
for it are much more powerful than the numerical evidence ronorted
below. Let I' be an elliptic curve defined over Q, and let /' be its conductor:
then Weil’s conjecture states that I' can be parametrized by clliptic

modular functions invariant under I",( /).

Because the difficulty of describing H/I',( /') explicitly increases rapidly
with /, 1t is convenient to start from the other end: that is. to choose g >0
and ask what curves I" of genus 1 are parametrized by modular functions
invariant under I'y(g). If C,(q) is the curve, defined over Q. whose Rie-
mann surface is H/I",(g), this is equivalent to looking for maps Cy(q)—1
Let g be the genus of C,(g) - the previous meaning of g will not be needed
In this section — and for any differential of the first kind Q on C o(q) and
any homology class o write

(R, a) = fQ- (4.3)
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By a slight abuse of language this can be viewed as a bilinear form,
ﬁ&g in a vector space over the complex numbers and « in a vector space
~ over Q; and these spaces have dimension g and 2g respectively. Now sup-
pose that there is a map Cy(¢)— T, and let ® be the unique differential of

the first kind on I' and Q the induced differential of the first kind on

C,(g); then for any homology class @ on Cy(g) whose image on I is
trivial we have
(Q,a)=JQ=Jw=0.
a 0

Such homology classes form a subspace of dimension 2g —2. Conversely,
suppose that on Cy(g) there is a differential of the first kind Q such that
the a for which ¢, «) =0 form a subspace of dimension 2g—2. Choose
a base a,, ..., &,, for the integral homology of Cy(q) such that {Q, a,> =0
for n>2: then the function ¢ on C,(g) defined by

P

4(p)= | 0

is many-valued, and if one of its values 1s ¢, (P) the others are the
do(P) + n R, ay> + ny {8, 0z)

where n, and n, are arbitrary integers. If I' is the elliptic curve corre-
sponding to the doubly periodic functions witn periods (£, a;» and
(9, a,) it follows that ¢ induces a map Co(g)—T.

Hence to find the curves I" it 1s enough to find differentials € satisfying
the conditions above. Unfortunately, direct methods are no use, for 1t 1s
inconvenient to form the space of differentials of the first kind and 1m-
possible to evaluate the integrals {£2, a) exactly. To progress, W intro-
duce the Hecke operator. For a cull account of this, see HECKE [13] and
PETERSSON [21]; here I quote only the results which are needed. Let W
denote the space of differentials of the first kind on Co(q), and let Q=

£ () dt be an element of W, so that /(7) is a cusp form of dimension —2.
For each prime p not dividing ¢, W€ define an endomorphism T, on W by

the formula
p—1
- T+ N
T,Q ={pf(pt) + P "\ dt.
n=0

(There are similar operators T for the p which divide ¢;

they play a part
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_in the complete theory, but are omitted here for simplicity.) The T, com-
~ mute, and we can choose a base for W each of whose members 1s an eigen-
- vector for each T,. In view of the importance of the bilinear form (4.3),
‘we ought to define a dual operator T, on V, the space of homology classes
@ on Cy(g). Define T}, as the map induced on V' by the map of O-cycles

@09+ ) (0);

then it is easily verified that the T, are well defined, commute, and satisfy

(TR, a) =<2, T)o). (4.4)

Again, the map 7— —7 induces a homeomorphism of H/I';(g) viewed
merely as a topological space, and hence induces an automorphism of ¥
which evidently commutes with each T,. Let V" be the subspace con-
sisting of those a which are fixed under this automorphism, and V'~ the
subspace of those a which are reversed in sign; then V=V"@V ", the T,
induce endomorphisms of ¥+ and V7, and CQV™ and C®V ™~ are
canonically dual to W, where C denotes the field of complex numbers. In
particular, the eigenvalues of T, for W, and of T, for V'™ and }' are the
same. Now let a™ be an isolated eigenvector for the T, acting oun J'* -
that 1s, an eigenvector which is determined up to multiplication v a con-
stant by its eigenvalues. It is easy to see that there are corresponding
eigenvectors Qin Wand o~ in ¥ 7, and by (4.4) that the o in V' tor which
(L, a) =0 form a subspace of dimension 2g —2; hence «* induces a map
Co(gq)—T. Conversely, if we are given a map C,(g)—1 it can be shown
that the corresponding Q is an eigenvector for every T, and that the corre-
sponding eigenvalues are rational integers. Non-isolated eigenvectors do
occur, but apparently they correspond to the proper factors g’ of g, for
each of which there exist several distinct canonical maps C,(g)— Cy(q')
hence they are not important.

