
IV

Universal Fourier expansions of modular forms

Löıc Merel

Introduction

Let X be the set of matrices
(
a b
c d

)
∈ M2(Z) such that a > b ≥ 0 and d > c ≥ 0.

Let us consider the following series in C[M2(Z)][[q]]:

∑
M∈X

M qdetM

=
(

1 0
0 1

)
q

+ (
(

2 0
0 1

)
+
(

1 0
0 2

)
+
(

2 1
0 1

)
+
(

1 0
1 2

)
) q2

+ (
(

3 0
0 1

)
+
(

1 0
0 3

)
+
(

3 1
0 1

)
+
(

1 0
1 3

)
+
(

3 2
0 1

)
+
(

2 1
1 2

)
+
(

1 0
2 3

)
) q3

+ ...

The aim of this paper is to establish that this series produces (in a sense that will
be made precise in a moment) Fourier expansions at infinity of modular forms of in-
tegral weight ≥ 2 for congruence subgroups of SL2(Z). This justifies the terminology
“universal Fourier expansions of modular forms”. Here and in what follows “Fourier
expansion” will always mean “Fourier expansion at infinity”.

Let k be an integer ≥ 2. Let N be an integer > 0. Let Ck−2[X,Y ] be the complex
vector space of homogeneous polynomials in two variables and degree k−2. Let Γ0(N)

(resp. Γ1(N)) be the group of matrixes
(
a b
c d

)
∈ SL2(Z) such that N |c (resp. N |c,

N |(a − 1)). Let χ be a Dirichlet character modulo N . We Sk(N) (resp. Sk(N,χ))
the complex vector space of cusp forms of weight k for Γ1(N) (resp. for Γ0(N) with
multiplicative character χ, see section 2.5).

Let Ck−2[X,Y ][(Z/NZ)2] be the vector space of linear combinations of elements of
(Z/NZ)2 with coefficients in Ck−2[X,Y ]. If φ is a linear map Ck−2[X,Y ][(Z/NZ)2]→ C
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and g =
(
a b
c d

)
∈M2(Z), we denote by φ|g the linear map Ck−2[X,Y ][(Z/NZ)2]→ C

defined by the formula

φ|g(P (X,Y )[u, v]) = φ(P (aX + bY, cX + dY )[au+ cv, bu+ dv]),

P ∈ Ck−2[X,Y ], (u, v) ∈ (Z/NZ)2. We denote by EN the set of elements (u, v) of
(Z/NZ)2 satisfying the relation Zu+ Zv = Z/NZ.

Let us denote by PN = ∪d|N (Z/dZ)∗. By convention when d = 1, (Z/dZ)∗ has one
element. Let C[PN ]k be the quotient vector space of C[PN ] modulo the vector space
generated by the elements of the form [a] − (−1)k[−a] = 0, a ∈ (Z/dZ)∗, d|N . If
a ∈ Z/NZ, d|N and a invertible modulo d, we denote by [a]d the image of [a (mod d)]
in C[PN ]k.

Let b : Ck−2[X,Y ][EN ] → C[PN ]k be the C-bilinear map which associates to
P (X,Y )[u, v] the element P (1, 0)[v−1](u,N) − P (0, 1)[u−1](v,N), where by abuse of no-
tations v−1 is the inverse modulo (u,N) of v and (u,N) is the greater common divisor
of u and N , i.e. the order of the sugroup of Z/NZ generated by u.

Theorem 1 Let φ be a linear map Ck−2[X,Y ][(Z/NZ)2] → C verifying the following
equalities

φ+ φ|σ = φ+ φ|τ + φ|τ2 = φ− φ|J = 0,

where σ =
(

0 −1
1 0

)
, τ =

(
0 −1
1 −1

)
and J =

(
−1 0
0 −1

)
, and φ(P [u, v]) = 0 if

(u, v) /∈ EN , P ∈ Ck−2[X,Y ]. Let x ∈ Ck−2[X,Y ][EN ] such that b(x) = 0. Then∑
M∈X

φ|M (x)qdetM

is the Fourier expansion of an element f of Sk(N). Furthermore all modular forms of
such type can be produced by this method.

Let χ be a Dirichlet character Z/NZ → C. Let us suppose that φ satisfies the
additional condition

φ(P [λu, λv]) = χ(λ)φ(P [u, v])

((λ, u, v) ∈ (Z/NZ)3, P ∈ Ck−2[X,Y ]). Then f belongs to Sk(N,χ).

If x does not satisfy the relation b(x) = 0, the series obtained should be, except for the
constant term, the Fourier expansion of a holomorphic modular form of weight k for
Γ1(N) (see the remark in the section 3.2). This theorem can be refined to obtain only
newforms (see sections 2.6 and 3.2).

We outline now the plan of the paper as well as the plan of the proof of the the-
orem 1. We recall in the first part the theory introduced by Manin and developed
by Shokurov of modular symbols of arbitrary weight for subgroups of finite index of
SL2(Z) ([4], [12], [11], [14], [13]). This theory can be related to the Eichler-Shimura
theory connected with the cohomology of subgroups of finite index of SL2(Z). The
Eichler-Shimura theory imbeds modular forms in a space of modular symbols; The
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Manin-Shokurov theory constructs pairings between modular symbols and modular
forms. We construct a complex vector space (of modular symbols) Mk(N), which
is a quotient of Ck−2[X,Y ][EN ] (see section 1.3). We denote by [P, x] the image of
P [x] ∈ Ck−2[X,Y ][EN ] inMk(N). There is a bilinear pairing of complex vector spaces
between Mk(N) and Sk(N) ⊕ Sk(N) (where Sk(N) is the space of antiholomorphic
cusp forms), see section 1.5. This pairing is given as follows:

(f1 + f2, [P, x]) 7→
∫ ∞

0
f|g(z)P (z, 1) dz +

∫ ∞
0

f|g(z)P (z̄, 1) dz̄,

where f1 ∈ Sk(N), f2 ∈ Sk(N), g is any element in SL2(Z) such that π(g) = x and

f|g(z) = (cz + d)−kf(gz) and f|ḡ(z) = (cz̄ + d)−kf(gz).

We denote by Sk(N) the image inMk(N) of the kernel of b. By a theorem of Shokurov,
when restricted to Sk(N), the pairing defined above is nondegenerate (see section 1.5).
We complete the theory of Shokurov by making explicit the relation between the mod-
ular symbols and the cohomology of SL2(Z). Moreover the action of the complex
conjugation on modular curves defines an involution ι∗ on Mk(N). This involution is
studied in the section 1.6. In fact all the results in the first part of the paper are valid
if Γ1(N) is replaced by any subgroup of finite index of SL2(Z).

The second part is devoted to the study of Hecke theory on Mk(N) (Hecke op-
erators, Atkin-Lehner operators, old and new parts, degeneracy maps). We describe
only here our main result. The Hecke operators operate by duality on Sk(N). In
fact this action extends naturally to Mk(N). Let n be an integer > 0. We denote
by M2(Z)n the set of matrices of M2(Z) of determinant n. We say that an element∑

M uMM ∈ C[M2(Z)n] satisfies the condition (Cn) if for all K ∈M2(Z)n/SL2(Z), we
have in C[P1(Q)] ∑

M∈K
uM ([M∞]− [M0]) = [∞]− [0].

We denote by Tn the Hecke operator onMk(N). Our main result about Hecke operators
is as follows.

Theorem 2 Let P [u, v] ∈ Ck−2[X,Y ][EN ]. Let
∑

M uMM ∈ C[M2(Z)n] satisfying the
condition (Cn). Then we have (the sum is taken with respect to the matrixes M =(
a b
c d

)
)

Tn([P, (u, v)]) =
∑
M

uM [P (aX + bY, cX + dY ), (au+ cv, bu+ dv)],

where the sum is restricted to the matrices M such that (au+ cv, bu+ dv) ∈ EN (if n
and N are coprimes this restriction is unnecessary).

We remark that the condition (Cn) depends neither on the level N nor on the weight
k. This theorem can be understood as a formula on linear forms on modular forms
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without knowing anything about modular symbols (see the pairing defined above). We
give an analogous formula for the action of Atkin-Lehner operators on Mk(N) (see
section 2.4). Let Xn be the set of matrices of X of determinant n. Then∑

M∈Xn

M

satisfies the condition (Cn) (see the section 3.1). The theorem 2 extends some results
obtained in my thesis for the weight 2 (see [8], [7], [9]). It extends also a result in [16]
concerning only the modular forms for the full modular group SL2(Z). We shall add
that other elements of C[M2(Z)n] satisfy the condition (Cn) (see part 3).