It 15 a straightforward matter to find a base for V' *. say, and to com-
pute the matrix which represents the effect of any T, on it; and in this

way we can easily find, for any given ¢, the «* which induce maps

2

. S +
T, = C 0

for each p, and let the corresponding differential be

=f(c)dr where f(1)=Y g 2



A5t _,_mt% e s F (]~ p”" + p" ) (4.5)
""_j"-; - where Fis a factor corresponding to the primes which divide g. In princi-
- ple we can now find the two non-zero periods of 2 by numerical inte-
~ gration, and hence also the curve I'; however, this method is unattractive
- and there is no guarantee that the resulting curve I' will have integral
coefficients. We have preferred to look for elliptic curves of conductor g
" and pair them off empirically with the isolated eigenvectors a™. Despite
some special results of OGG [20] and others, there is no certain way of
finding all curves of conductor g. Instead, I have written a search program
which examines all curves

y2 4 byxy + byy = x> + b,x* + byx + bs

with b, =0or 1, b,=0or +1, b5=0or 1, |b,| <300 and |b¢| <1000. For
each g<75 the search program produces exactly as many non-1sogenous
curves of conductor g as there are isolated rational eigenvectors o™ . More-
over, it is easy to pair them off; for although no proof is yet available
there are strong theoretical and numerical reasons for supposing that
(4.5) is the L-series associated with I'.

Assuming all this, the Mellin transform theorem gives

100

L(I,1)= f — 2mi2,

0

which is equal to the integral of a multiple of w, the unique differential of
the first kind on I, along a certain contour on I'. As in the special case
worked out at the beginning of this section, the ends of this contour will
be rational points on I', and they will differ by a (g —1)-division point.
Hence L*(I', 1) will be a rational number for whose denominator an ex-
plicit bound can be given. Similarly, the coefficients in the power series
expansion of L*(I', s) about s=1 can be obtained as definite integrals
suitable for numerical calculation. However, the detailed programming
of these calculations is a slow job.

5. Abelian varieties over an algebraic number field

It is natural to try to generalize Conjectures A and B, both by replacing
the elliptic curve I" by an Abelian variety 4 and by replacing the ground
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' .' d, deﬁned over an algebraic
«ﬂ m'imes p af x, A has a non-degenerate
M is an Abelian variety defined over the finite
dﬁmnnts. Moreover there exist numbers o, , ..., %24y,

wlﬂcq”’, such that the number of points on A, defined
) is H{l — oy, ) for each n. From these we define the local L-

% Ly () = {T1(1 — g ™))"

i va let @ be a non-zero invariant exterior differential form of degree d
; on 4, let x, be the field of p-adic numbers, A(x,) the set of points on A
~ defined over «x,, | |, the usual p-adic valuation and u, the usual Haar

measure on x, which assigns measure 1 to the p-adic integers. For any
finite prime p we write

' -E
I ‘i

and we make a similar definition for the infinite primes. If w and 4 both
have good reductions modulo p then

M, (A4) = {Lp(])}—l :

To define a global L-series for A4, choose any finite set of primes S which

includes all the infinite primes and all primes for which w or A has a bad
reduction; and write

E(A’ 5) = H {A’fp(A)}wl H Ln(s)-
pesS PéS

This depends on S, but not in any vital way. Presumably there is a best
possible form for the L-series, as there is with elliptic curves, but the
details are not known. L*(A4, s) is only defined in Rs> 3, but it is conjec-
tured that it can be analytically continued over the whole complex plane.

The Tate-Safarevi¢ group 1l is defined as in § 2. It is conjectured to be
finite, and TATE [26] has shown that if it is finite its order 1S a perfect
square. WEIL [30] proved that A(x), the group of points on A defined
over k, 1s finitely generated; denote by g the rank of this group. Now
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It can be defined by methods similar to those of § 2, but it is preferable to

A i s - ;
B WY e F

o the ideas of NERON [8]. Now let P,, ..., P, be a base for 4(x) modulo
torsion, and Py, ..., P, be a base for 4(x) modulo torsion, and write

R =det(h(P, P))).