For x ∈ Ck−2[X,Y ][EN ] satisfying b(x) = 0 we can consider its image m(x) in
Sk(N). A complex linear form φ on Ck−2[X,Y ][EN ] satisfying the conditions of the
theorem 1 factorizes through a linear form on Mk(N), which induces a linear form
φm on Sk(N). We obtain a linear form α(φ, x) on the Hecke algebra (i.e. the C-
algebra generated by the Hecke operators Tn and Tn,n of EndC(Sk(N)) for n ≥ 1)
which associates to T the complex number φm(Tm(x)). We then use the following
fact: if α is a linear map from the Hecke algebra to C, then

∑∞
n=1 α(Tn)qn is the

Fourier expansion of an element of Sk(N). We apply this principle for α = α(φ, x) to
obtain the theorem 1.

As an application of the theorem 1, we give a conditional method to construct bases
of Sk(N) (see section 3.3).

In the course of the completion of this work, I was generously invited several times
to the Institut für experimentelle Mathematik. I would like to thank this institution
for its nice hospitality.

1 The theory of Manin-Shokurov

1.1 The algebraic description of modular symbols

Let Γ be a subgroup of finite index of SL2(Z) and k an integer ≥ 2. Ik k is odd, we

impose the following condition: J =
(
−1 0
0 −1

)
/∈ Γ (otherwise the following theory

is empty).
First we consider the torsion free abelian group M generated by the expressions

{α, β} ((α, β) ∈ P1(Q)2) with the following relations

{α, β}+ {β, γ}+ {γ, α} = 0 ((α, β, γ) ∈ P1(Q)3).

So we have {α, β} = −{β, α} and {α, α} = 0. We consider now the complex vector
space

Mk = Ck−2[X,Y ]⊗M,

where Ck−2[X,Y ] is the space of complex homogeneous polynomials in two variables of

degree k − 2. We define a linear action of g =
(
a b
c d

)
∈ GL2(Q) on P ∈ Ck−2[X,Y ]
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and P ⊗ {α, β} ∈ Mk by the rules

P|g(X,Y ) = P (dX − bY,−cX + aY )

and
(P ⊗ {α, β})|g = P|g ⊗ {gα, gβ}.

For (g, h) ∈ GL2(Q)2, we have (P|g)|h = P|hg. Let Mk(Γ) be the quotient vector space
of Mk obtained by imposing the relations x|γ = x (x ∈ Mk, γ ∈ Γ). We will denote
by P{α, β} the image of P ⊗ {α, β} ∈ Mk in Mk(Γ). The elements of Mk(Γ) will be
called modular symbols of weight k for Γ.

Remark .- We can replace the field C in this construction by any ring. In particular,
the space Mk(Γ) carries a natural integral structure. The subgroup Zk−2[X,Y ] ⊗M
ofMk is stable by the action of GL2(Q)∩M2(Z). It makes sense to consider its image
Mk(Γ,Z) in Mk(Γ). The complex vector space Mk(Γ) is canonically isomorphic to
Mk(Γ,Z)⊗ C.

1.2 The Manin symbols

Let g ∈ SL2(Z) and P ∈ Ck−2[X,Y ]. We introduce the Manin symbol [P, g] ∈ Mk(Γ)
by the formula

[P, g] = P|g{g0, g∞}.

We recall the notations of the introduction: σ =
(

0 −1
1 0

)
, τ =

(
0 −1
1 −1

)
and

J =
(
−1 0
0 −1

)
. These matrices verify σ2 = J , J2 =

(
1 0
0 1

)
and τ3 =

(
1 0
0 1

)
.

Proposition 1 Let g ∈ SL2(Z) and P ∈ Ck−2[X,Y ]. The Manin symbol [P, g] depends
only on the class Γg and on P . When g runs through SL2(Z) and when P runs through
Ck−2[X,Y ], the Manin symbols generateMk(Γ). Furthermore they verify the following
equalities:

[P, g] + [P|σ−1 , gσ] = 0,

[P, g] + [P|τ−1 , gτ ] + [P|τ−2 , gτ2] = 0

and
[P, g] = [P|J ,−g].

Proof .- The first assertion is a consequence of the construction ofMk(Γ). To prove the
second assertion, we make use of a theorem of Manin which asserts that the elements
{g0, g∞}, for g ∈ SL2(Z) generateM (This is known as “Manin’s trick” [4], proposition
1.6. The proof of that assertion relies on continued fractions expansion). It follows
quickly that the Manin symbols generate Mk(Γ). To prove the first two equalities we
remark the following relations in P1(Q): ∞ = σ0 = σ2∞ and ∞ = τ1 = τ20. We have

[P, g] + [P|σ−1 , gσ] = P|g{g0, g∞}+ (P|σ−1)|gσ{gσ0, gσ∞}
= P|g{g0, g∞}+ P|gσσ−1{g∞, g0}
= 0
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and

[P, g] + [P|τ−1 , gτ ] + [P|τ−2 , gτ2]

= P|g{g0, g∞}+ (P|τ−1)|gτ{gτ0, gτ∞}+ (P|τ−2)|gτ2{gτ20, gτ2∞}
= P|g({g0, g∞}+ {g1, g0}+ {g∞, g1}
= 0.

The third equality follows from the fact that the matrix J operates trivially on P1(Q).

Remark .- The Manin symbols can be written as complex linear combinations of
Manin symbols of type [P, g], where P is a monomial of the form XqY k−2−q (q ∈
{0, 1, ..., k − 2}). Since these monomials are in finite number and since Γ\SL2(Z) is
finite, Mk(Γ) is generated by a finite number of elements. So it is a finite dimensional
complex vector space.

1.3 Comparison with the theory of Shokurov

We recall the theory of Shokurov (see [12], [11], [14], [13], especially the lemma-
definition 1.2 in the last paper). We use here the notations of Shokurov. Let H be
the Poincaré half-plane. Let ∆Γ be the compactification of the Riemann surface Γ\H.
Let Π be the set of cusps of ∆Γ. Shokurov considers a certain locally constant sheaf,
which he denotes (R1φ∗Q)w, on the modular curve ∆Γ (where w = k − 2, see [13]).
This sheaf is the usual sheaf on the modular curve ∆Γ constructed from the space of
modular forms of weight k for Γ; But there is no need to describe it here.

Let (α, β) ∈ (P1(Q))2 and (n,m) ∈ (Zk−2)2. The modular symbol of Shokurov
{α, β, n,m}Γ (which we will call provisionnally Shokurov symbol) lies in the homology
group H1(∆Γ,Π; (R1φ∗Q)w), which is a Q-vector space. The Shokurov symbols enjoy
the following properties (see lemma-definition 1.2 of [13]):

• The Shokurov symbol {α, β, n,m}Γ depends only on the polynomial
∏k−2
i=1 (niX+

miY ) ∈ Ck−2[X,Y ], where n = (n1, n2, ..., nk−2) and m = (m1,m2, ...,mk−2).

• They generate the Q-vector space H1(∆Γ,Π; (R1φ∗Q)w).

• They satisfy the following relations

{α, β, n,m}Γ + {β, γ, n,m}Γ + {γ, α, n,m}Γ = 0,

(α, β, γ) ∈ P1(Q)3, (n,m) ∈ (Zk−2)2.

• For γ =
(
a b
c d

)
∈ Γ, we have

{γα, γβ, dn− cm,−bn+ am}Γ = {α, β, n,m}Γ,

(α, β) ∈ P1(Q)2, (n,m) ∈ (Zk−2)2.
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Our present goal is to prove that the Shokurov symbols can be identified with our
modular symbols. Because of the first property satisfied by the Shokurov symbols, we
can denote by {α, β, P} the symbol {α, β, n,m}Γ, where P =

∏n
i=1(niX + miY ) ∈

Zk−2[X,Y ]. The last two properties can be rewritten

{α, β, P}+ {β, γ, P}+ {γ, α, P} = 0

and
{γα, γβ, P|γ} = {α, β, P}.

We deduce from these properties that there exists a surjective homomorphism of com-
plex vector spaces:

s1 :Mk(Γ)→ H1(∆Γ,Π; (R1φ∗Q)w)⊗Q C

which associates P{α, β} to {α, β, P} ⊗ 1, for P of the form
∏k−2
i=1 (niX + miY ) ∈

Zk−2[X,Y ], where n = (n1, n2, ..., nk−2) ∈ Zk−2 and m = (m1,m2, ...,mk−2) ∈ Zk−2.

Proposition 2 The linear map s1 is an isomorphism of complex vector spaces.

Proof .- For j ∈ Γ\SL2(Z), and q ∈ {0, 1, ..., k − 2}, Shokurov denotes by ξ(j, q) (and
calls marked class) the element s1([XqY k−2−q]) of H1(∆Γ,Π; (R1φ∗Q)w) ⊗Q C, where
g is any element of the class j.

After extending the scalars from Q to C, the theorem 2.3 of [13] asserts that the
kernel of the linear map

Ck−2[X,Y ][Γ\SL2(Z)]→ H1(∆Γ,Π; (R1φ∗Q)w)⊗Q C

which associates to P [Γg] the element s1([P, g]) is generated by the elements s1([P, g])+
s1([P|σ−1 , gσ]), s1([P, g])+s1([P|τ−1 , gτ ])+s1([P|τ−2 , gτ2]) and s1([P, g])−s1([P|J ,−g]),
where P is a monomial, i.e. s1([P, g]) is a marked class. It is a consequence of the
proposition 1 that this linear map factorizes through

Ck−2[X,Y ][Γ\SL2(Z)]→Mk(Γ) s1→ H1(∆Γ,Π; (R1φ∗Q)w)⊗Q C,

where the first linear map associates to P [Γg] the Manin symbol [P, g]. By considering
the kernels of these linear maps, we obtain that s1 is injective.

Let Ck−2[X,Y ][Γ\SL2(Z)]k be the quotient vector space of Ck−2[X,Y ][Γ\SL2(Z)]
obtained by imposing the relations P [j] = P|J [j(J)], j ∈ Γ\SL2(Z), P ∈ Ck−2[X,Y ].
We define a linear action on the right of SL2(Z) on Ck−2[X,Y ][Γ\SL2(Z)]k by the rule

(P [Γg])γ = P|γ−1 [Γgγ],

P ∈ Ck−2[X,Y ], (g, γ) ∈ SL2(Z)2.
We denote by Ck−2[X,Y ][Γ\SL2(Z)]σk (resp. Ck−2[X,Y ][Γ\SL2(Z)]τk) the set of

elements of Ck−2[X,Y ][Γ\SL2(Z)]k invariant under the action of σ (resp. τ).
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Proposition 3 We have the following exact sequences of complex vector spaces

0→ Ck−2[X,Y ][Γ\SL2(Z)]σk × Ck−2[X,Y ][Γ\SL2(Z)]τk
i→

Ck−2[X,Y ][Γ\SL2(Z)]k
mk→ Mk(Γ)→ 0,

if k > 2, and

0→ C
ε→ Ck−2[X,Y ][Γ\SL2(Z)]σk × Ck−2[X,Y ][Γ\SL2(Z)]τk

i→
Ck−2[X,Y ][Γ\SL2(Z)]k

mk→ Mk(Γ)→ 0,

if k = 2, where mk is the map which associates to P [Γg] the Manin symbol [P, g],
i associates to (a, b) the element a + b, in the last exact sequence the linear map ε
associates to λ the element (

∑
x∈EN λ[x],

∑
x∈EN λ[x]).

Proof .- By a theorem of Shokurov (see theorem 2.3 of [13], this result has already been
used in the proof of the proposition 2), the kernel of mk is equal to the sum of the
complex vector spaces Ck−2[X,Y ][Γ\SL2(Z)]σk and Ck−2[X,Y ][Γ\SL2(Z)]τk. The sur-
jectivity of mk is proved by the proposition 1. It remains to prove that the intersection
of Ck−2[X,Y ][Γ\SL2(Z)]σk and Ck−2[X,Y ][Γ\SL2(Z)]τk is equal to {0} if k > 2 and is
equal to the image of ε if k = 2. Let

∑
j∈Γ\SL2(Z) Pj [j] ∈ Ck−2[X,Y ][Γ\SL2(Z)]σk ∩

Ck−2[X,Y ][Γ\SL2(Z)]τk. We have Pj|σ = P(jσ) and Pj|τ = P(jτ) for all j ∈ Γ\SL2(Z).
Since σ and τ generate SL2(Z) (see [10]), we have P(jg) = Pj = Pj|g for all j ∈ Γ\SL2(Z)
and all g ∈ SL2(Z). This implies that Pj is a constant polynomial, i.e. P = 0 or k = 2.
If k = 2, then Pj is a complex number independent of j (SL2(Z) operates transitively
on Γ\SL2(Z)). So

∑
j∈Γ\SL2(Z) Pj [j] is in the image of ε. This proves the proposition.

1.4 The boundary modular symbols

Let B be the abelian group generated by the elements {α} (α ∈ P1(Q)). Let Bk be
the complex vector space Ck−2[X,Y ]⊗B. We define a linear action of g ∈ GL2(Q) on
P ⊗ {α, β} ∈ Bk by the formula

(P ⊗ {α})|g = P|g ⊗ {gα}.

We define Bk(Γ) as the complex vector space quotient of Bk obtained by imposing the
relations

(P ⊗ {α})|γ = P ⊗ {α},

for γ ∈ Γ.
For α ∈ P1(Q) and (n,m) ∈ (Zk−2)2, Shokurov introduces the boundary symbol

{α, n,m}Γ which is an element of the Q-vector space H0(Π; (R1φ∗Q)w). This symbol

depends only on α and on
∏k−2
i=1 (niX +miY ) ∈ Ck−2[X,Y ]. For γ =

(
a b
c d

)
∈ Γ, we

have
{γα, dn− cm,−bn+ am}Γ = {α, n,m}Γ.
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These symbols generate the Q-vector space H0(Π; (R1φ∗Q)w). See the lemma-definition
1.2 of [13] for all these properties. We will denote by {α,

∏k−2
i=1 (niX + miY )} the

boundary symbol {α, n,m}Γ.

Let Rk be the equivalence relation in C[Γ\Q2] which identifies the element [Γ
(
λu
λv

)
]

with ( λ
|λ|)

k[Γ
(
u
v

)
] (λ ∈ Q−{0}). We denote by C[Γ\Q2]k the finite dimensional com-

plex vector space C[Γ\Q2]/Rk. If k is even, this vector space is canonically isomorphic
to C[Γ\P1(Q)]. In any event its dimension is equal to |Γ\P1(Q)|, i.e. the number of
cusps of the modular curve ∆Γ.

Because of the properties satisfied by the boundary symbols of Shokurov there is
an unique surjective linear map:

s2 : Bk(Γ)→ H0(Π; (R1φ∗Q)w)⊗Q C

which associates to P{α} the boundary symbol {α, P} ⊗ 1 for P a polynomial of
the form

∏k−2
i=1 (niX + miY ) ∈ Ck−2[X,Y ], where n = (n1, n2, ..., nk−2) ∈ Zk−2 and

m = (m1,m2, ...,mk−2) ∈ Zk−2.
We consider now the complex linear map

µ : Bk(Γ)→ C[Γ\Q2]k,

which associates to P{uv } the element P (u, v)[Γ
(
u
v

)
] of C[Γ\Q2]k. The fact that µ is

well defined is a part of the following proposition.

Proposition 4 The linear maps s2 and µ are isomorphisms of complex vector spaces.

Proof .- Because of the way we constructed Bk(Γ), we can decompose it as a direct sum

Bk(Γ) = ⊕αBk(Γ)α,

where α runs through a set of representatives of Γ\P1(Q) and Bk(Γ)α is the subspace
of Bk(Γ) generated by the elements P{α} (P ∈ Ck−2[X,Y ]). For α ∈ P1(Q), we have
a surjective linear map

ψα : Ck−2[X,Y ] → Bk(Γ)α
P 7→ P{α}.

Its kernel is generated by the polynomials of the form P − P|gα , where gα ∈ Γ verifies
the equality gαα = α. If we write α = u

v ((u, v) ∈ Z2), we find (P − P|gα)(u, v) = 0.
This proves that µ is well defined. Since the kernel of ψα contains the kernel of a linear
form, its image is at most of dimension 1. The dimension of Bk(Γ) is at most |Γ\P1(Q)|.
Since the dimension of H0(Π; (R1φ∗Q)w) ⊗Q C is exactly |Γ\P1(Q)| (see [13], theorem
3.4), the map s2 must be bijective, and the dimension of Bk(Γ) must be |Γ\P1(Q)|. We
deduce that the image of each map ψα is of dimension 1. So the linear map µ must be
bijective.
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Shokurov considers the canonical boundary map:

∂ : H1(∆Γ,Π; (R1φ∗Q)w)⊗Q C→ H0(Π; (R1φ∗Q)w)⊗Q C.

We have ([13], lemma-definition 1.2)

∂({α, β, n,m} ⊗ 1) = {β, n,m} ⊗ 1− {α, n,m} ⊗ 1.

The kernel of ∂ is canonically isomorphic to H1(∆Γ; (R1φ∗Q)w) ⊗ C. By abuse of
notations, we still denote by ∂ the linear mapMk(Γ)→ Bk(Γ) obtained from ∂ by the
identifications made. We denote by Sk(Γ) the kernel of ∂ in Mk(Γ). We have

∂(P{α, β}) = P{β} − P{α}.