Moreover let D be the discriminant of x, and r the number of its complex
infinite primes. TATE’s generalization of Conjecture B is as follows:
Conjecture C. With the notation and definitions above,

(2"|D|”*)" (] | R|
[A (%)sors] [A (K)10rs]

The main surprise in this, in comparison with Conjecture B, is the ap-
pearance of the dual Abelian variety 4 in the denominator; for I', as a
Jacobian, is canonically self-dual. The justification for 1t has been pro-
vided by TATE [29], who showed that Conjecture C i1s compatible with
isogeny in its present form and would not be if 4 was replaced by 4.
/.f/There is no direct evidence for Conjecture C beyond that which applies

/to the special case of Conjecture B, for no way of calculating L*(A, s)
J near s=1 is known. However, the method suggested at the end of § 3
. could in principle be applied to varieties with sufficiently many complex
\multiplications, in view of the results of SHIMURA and TAMIYAMA [22].

For later reference, it is convenient to rephrase the special case 1n which

A is the Jacobian of a curve C which is also defined over k. The L-series

can be defined in terms of the local zeta-functions

(11 = ag (1 —q ) (1—a )

of C, and A(x)=A(x) is just the group of divisors on C of degeeo and
defined over x, modulo linear equivalence. The definition of III in § 2 be-
comes meaningless, but the definition by means of cohomology groups
is easily extended ; and similar remarks apply to h and hence to R. All the
expressions in the Conjecture can therefore be expressed in terms of the

- curve C.

L* (A4, 5) ~

(s—1) as s—1.
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where the P; are polynomials (possibly of degree zero)

B; 3 I-

Pi(x) = H (- ‘Ifjx) (6.2)
i=1

The original definition of the «;; was that for each n>0 the number of
points on V defined over GF(g") is ) y (—1)'of;; and they are assigned
to the polynomials P;(x) by the conjectural relation

[# j‘ = E"‘z . (6.3)

Alternatively, one can define P;(x) as the characteristic polynomial of the
Frobenius endomorphism acting on the i-dimensional cohomology of V
with /-adic integer coefficients, where / is any prime other than p. It 1s
believed that the P.(x) defined in this way do not depend on /; but this
has only been proved for i =0, 1, 2d—1 and 24, and of course for {;(s) as
defined by (6.1). In what follows we shall assume that the P,(x) are well-
defined, but we shall not need (6.3).

Let o, be the rank of the group of classes of r-dimensional cycles defined
over k on V, modulo algebraic equivalence. We can choose a base for the
7r-dimensional cohomology of ¥ such that g, of its elements come from
these cycles. Since the Frobenius endomorphism acts trivially on these
cycles, the characteristic polynomial P,.(x) must contain the factor
(1—g'x) at least to the g,th power. TATE ([27], substantially repeated in
[28]) has conjectured that this is the exact power — in other words, that
every factor (1 —g'x) arises from a rational r-dimensional cycle. This can
be rephrased in terms of the zeta-function (6.1) as follows:

Conjecture D. With the notation above, the order of the pole of Zy(s) at
s=r is equal to the rank of the group of classes of r-cycles defined over k on
V. modulo algebraic equivalence.

Tate has verified this for a number of special varieties. For the case
when d=2, so that V is a surface, see below.

Clearly there can be no analogous statement when 7 is odd. It is known
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higher Jacobians’, some of the factors of P, . (%)

- must come from the higher Jacobian of V in dimension r. (One possible
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e I of the higher Jacobian is as follows. Let W be a variety which
parametrizes some maximal family of r-dimensional subvarieties of ¥:

then the higher Jacobian in dimension r is that Abelian variety which is

‘universal for maps from any such W to any Abelian variety. Perhaps for

good enough Vit is even the Albanese variety of each such W.) For the
special case of the cubic three-fold, see [4]. Such scanty evidence as exists
suggests that all those factors of P,,,,(x) for which ¢" divides «,,,, ;
arise in this way.

More generally, for any 7/ and r with r<3i<d we can pick out those
factors (1 —a;;x) of P;(x) for which ¢" divides «;;. Is it true that these and
only these factors arise from cohomology classes which are in some sense
built up from r-dimensional cycles on ¥ — not necessarily defined over k?

In the special case where V is a surface, ARTIN and TATE [29] have gone
much further. Let NS denote the Néron-Severi group of ¥ over k — that
is, the group of classes of divisors defined over k on ¥, modulo algebraic
equivalence; let ¢ be the rank of NS and let D,,..., D, be a base for NS
modulo torsion. Write

a = pg(V)—0(V) =0,

where p, is the geometric genus of ¥ and o( V) is the “‘defect of smooth-
ness”’ of the Picard scheme of ¥ over k. Let Br( V) be the Brauer group of
V over k. For details of this see GROTENDIECK [9], [10] and [II]; the
Brauer group is related to the Tate-Safarevi¢ group, but has the advantage
that for many V it can be proved to be finite and even computed. The con-
jecture of ARTIN and TATE 1s as follows:

Conjecture E. With the notation above,

[Br (V)] |det {D;-D,}
q* [NSiors]”

where the curly brackets denote intersection multiplicity. | | |
This is closely related to the variant of Conjecture C in which x 1s a

finitely generated field of transcendence degree 1 over a finite field. For the
full details see [29]; here we only sketch the idea. Let C, defined over

x =k(t), be a generic member of a pencil of curves on V. The zeta-function
of C over x is closely connected with that of V over k, because C 1s a

generic fibre of V. The group of divisor classes defined over x on Lo

| —s
Pz(q——s)ﬁu (1 —'ql )(’ as S_"l!
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 modulo linear equivalence, is isomorphic to the Néron-Severi group of ¥

~ over k; this fact lies at the heart of Néron’s proof of the Néron-Severi

~ theorem - see for example LANG [14], Chapter V. It was pointed out at

" the end of § 5 that Conjecture C could be expressed entirely in terms of
the curve C, without overt reference to its Jacobian A. The height, on C,
s a bilinear form on the group of divisor classes on C defined over x; and
by the isomorphism above it becomes a bilinear form on NS. Since there
is already one such form given by intersection number, these two ought
to be the same: and this is confirmed by a detailed analysis.

The status of Conjecture E is much better than that of the previous
conjectures, for ARTIN and TATE have proved that at least its non-p part
follows from statements about ¥ which are apparently much weaker. The
precise result they prove is as follows:

Theorem. For given V and k suppose that either

(i) the I-primary part of Br(V) is finite for some prime [#p; or

(ii) P,(q~*) has a zero of order precisely o at s=1.

Then the non-p part of Br(V) is finite and

[Br (V)nnn—‘ p] ‘dEt {D: ' DJ}
p* [NS,or]”

¥ -“":.. d—... i

i e Y

T

= I ] #
Tty

l(I —g " a8 s-+1

Pz(qﬂs) ~

for some integer V.
Tate has proved that Br(¥) is finite in a number of cases, in particular

when V is a product of two curves. This last result is closely connected
with his proof that if two Abelian varieties defined over a finite field have

the same zeta-function, then they are 1SOLENOUS,

7. Varieties over algebraic number fields

Let V be a complete non-singular variety of dimension 4 defined over
an algebraic number field k. For almost all finite primes P of x, V" has a
non-singular reduction V¥, modulo p; and if g 1s the absolute norm of p
then V, has a local zeta-function given by (6.1) and (6.2). For each 7 with

0<i<2d, we can associate with V' an [-series
L(v,s)=T1{R@@™)} = [T = g ) (7.1)
P p J

where the outer product is taken over all p for which V" hasa good reduc-

tion. (This 1s the process which we applied to elliptic curves 1n § 2, and
implicitly to arbitrary curves in § 5. However, in contrast with these cases,

11 Local Fields



~ finite primes w infinite primes.) Even assuming (6.3), the product
Gl e ) only converges in Rs>1+1i, except of course in the trivial case

- When B,=0. However, it is generally believed that L,(s) can be analytically
oontu?ued through the entire complex plane, and that there is a f unétional
€quation connecting L;(s) with L;(1+i—s).

The cases i=0 and 1 (and by symmetry i=2d—1 and 2d) need no fur-
ther discussion. L,(s) is, except for some missing factors, the classical
Riemann zeta-function of k: and it is well known that its behaviour near
s=1 (the real point on the boundary of the half-plane of convergence)
gives valuable information about x. L, (s) depends only on the Albanese
variety 4 of ¥V, and is in fact the L*(4, 5) of § 5 with some factors missing;
according to Conjecture C its most interesting behaviour is at s = 1, which
i1s the real point a distance 4 from the half-plane of convergence, and is
the centre of the critical strip. As in § 6, we must therefore expect a funda-
mental difference between odd and even values of i.