Proposition 5 We have the exact sequences

0→ Sk(Γ)→Mk(Γ) ∂→ Bk(Γ)→ 0,

if k > 2, and
0→ Sk(Γ)→Mk(Γ) ∂→ Bk(Γ) θ→ C→ 0,

if k = 2, where the linear form θ associates to λ{α} the complex number λ.

Proof .- Let us prove that ∂ is surjective if k > 2. Let β = u
v ∈ P

1(Q). Let λ ∈ C.
Let α = u′

v′ ∈ P
1(Q) such that α 6= β. Let P ∈ Ck−2[X,Y ] such that P (u, v) = λ and

P (u′, v′) = 0 (since k > 2 such a polynomial exists). We have in C[Γ\Q2]k

µ ◦ ∂(P{α, β}) = P (u, v)[Γβ]− P (u′, v′)[Γα] = λ[Γβ].

So ∂ is surjective.
If k = 2, the map θ is well defined and the image of ∂ is contained in the kernel

of θ. The image of ∂ and the kernel of θ are both generated by elements of the type
{β} − {α}. Since θ is surjective we deduce the validity of the second exact sequence.

We give now a formula for the boundary of Manin symbols.

Proposition 6 Let P ∈ Ck−2[X,Y ] and g ∈ SL2(Z). We have in C[Γ\Q2]k

µ ◦ ∂([P, g]) = P (1, 0)[Γg
(

1
0

)
]− P (0, 1)[Γg

(
0
1

)
].

Proof .- We set g =
(
a b
c d

)
. We have

∂([P, g]) = ∂(P|g{
b

d
,
a

c
})

= P|g{
a

c
} − P|g{

b

d
}
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and

µ ◦ ∂([P, g]) = P|g(a, c)[Γ
(
a
c

)
]− P|g(b, d)[Γ

(
b
d

)
]

= P (1, 0)[Γg
(

1
0

)
]− P (0, 1)[Γg

(
0
1

)
].

1.5 Pairings with modular forms

Let f be a map from the Poincaré half plane to C. For g =
(
a b
c d

)
∈ GL2(Q) and

z ∈ H, we recall the usual notations

f|g(z) = (cz + d)−kf(gz)(detg)
k
2

and
f|ḡ(z) = (cz̄ + d)−kf(gz)(detg)

k
2 ,

where the horizontal bar above complex numbers denotes the complex conjugation. We
denote by Sk(Γ) (resp. Sk(Γ)) the complex vector space of holomorphic (resp. antiholo-
morphic) cusp forms of weight k for the group Γ. There is a canonical isomorphism of
real vector spaces between Sk(Γ) and Sk(Γ) which associates to f the antiholomorphic
modular form z 7→ f(z); we denote by f̄ this antiholomorphic modular form.

Shokurov defines a pairing ([13], lemma-definition 1.2)

(Sk(Γ)⊕ Sk(Γ))×H1(∆Γ,Π; (R1φ∗Q)w)→ C

given by the formula

(f1 + f2, {α, β, n,m}Γ) 7→
∫ β

α
f1(z)

k−2∏
i=1

(niz +mi) dz +
∫ β

α
f2(z)

k−2∏
i=1

(niz̄ +mi) dz̄

(f1 ∈ Sk(Γ), f2 ∈ Sk(Γ)), where the path is, except for the extremities, contained in
the upper half-plane. Using the identifications of section 1.3, we deduce from this a
pairing of complex vector spaces

(Sk(Γ)⊕ Sk(Γ))×Mk(Γ)→ C

given by the rule

(f1 + f2, P{α, β}) 7→< f1 + f2, P{α, β} >=
∫ β

α
f1(z)P (z, 1) dz +

∫ β

α
f2(z)P (z̄, 1) dz̄

f1 ∈ Sk(Γ), f2 ∈ Sk(Γ), (α, β) ∈ P1(Q)2, P ∈ Ck−2[X,Y ]. In general, the pairing
< ., . > is degenerate. But we have the following theorem, which is essentially a
restatement of the theorem 0.2 of [14].
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Theorem 3 The bilinear pairing < ., . > is nondegenerate if restricted to a pairing

(Sk(Γ)⊕ Sk(Γ))× Sk(Γ)→ C.

Proof .- Shokurov proves([14], theorem 0.2) that the bilinear pairing between (Sk(Γ)⊕
Sk(Γ)) and H1(∆Γ; (R1φ∗Q)w)⊗Q C is nondegenerate. The theorem 3 is deduced from
the identification between H1(∆Γ; (R1φ∗Q)w)⊗Q C and Sk(Γ).

Remark .- 1) Let f1 ∈ Sk(Γ) and f2 ∈ Sk(Γ). Let g ∈ SL2(Z) and P ∈ Ck−2[X,Y ].
We have

< f1 + f2, [P, g] >=
∫ ∞

0
f1|g(z)P (z, 1) dz +

∫ ∞
0

f2|ḡ(z)P (z̄, 1) dz̄.

So we find the formula given in the introduction.
2) The pairing < ., . > is degenerate in general. The space of elements m ∈Mk(Γ)

such that < f,m >= 0 for all f ∈ (Sk(Γ)⊕ Sk(Γ)) is the space of Eisenstein elements.
By a theorem of Shokurov, it admits a basis inMk(Γ,Z) ([13], theorem 4.3 and corollary
4.4, see the remark in the section 1.1 for the meaning of Mk(Γ,Z)). It would be
interesting to find expressions in terms of Manin symbols of elements of such a basis.

3) The dimension of Mk(Γ) is equal to twice the dimension of Sk(Γ) plus the
dimension of the space of Eisenstein series of weight k for Γ. Using the exact sequences
appearing in the proposition 3, one can find the dimension of these spaces of modular
forms.

1.6 The action of the complex conjugation

In this section we suppose that the matrix η =
(
−1 0
0 1

)
normalizes the group Γ.

Proposition 7 The map ι which associates to f ∈ Sk(Γ) ⊕ Sk(Γ) the function z 7→
f(−z̄) = f(ηz̄) = f|η(z̄) = f|η̄(z̄) is a complex linear involution of Sk(Γ)⊕ Sk(Γ) which
exchanges Sk(Γ) and Sk(Γ).

The involution ι∗ on Mk(Γ) given by the rule

ι∗(P{α, β}) = −P|η̃{ηα, ηβ}

(P ∈ Ck−2[X,Y ], (α, β) ∈ P1(Q)2) is adjoint to ι with respect to the pairing < ., . > of
section 1.5. Moreover ι∗ acts as follows on Manin symbols

ι∗([P, g]) = −[P|η̃, ηgη
−1].

Proof .- Let f ∈ Sk(Γ). Let γ ∈ Γ. We have, since η−1γη ∈ Γ,

ι(f)|γ̄ = f|γη = f|ηη−1γη
= f|η̄ = ι(f).

So ι(f) is an antiholomorphic modular from. The analogous result with respect to
f ∈ Sk(Γ) can be proved similarly.
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Since η normalizes Γ, the definition of ι∗ is compatible with the construction of
Mk(Γ). Let f ∈ Sk(Γ), P ∈ Ck−2[X,Y ] and (α, β) ∈ P1(Q)2. We have

< ι(f), P{α, β} > =
∫ β

α
f(−z̄)P (z̄, 1) dz̄

= −
∫ −β
−α

f(z)P (−z, 1) dz

= < f,−P|η̃{ηα, ηβ} >
= < f, ι∗(P{α, β}) > .

The same equalities hold with respect to f ∈ Sk(Γ).
Finally we prove the formula with respect to the Manin symbols. We have

ι∗([P, g]) = ι∗(P|g{g0, g∞})
= −(P|g)|η̃{ηg0, ηg∞}
= −P|η̃η̃−1gη̃{ηgη−1η0, ηgη−1η∞}
= −(P|η̃)|η̃−1gη̃{ηgη−10, ηgη−1∞}
= −(P|η̃)|η−1gη{ηgη−10, ηgη−1∞}
= −[P|η̃, ηgη

−1].

Let Sk(Γ)+ (resp. Sk(Γ)−) be the subspace of Sk(Γ) constituted by the elements of
Sk(Γ) invariant (resp. antiinvariant) under the action of ι∗. We have a direct sum

Sk(Γ) = Sk(Γ)+ ⊕ Sk(Γ)−.

Proposition 8 The bilinerar pairings induced by the pairing < ., . > on

Sk(Γ)× Sk(Γ)+ → C and Sk(Γ)× Sk(Γ)− → C

respectively are nondegenerate.

Proof .- Let (Sk(Γ) ⊕ Sk(Γ))+ be the subspace of Sk(Γ) ⊕ Sk(Γ) invariant under the
action of ι. The pairing < ., . > restricted to (Sk(Γ) ⊕ Sk(Γ))+ × Sk(Γ)+ → C is
nondegenerate. Since the map

Sk(Γ) → (Sk(Γ)⊕ Sk(Γ))+

f 7→ f + ι(f)

is an isomorphism, we deduce the proposition from the equality

< f + ι(f), x >=< f, x > + < f, ι∗(x) >= 2 < f, x >

(f ∈ Sk(Γ), x ∈ Sk(Γ)+). The assertion concerning Sk(Γ)− can be proved in a similar
way.
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1.7 Connection with the cohomology of SL2(Z)

The complex vector space Ck−2[X,Y ][Γ\SL2(Z)]k is endowed with an action on the
right of SL2(Z) given by the formula

(P [Γg])γ = P|γ̃ [Γgγ].

Proposition 9 We have an isomorphism of complex vector spaces

H1(SL2(Z),Ck−2[X,Y ][Γ\SL2(Z)]) 'Mk(Γ).

Proof .- We note M = Ck−2[X,Y ][Γ\SL2(Z)]. Let Mσ (resp. M τ ) be the subspace
of M constituted by elements of M fixed under the action of σ (resp. τ). In view
of the exact sequences of the proposition 5, we only have to prove that there is an
isomorphism of complex vector spaces

H1(SL2(Z),Ck−2[X,Y ][Γ\SL2(Z)]) 'M/(Mσ +M τ ).

We recall that Z1(SL2(Z),M) (resp. B1(SL2(Z),M)) is the complex vector space
of functions φ : SL2(Z) → M such that φ(gh) = φ(g)h + φ(h), (g, h) ∈ SL2(Z)2

(resp. such that there exists m ∈ M with φ(g) = m − mg, g ∈ SL2(Z)). We have
H1(SL2(Z),M) = Z1(SL2(Z),M)/B1(SL2(Z),M).

Since SL2(Z) is the free product of the groups generated respectively by σ and by
τ , the map

Z1(SL2(Z),M) → ker(1 + σ + σ2 + σ3)× ker(1 + τ + τ2)
φ 7→ (φ(σ), φ(τ))

is an isomorphism of complex vector spaces (ker(1 + σ + σ2 + σ3) and ker(1 + τ + τ2)
denote the kernels in M of the multiplications on the right by (1 + σ + σ2 + σ3) and
(1 + τ + τ2) respectively). Since M is a complex vector space and since σ4 = τ3 = 1,
we have ker(1 + σ + σ2 + σ3) = M(1 − σ) and ker(1 + τ + τ2) = M(1 − τ). We have
an obvious isomorphism between M/Mσ and M(1 − σ) (resp. between M/M τ and
M(1− τ)). So there is an isomorphism of complex vector spaces Λ : Z1(SL2(Z),M)→
M/Mσ ×M/M τ . Since SL2(Z) is generated by σ and τ , B1(SL2(Z),M) is the set of
functions φ : SL2(Z) → M such that there exists m ∈ M with φ(σ) = m(1 − σ) and
φ(τ) = m(1− τ). The image by Λ of B1(SL2(Z),M) ⊂ Z1(SL2(Z),M) is the diagonal
image of M in M/Mσ ×M/M τ . The map

M/Mσ ×M/M τ → M/(Mσ +M τ )
(m1 +Mσ,m2 +M τ ) 7→ m1 −m2 +Mσ +M τ

is surjective. We only have to prove that its kernel is precisely Λ(B1(SL2(Z),M)) in
order to prove the proposition. Let (a, b) ∈ M2 such that a − b ∈ Mσ + M τ . There
exists (a′, b′) ∈Mσ ×M τ such that a− b = a′ − b′. So we have a− a′ = b− b′ = c. We
have a + Mσ = c + Mσ and b + M τ = c + M τ . So (a + Mσ, b + M τ ) belongs to the
diagonal image of M in M/Mσ ×M/M τ and the proposition has been proved.
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The space Sk(Γ) ⊕ Sk(Γ) is imbedded, by the theory of Eichler-Shimura combined
with the Shapiro lemma, in H1(SL2(Z),Ck−2[X,Y ][Γ\SL2(Z)]). This theory can be
extended to include, not only cups forms, but also Eisenstein series. This point of view
has been adopted by Wang ([15]).

1.8 Some comments on the the whole space of modular forms

This paper is concerned mainly with cusp forms and does not fully take care of the
Eisenstein series. The vector space Mk(Γ) does not correspond to the full space of
holomorphic modular forms of weight k for Γ just as Sk(Γ) corresponds Sk(Γ). To
summarize this one might say that the space of cusp forms is reflected in Mk(Γ) with
multiplicity two and the space of Eisenstein series with multiplicity one. We explain
informally in this section how to construct a more complete theory.

Let us consider the torsion free abelian group M̃ generated by the expressions ˜{α, β}
((α, β) ∈ (P1(Q))2) with the relations

˜{α, β} −˜{γ, β}+ ˜{γ, δ} −˜{α, δ} = 0,

(α, β, γ, δ all in P1(Q)). We set M̃0 = {
∑
λα,β˜{α, β} ∈ M̃/

∑
λα,β = 0}; It is a

subgroup of M̃ of Z-corank 1. Let us notice that in M̃ we do not have the relation
˜{α, α} = 0. There is an obvious exact sequence

0→ Z[P1(Q)]→ M̃ →M→ 0,

where the injection associates to [α] the element ˜{α, α} and the surjection associates

to the element ˜{α, β} of M̃ the element {α, β} of M.
We continue the construction just as in section 1.1. We use the notations M̃k =

Ck−2[X,Y ]⊗ M̃ and M̃0
k = Ck−2[X,Y ]⊗ M̃0. There is a linear action of GL2(Q) on

M̃k and M̃0
k given by the formula (P ⊗˜{α, β})|g = P|g⊗ ˜{gα, gβ}. So we may consider

the quotient groups M̃k(Γ) and M̃0
k(Γ) obtained by quotienting M̃k and M̃0

k by the

action of Γ. We denote by P˜{α, β} the image inMk(Γ) of the element P⊗˜{α, β} ofMk.
When k > 2, there is actually a canonical isomorphism between M̃k(Γ) and M̃0

k(Γ);
When k = 2, M̃0

k(Γ) can be identified with a subspace of M̃k(Γ) of codimension one.
Moreover one has the exact sequence

0→ Bk(Γ)→ M̃k(Γ)→Mk(Γ)→ 0

deduced from the previous exact sequence. Notice that the dimension of the complex
vector space M0

k(Γ) is twice the dimension of the full space of holomorphic modular
forms of weight k for Γ.

We introduce the Manin symbol ˜[P, g] ∈ M̃k(Γ) as the image of P ⊗ ˜{g0, g∞} in
M̃k(Γ), where P ∈ Ck−2[X,Y ] and g ∈ SL2(Z). For Λ =

∑
h uh[h] ∈ Z[SL2(Z)], we
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denote by ˜[P, g] •Λ the linear combination of Manin symbols
∑

h uh
˜[P|h−1 , gh] (see the

notations of section 1.2). We use the notation

θ =
(

1 0
0 1

)
−
(

1 1
0 1

)
+
(

0 1
−1 1

)
−
(

0 1
−1 0

)
+
(

1 1
−1 0

)
−
(

1 0
−1 1

)
∈ Z[SL2(Z)].

We have following relations for all Manin symbols in Mk(Γ):

˜[P, g] • θ = 0

and
˜[P, g]−˜[P, g] • (J) = 0.

Let us consider again the vector space Ck−2[X,Y ][Γ\SL2(Z)]k of the section 1.3. Let
us denote by Ck−2[X,Y ][Γ\SL2(Z)]θk the image of Ck−2[X,Y ][Γ\SL2(Z)]k under the
action of the right of θ (there is a unique action of Z[SL2(Z)] on Ck−2[X,Y ][Γ\SL2(Z)]k
which extends by Z-linearity the action of SL2(Z) defined in the section 1.3). We expect
then to have an exact sequence of complex vector spaces:

0→ Ck−2[X,Y ][Γ\SL2(Z)]θk → Ck−2[X,Y ][Γ\SL2(Z)]k → M̃k(Γ)→ 0,

where the injection is the inclusion and the surjection associates to the class of P [g]
the Manin symbol ˜[P, g].

We consider now the generalisation of the theorem 2 to M̃k(Γ), when Γ = Γ1(N).
In that case the Manin symbols can be written under the form ˜[P, x], where P ∈
Ck−2[X,Y ] and x ∈ EN (see the section 2.2). Let n be an integer > 0. There is an
obvious action of Hecke operators Tn on M̃k(N) which extends the action on Mk(Γ).
This action is given by the formula

Tn(P˜{α, β}) =
∑
δ∈R

P|δ ˜{δα, δβ},

where R is a set of representatives of Γ1(N)\∆n ; ∆n is the set of matrixes
(
a b
c d

)
∈

M2(Z)n such that N |c and N |(a − 1). Let
∑

M uM [M ] ∈ Z[M2(Z)n] satisfying the
following condition (C̃n) : For all class K ∈ M2(Z)n/SL2(Z), we have the relations∑

M∈K uM [M∞] = [∞] and
∑

M∈K uM [M0] = [0] in Z[P1(Q)]. This condition is
stronger than the condition (Cn) given in the introduction.