When i=2r 1s even, TATE [27] has suggested that the analogue of Con-
jecture D still holds, in the following form:

Conjecture F. With the notation above, the order of the pole of L.V, 5)
at s=r+1 is equal to the rank of the group of classes of r-cycles defined
over k on V, modulo algebraic equivalence.

It should be emphasized that the heuristic deduction of this from Con-
jecture D along the lines “P;(¢™°)~C,(1 —¢" °)¢ for some constants C,;
hence L;(V, s)~C {(,(s—r)}®~C'(s—r—1)"¢ near s=r-+1" is totally
misleading; it is not even true that }JV and V, have the same p, for almost
all p. The simplest counter-example 1s V=1 x I, where I i1s an elliptic
curve which does not admit complex multiplication; here g, =3 for V,
but g, =4 for almost all V,. There is strong reason to suppose that any
sufficiently general quartic surface is also a counter-example.

Tate has verified this conjecture in a few special cases. Moreover, by
taking ¥ to be the d-fold product of an elliptic curve I not admitting
complex multiplication with itself, he has deduced from it some very
interesting results on the distribution of the arg a, as p varies. (Here «,
is defined by (2.1).) These results agree with the numerical evidence. The

constant lim(s — r — 1) L,,(V, s)

1 2 = ..:- -:t?}'“.‘?” #

& 0 "
T K.
3

¥ -

= .
= T
3\

has been evaluated for a number of varieties V. The results suggest that
the constant is significant, but as yet there is nothing with which 1t can

be even conjecturally identified.
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i:l"xl‘ where 1" 1S an empnc curve: for convenience of notation ' .‘

m mnme that I" is defined over Q and its local zeta-function is given by
(2. 1). Now

Ps(p™)=(1-p™ )1 —&p ™) (1 —a,p'™° (1 — &,p* ~*)°
and so Ly (V,s)=L3(I', s) {L,(I', s—1)}° say, where

() =TT —o3p™) (1 —@3p™)) "

It is reasonable to ascribe the term {L,(I",s—1)} to the higher Jacobian
in dimension 1; and in any case its behaviour near s=2 is completely de-
scribed by Conjecture B. We are therefore led to examine L3(T, s) near
s=2.

Now suppose that I' has the form

yz = x> — Dx. (7.2)

Using the 1deas of § 3, though in a more complicated form, it is possible
to give a closed expression for L3(I. 2) in terms of division values of
elliptic functions; and this expression has been evaluated for about 100
values of D. The structure of the results closely resembles what we would
be able to say about L, (I, 1) if we had only the results of the calculation,
and lacked any number-theoretic theory of elliptic curves to attach them
to. To clarify this, I formulate a weak version of Conjecture A for the
curve (7.2). For this purpose we employ “fudge factors™ /4_ and 4, for
each prime p dividing 2D. These have explicit definitions in terms of the
local properties of D, which are too long to give here: but it should be
noted that ,=1 or 2 for each finite p. They are in fact just the (M, (I},
possibly multiplied by rational squares; but we are forbidden to use that
interpretation in the present context. Write

I.l o L] (r, l))q.mn;‘..p

the “fudged’ value of L, (I, 1).

Weak Conjecture A. The rational integer y is a perfect square. By local
considerations involving only the sign of D and those primes which divide
2D, we can state a sufficient condition for p=0; but this condition is not a

necessary one.
That u is a rational integer can be proved from the explicit formula.
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That p is a perfect square is equivalent to saying that [1II]
square. The sufficient condition for u=0 is just the necessary and suffi-
cient condition for (7.2) to have an odd number of first descents, and so
for g to be odd; this is sufficient, but not necessary, for g>0.

A precisely analogous conjecture fits the numerical evidence for
L3(T, 2). We can define local “fudge factors” /o and A;; these are not
the same as 4 and 4, above, but we do have A,=1 or 2. Write

1S a perfect

p = IL3(F,2) 1 .

It can be proved that u’ is a rational integer: and the numerical evidence
shows that u" must always be a square. (There is no possibility of coinci-
dence, for the numbers involved are much larger than with u.) Moreover
one can state local conditions (not the same as for p) which appear to be
sufficient but not necessary for i =0. Presumably there is a duality theory
and a descent argument of some sort which underlies all this: but what
it 1s I have no idea.
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