We have then the following formula for the action of Hecke operators on Manin
symbols

Tn ˜[P, (u, v)] =
∑
M

uM ˜[P (aX + bY, cX + dY ), (au+ cv, bu+ dv)],

where the sum is taken with respect to the matrixes M =
(
a b
c d

)
and restricted to

the terms for which (au+ cv, bu+dv) belongs to EN , P ∈ Ck−2[X,Y ] and (u, v) ∈ EN .
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This formula can be proved easily by extending the techniques used in the sections 2.1
and 2.3. We indicate a family of elements of Z[M2(Z)n] satisfying the condition (C̃n)
in the section 3.4.

Moreover we expect the existence of a nondegenerate pairing between M̃k(Γ)0 and
Mk(Γ) ⊕Mk(Γ), where Mk(Γ) (resp. Mk(Γ)) is the space of holomorphic (resp. anti-
holomorphic) modular forms of weight k for Γ and the existence of an alternate bilinear
pairing M̃0

k(Γ) × M̃0
k(Γ) → C. The first of these pairings should extend the pairing

considered in the section 1.6. To make the picture complete one expects a nondegener-
ate self-pairing extending the Petersson scalar product on Mk(Γ). When Γ = SL2(Z),
such a pairing has been constructed by Zagier ([17]).

2 Hecke theory on modular symbols

2.1 The general principle for the action of linear operators

We keep in this section the notations of the first part. Let ∆ ⊂ GL2(Q) such that
Γ∆ = ∆Γ and such that Γ\∆ is finite.

Let R be a set of representatives of Γ\∆. There is a well defined linear map

T∆ : Mk(Γ)→Mk(Γ)

which associates to P{α, β} the element
∑

δ∈R P|δ{δα, δβ}. This map does not depend
on the choice of R.

For g =
(
a b
c d

)
∈ M2(Q), we note g̃ =

(
d −b
−c a

)
= g−1detg and ∆̃ = {g ∈

GL2(Q)/g̃ ∈ ∆}.
Let φ be a map

∆̃SL2(Z)→ SL2(Z)

satisfying the following three conditions (more properly the conditions are satisfied by
the pair (∆, φ))

1. For all γ ∈ ∆̃SL2(Z), and g ∈ SL2(Z) we have Γφ(γg) = Γφ(γ)g.

2. For all γ ∈ ∆̃SL2(Z), we have γφ(γ)−1 ∈ ∆̃ (or equivalently φ(γ)γ̃ ∈ ∆).

3. The map Γ\∆→ ∆̃SL2(Z)/SL2(Z) which associates to Γδ the element δ̃SL2(Z)
is injective (it is necessarily surjective).

Let
∑
uMM ∈ C[M2(Z)]. We will say that

∑
uMM satisfies the condition (C∆) if and

only if, for all K ∈ ∆̃SL2(Z)/SL2(Z) we have the following equality in C[P1(Q)]:∑
M∈K

uM ([M∞]− [M0]) = [∞]− [0].

Theorem 4 Let P ∈ Ck−2[X,Y ] and g ∈ SL2(Z). Let
∑
uMM ∈ C[M2(Z)] satisfying

the condition (C∆). We have in Mk(Γ)

T∆([P, g]) =
∑

M,gM∈∆̃SL2(Z)

uM [P|M̃ , φ(gM)].
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Proof .- We start from the right side of the equality. Let S be a set of representatives
of g−1∆̃SL2(Z)/SL2(Z). We have∑

M,gM∈∆̃SL2(Z)

uM [P|M̃ , φ(gM)]

=
∑
s∈S

∑
M∈sSL2(Z)

uMP|φ(gM)M̃{φ(gM)0, φ(gM)∞}

=
∑
s∈S

∑
M∈sSL2(Z)

uMP|φ(gss−1M)M̃{φ(gss−1M)0, φ(gss−1M)∞}

=
∑
s∈S

∑
M∈sSL2(Z)

uMP|φ(gs)s−1MM̃{φ(gs)s−1M0, φ(gs)s−1M∞}.

The last equality is a consequence of the property 1 satisfied by φ. Since s and M have
the same determinant we have s−1MM̃ = s̃. We make use now of the condition (C∆)
and of the properties of modular symbols to obtain the equalities:∑

M,gM∈∆̃SL2(Z)

uM [P|M̃ , φ(gM)] =
∑
s∈S

P|φ(gs)s̃{φ(gs)s−10, φ(gs)s−1∞}

=
∑
s∈S

P|φ(gs)s̃g̃g{φ(gs)s̃g̃g0, φ(gs)s̃g̃g∞}.

Because of the property 2 satisfied by φ, φ(gs)s̃g̃ belongs to ∆. Because of the property
3 satisfied by φ, for s 6= s′ we have Γφ(gs)s̃g̃ 6= Γφ(gs′)s̃′g̃. We deduce that φ(gs)s̃g̃
runs through a set of representatives of Γ\∆ when s runs through S. This concludes
the proof of the theorem.

We denote by T ∗∆ the linear operator on Sk(Γ) (resp. Sk(Γ)) defined by the rule

f 7→
∑
δ∈R

(detδ)
k
2
−1f|δ

(resp.
f 7→

∑
δ∈R

(detδ)
k
2
−1f|δ̄).

This operator is independant of the choice of the set of representatives R of Γ\∆ made
at the beginning of the section.

Proposition 10 The operators T ∗∆ and T∆ are adjoint with respect to the bilinear
pairing < ., . > defined in the section 1.5.

Proof .- Let (α, β) ∈ P1(Q)2 and P ∈ Ck−2[X,Y ]. Let f ∈ Sk(Γ). For g =
(
a b
c d

)
∈

GL2(Q), we use the otation j(g, z) = (cz + d). We have

< T ∗∆(f), P{α, β} > =
∫ β

α
T ∗∆(f)P (z, 1) dz
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=
∑
δ∈R

∫ β

α
(detδ)k−1f(δz)j(δ, z)−kP (z, 1) dz

We make now the change of variables u = δz. We obtain

< T ∗∆(f), P{α, β} > =
∑
δ∈R

∫ δβ

δα
(detδ)k−1f(u)j(δ, δ−1u)−kP (δ−1u, 1) dδ−1u

=
∑
δ∈R

∫ δβ

δα
(detδ)k−1f(u)j(δ̃, u)k(detδ)−kP (δ̃u, 1)

detδ du
(j(δ̃, u))2

=
∑
δ∈R

∫ δβ

δα
f(u)P|δ(u, 1) du

= < f, T∆(P{α, β}) > .

The similar equality holds for f ∈ Sk(Γ). This proves the proposition.

Proposition 11 The operator T∆ maps Sk(Γ) into itself.

Proof .- Let T ∂∆ be the endomorphism of Bk(Γ) which associates to P{α} the element∑
δ∈R

P|δ{δα}.

It does not depend on the choice of R. The proposition follows from the equality

∂ ◦ T∆ = T ∂∆ ◦ ∂.

Remark .- 1) If ∆ ⊂ M2(Z), then T∆ maps Mk(Γ,Z) into itself. As we will see in
the section 2.3, the Hecke operators preserve the integral structure of Mk(Γ).

2) If η =
(
−1 0
0 1

)
normalizes Γ and ∆ (see section 1.6) then we have

T∆ ◦ ι = ι ◦ T∆.

In particular this applies to Hecke operators.

2.2 Manin symbols for Γ1(N)

Let N be an integer > 0. From now, we apply the results previously obtained to Γ =
Γ1(N). We use thereafter the notations Mk(N) = Mk(Γ1(N)), Sk(N) = Sk(Γ1(N)),

Bk(N) = Bk(Γ1(N)) ... We remark that the matrix η =
(
−1 0
0 1

)
normalizes Γ1(N)

(see section 1.6). The surjection

π : SL2(Z) → EN ⊂ (Z/NZ)2(
a b
c d

)
7→ (c, d)
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defines a bijection between Γ1(N)\SL2(Z) and EN . Let λ be a section of π. Let x ∈ EN .
The Manin symbol [P, λ(x)] depends only on Γ1(N)λ(x) and P (see proposition 1). So
it depends only on P and x. By abuse of notations we denote it by [P, x]. We define

an action of M =
(
a b
c d

)
∈M2(Z) on x = (u, v) ∈ (Z/NZ)2 by the formula

xM = (au+ cv, bu+ dv).

Proposition 12 Let x = (u, v) ∈ EN and P ∈ Ck−2[X,Y ]. We have

ι∗([P, x]) = −[P|η̃, xη] = −[P (−X,Y ), (−u, v)].

Proof .- Let g =
(
a b
c d

)
∈ SL2(Z) such that π(g) = x. By application of the

proposition 7, we have

ι∗([P, x]) = ι∗([P, g]) = −[P|η̃, ηgη
−1].

We have

π(ηgη−1) = π(
(
a −b
−c d

)
) = (−u, v).

The proposition follows.
There is a bijection between Γ\(Q2−{0})/Q∗+ and PN (see the introduction for the

definition of PN ) which associates to Γ1(N)
(
u
v

)
Q
∗
+ the element u (mod ()v,N) ∈

(Z/(v,N)Z)∗ ⊂ PN . This bijection defines an isomorphism of complex vector spaces
between C[Γ1(N)\Q2]k and C[PN ]k. The image of ∂([P, x]) (P ∈ Ck−2[X,Y ], x ∈ EN )
by this isomorphism is equal to b([P, x]) (see the introduction).

2.3 Hecke operators

We use the notations already introduced, especially those of section 2.2. Let n be an

integer ≥ 1. Let ∆n be the set of matrices
(
a b
c d

)
∈ M2(Z), of determinant n, such

that N |c and N |(a − 1). We have Γ1(N)∆n = ∆nΓ1(N) = ∆n. The set Γ1(N)\∆n

is finite. We denote by Tn the Hecke operator T∆n on Mk(N) (see section 1.1). We
remark that η∆n = ∆nη. So the Hecke operators commute with the involution ι∗

defined in the section 1.6.
We denote by M2(Z)n the set of matrices of M2(Z) of determinant n. We recall

(see the introduction) that
∑

M uMM ∈ C[M2(Z)n] satisfies the condition (Cn) if for
all classes K ∈M2(Z)n/SL2(Z) we have the following equality in C[P1(Q)]:∑

M∈K
uM ([M∞]− [M0]) = [∞]− [0].

We prove now the theorem 2.
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Proof .- We will prove this theorem as a special case of the theorem 4. The set ∆̃nSL2(Z)

is the set of matrices
(
a b
c d

)
of M2(Z) of determinant n such that (c, d,N) are globally

coprime (i.e. cZ/NZ+ dZ/NZ = Z/NZ). Let φn be a map

∆̃nSL2(Z)→ SL2(Z)

such that π(φn(
(
a b
c d

)
)) = (c, d) ∈ EN . In particular we have π(φn(M)) = (0, 1)M .

Lemma 1 The map φn and the set ∆n satisfy the conditions 1., 2. and 3. of the
section 2.1.

Proof .- Let
(
a b
c d

)
∈ ∆̃n and g ∈ SL2(Z), we have

π(φn(
(
a b
c d

)
g)) = (c, d)g = π(φn(

(
a b
c d

)
)g).

This equality proves that the pair (∆n, φn) satisfies the property 1.
An element g ∈ ∆̃nSL2(Z) belongs to ∆̃n if and only if (0, 1)g = (0, 1) in EN . Let

g =
(
a b
c d

)
∈ ∆̃nSL2(Z). We have (0, 1)g = (0, 1)φn(g) and so (0, 1)gφn(g)−1 =

(0, 1). We deduce that gφn(g)−1 belongs to ∆̃n. So we have the property 2.

Let (δ, δ′) = (
(
a b
c d

)
,

(
a′ b′

c′ d′

)
) ∈ ∆2

n such that

δ′δ−1 =
( da′−b′c

n
−ba′+ab′

n
dc′−d′c

n
−bc′+ad′

n

)
∈ SL2(Z).

Because of the definition of ∆n we have n ≡ d ≡ d′ (mod N). So we have N |dc′−d′cn .
The matrices δ, δ′ and δ′δ−1 are all trigonal matrices modulo N . Since the upper left
entry of δ and δ′ are both 1 modulo N , the upper left entry of δ′δ−1 must be 1 modulo
N . So δ′δ−1 belongs to Γ1(N). We deduce that the set ∆n satisfies the property 3.

Let g ∈ SL2(Z) such that π(g) = x. We have gM ∈ ∆̃nSL2(Z) if and only if xM
belongs to EN .

Since
∑

M uMM satisfies the condition (Cn) it satisfies the condition (C∆n) of the
section 2.1. By application of the theorem 4, we obtain the theorem 2.

2.4 Atkin-Lehner operators

Let N ′ be a positive integer dividing N such that N and N/N ′ are coprimes. Let ∆′N ′

be the set of matrices
(
a b
c d

)
∈ M2(Z), of determinant N ′, such that N |c, N ′|a,

N ′|d, N ′|(b − 1), (N/N ′)|(a − 1). We have Γ1(N)∆′N ′ = ∆′N ′Γ1(N) = ∆′N ′ . We have
ι∆′N ′ = ∆′N ′ι.

The operator T∆′
N′

(see section 2.1) is an Atkin-Lehner operator. It will be denoted
by WN ′ .
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Theorem 5 Let x ∈ EN and P ∈ Ck−2[X,Y ]. Let g ∈ SL2(Z) such that π(g) = x.
Let

∑
M uMM ∈ C[M2(Z)N ′ ] satisfying the condition (CN ′). We have

WN ′([P, x]) =
∑

M,xM=(0,0) (mod N ′)

uM [P|M̃ , εN ′(gM)],

where εN ′(gM) is the unique element of EN congruent to (1, 0)gM modulo N ′ and
congruent to (0, 1)gM = xM modulo N/N ′.

Proof .- We will apply the theorem 4 for ∆ = ∆′N ′ . The set ∆̃′N ′SL2(Z) is the set

of matrices
(
a b
c d

)
∈ M2(Z) of determinant N ′ such that N ′|c and N ′|d (we have

necessarily aZ/NZ+ bZ/NZ = Z/NZ).
Let δ0 ∈ ∆′N ′ . We consider the map

φ′N ′ : ∆̃′N ′SL2(Z) → SL2(Z)
δ̃0g 7→ g.

Since ∆̃′N ′ = δ0Γ1(N), the pair (∆′N ′ , φ
′
N ′) satisfies the conditions 1 and 2. Let δ =(

a b
c d

)
∈ ∆̃′N ′ and g =

(
a′ b′

c′ d′

)
∈ SL2(Z), such that δg =

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
∈

∆̃′N ′ . We have the congruences(
0 1
0 0

)
≡ δg ≡

(
c′ d′

0 0

)
(mod N ′)(

1 ∗
0 ∗

)
≡ δg ≡

(
a′ + bc′ ∗
dc′ d′d

)
(mod N/N ′).

We obtain the congruences

dd′ ≡ d (mod N/N ′)
c′d ≡ 0 (mod N/N ′)
c′ ≡ 0 (mod N ′)
d′ ≡ 1 (mod N ′).

Since d is prime to N/N ′, we have g ∈ Γ1(N). This implies that the pair (∆′N ′ , φ
′
N ′)

satisfies the condition 3 of the section 2.1.
We remark that π(φ′N ′(gM)) = εN ′(gM). By application of the theorem 4, the

theorem 5 follows.

2.5 Modular forms with characters

Let n be an integer prime to N . Let Dn =
(
n 0
0 n

)
. Let ∆n,n be the set of matrices(

a b
c d

)
∈ DnSL2(Z) such that N |c and N |(a−1). We have Γ1(N)∆n,n = ∆n,nΓ1(N).

By definition the operator Tn,n is the operator T∆n,n in the sense of the section 2.1.
The group Γ1(N) operates transitively by multiplication on the right on ∆n,n.
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Proposition 13 Let x = (u, v) ∈ EN and P ∈ Ck−2[X,Y ]. We have

Tn,n([P, x]) = [P|Dn , xDn] = nk−2[P, (nu, nv)].

Proof .- Let g ∈ SL2(Z) such that π(g) = x. Let γ ∈ ∆n,n. We can write γ = Dnγ0 with

γ0 =
(
a b
c d

)
∈ Γ0(N). We have d ≡ n (mod N). So we have π(γ0g) = (du, dv) =

xDn. The proposition is proved by the following equalities

Tn,n([P, x]) = P|Dnγ0g{Dnγ0g0, Dnγ0g∞}
= P|Dnγ0g{γ0g0, γ0g∞}
= [P|Dn , xDn]

Let χ be a Dirichlet character Z/NZ → C. We say that f ∈ Sk(N) (resp. f ∈
Sk(N)) belongs to Sk(N,χ) (resp. Sk(N,χ)) if we have f|γ = χ(d)f (resp. f|γ̄ = χ(d)f)

for all γ =
(
a b
c d

)
∈ Γ0(N). This condition is equivalent to T ∗n,n(f) = nk−2χ(n)f for

all n > 0 inversible modulo N , where T ∗n,n is the operator dual to Tn,n in the sense of
the section 2.1.

We define Mk(N,χ) as the quotient vector space of Mk(N) by the equivalence
relation which identify χ(n)x and n2−kTn,n(x) for all n > 0 inversible modulo N and
all x ∈Mk(N). Equivalently Mk(N,χ) is the quotient vector space of Mk(N) by the
equivalence relation which identify the Manin symbol [P, (λu, λv)] ((λ, u, v) ∈ (Z/NZ)3,
P ∈ Ck−2[X,Y ]) in Mk(N,χ) to χ(λ)[P, (u, v)].

We denote by Bk(N,χ) the image of ∂ in Bk(N) and Sk(N,χ) the kernel of ∂ in
Mk(N,χ). We can state the following refinement of the theorem 3.

Proposition 14 The pairing

(Sk(N,χ)⊕ Sk(N,χ))× Sk(N,χ)→ C

deduced from the pairing < ., . > of the section 1.5 is nondegenerate.

2.6 The new and old parts of Mk(N)

We do not give the detailed proofs of some statements in this section, since these
statements parallel the classical theory of old and newforms (see for instance [3]). Let

N ′ be a positive divisor of N . Let t be a divisor of N/N ′. The matrix T =
(

1 0
0 t

)
satisfies T−1Γ1(N) ⊂ Γ1(N ′)T−1. So there are well defined linear maps

εt : Mk(N) → Mk(N ′)
P (X,Y ){α, β} 7→ P (X, tY ){tα, tβ} = P|T̃ {T̃α, T̃ β}

and

ε′t : Mk(N ′) → Mk(N)

P{α, β} 7→
∑
γ

P|γ{γα, γβ},
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where γ runs through a set of representatives of Γ1(N)\Γ1(N ′)T . We have εt ◦ ε′t =
multiplication by a nonzero scalar. The linear maps εt and ε′t are respectively surjective
and injective.

The intersection of the kernels of εt when N ′ runs through all the positive divisors
of N and t runs through all the divisors of N/N ′ is by definition the new partMk(N)n

of Mk(N). The space generated by the images of ε′t when N ′ runs through all the
positive divisors of N and t runs through all the divisors of N/N ′ is by definition the
old part Mk(N)o of Mk(N). We have a direct sum

Mk(N) =Mk(N)n ⊕Mk(N)o.

This decomposition respects the decomposition of Sk(N) in old and new part, i.e.
Mk(N)n (resp. Mk(N)o) is orthogonal to the old (resp. new) part of Sk(N), when
one considers the bilinear pairing < ., . >.

The two following propositions are not, properly speaking, applications of the gen-
eral principle of the section 2.1. Nevertheless we use the same techniques to prove
them.

Proposition 15 Let x ∈ EN . Let P ∈ Ck−2[X,Y ]. Let
∑

M uMM ∈ C[M2(Z)t]
satisfying the condition (Ct). We have in Mk(N)

εt([P, x]) =
∑

uM [P|M̃ ,
1
t
xM ],

where the sum is restricted to the matrices M such that xM ∈ tEN , and where the
multiplication by 1

t is well defined from EN to EN ′.

Proof .- Let g ∈ SL2(Z) such that π(g) = x. We use the notation T =
(

1 0
0 t

)
.

Let M ∈ M2(Z)t such that xM ∈ tEN . Then we have π(T−1gM) = 1
txM . So two

matrices M and M ′ of M2(Z)t satisfying xM ∈ tEN and xM ′ ∈ tEN are in the same
class modulo multiplication on the right by an element of SL2(Z). If y ∈ tEN and
h ∈ SL2(Z) then we have yh ∈ tEN . So the sum in the formula in the proposition is
taken with respect to all elements belonging to only one class of M2(Z)t/SL2(Z). We
prove now the validity of the formula. We begin with the right side of the equality:∑

uM [P|M̃ ,
1
t
xM ] =

∑
uMP|T−1gMM̃{T

−1gM0, T−1gM∞}

=
∑

uMP|T̃ g{T
−1gM0, T−1gM∞}.

We use the condition (Ct) and the fact that the sum is taken over only one class of
M2(Z)t/SL2(Z). We have∑

uMP|T̃ g{T
−1gM0, T−1gM∞} = P|T̃ g{T

−1g0, T−1g∞}
= P|T̃ g{tg0, tg∞}
= εt([P, x]).

The proposition is proved.
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Proposition 16 Let g ∈ SL2(Z). Let H be a system of representatives in Γ1(N ′) of
Γ1(N)\Γ1(N ′)g. Let

∑
M uMM ∈ Z[M2(Z)t] satisfying the condition (Ct). We have

ε′t([P, π(g)]) =
∑
h∈H

∑
M

uM [P|M̃ , π(
(

1
t 0
0 1

)
hM)],

where the second sum is restricted to the matrices M such that hM ∈
(
t 0
0 1

)
SL2(Z).

Proof .- First we remark that, given h ∈ H, the set of matrices M ∈ M2(Z)t such

that hM ∈
(
t 0
0 1

)
SL2(Z) is exactly a class of M2(Z)t/SL2(Z). We use the notation

T =
(
t 0
0 1

)
. We have

∑
h∈H

∑
M

uM [P|M̃ , π(
(

1
t 0
0 1

)
hM)] =

∑
h∈H

∑
M

uMP|T̃−1hMM̃{
1
t
hM0,

1
t
hM∞}

=
∑
h∈H

∑
M

uMP|T̃ h{
1
t
hM0,

1
t
hM∞}

=
∑
h∈H

P|T̃ h{
1
t
h0,

1
t
h∞}

= ε′t([P, π(g)]).

The proposition is proved.

To determine the new part of Mk(N) it is useful to consider the following propo-
sition (which is a counterpart of a classical statement in the theory of modular forms,
see [3]).

Proposition 17 Let x ∈ Mk(N). This element belongs to Mk(N)n if and only if x
and WNx belong to the kernel of ε1 : Mk(N)→Mk(N/t) for all divisors t of N .

3 Families of elements satisfying the condition (Cn)

3.1 The Manin-Heilbronn family

Let S (resp. S ′) be the set of matrices
(
x −y
y′ x′

)
∈ M2(Z) of determinant > 0 and

satisfying one at least of the following three conditions

• x > |y|, x′ > |y′|, yy′ > 0

• y = 0, |y′| < x′

2

• y′ = 0, |y| < x
2
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(resp. one of the following two conditions

• y = 0, |y′| = x′

2

• y′ = 0, |y| = x
2 ).

Let n be an integer > 0. Let Sn (resp. S ′n) be the set of elements of S (resp. S ′) of
determinant n.

Proposition 18 The element ∑
M∈Sn

M +
1
2

∑
M∈S′n

M

of C[M2(Z)n] satisfies the condition (Cn).

Proof .- We use several lemmas.

Lemma 2 The set of elements
(
d b
0 n

d

)
∈ M2(Z) (resp.

(
n
d 0
b d

)
), with d > 0 and

−d
2 < b ≤ d

2 is a set of representatives of M2(Z)n/SL2(Z). The same assertion holds
if we replace the condition −d

2 < b ≤ d
2 by −d

2 ≤ b < d
2 . These elements are the only

elements
(
x −y
y′ x′

)
∈ Sn ∪ S ′n such that y′ = 0 (resp. y = 0).

Proof .- We prove the lemma with respect to the set of matrices
(
d b
0 n

d

)
∈ M2(Z)

with d > 0 and −d
2 < b ≤ d

2 . The other situations can be dealt with similarly. Let
g ∈ M2(Z)n. Since SL2(Z) operates transitively on P1(Q), there exists γ ∈ SL2(Z)

such that gγ∞ = ∞. So there exists an element g′ =
(
a b
c d

)
∈ gSL2(Z) such that

g′∞ = ∞. So we have c = 0. We can multiply by
(
−1 0
0 −1

)
to obtain a > 0. Two

matrices of M2(Z) of the type
(
d b
0 n

d

)
and

(
d′ b′

0 n
d′

)
, with d > 0 and d′ > 0 are

congruent modulo SL2(Z) if and only if d = d′ and b ≡ b′ (mod d). This proves the
first statement of the lemma.

The second statement follows immediately from the definition of the sets Sn and
S ′n.

Lemma 3 Let g =
(
x −y
y′ x′

)
∈ Sn such that y′ 6= 0 (resp. y 6= 0). There exists

an unique element g0 =
(
x0 −y0

y′0 x′0

)
∈ Sn ∩ gSL2(Z) such that ε(y′)

(
x
y′

)
=
(
−y0

x′0

)
(resp.

(
−y
x′

)
= ε(y′0)

(
x0

y′0

)
) where ε(y′) (resp. ε(y′0)) is the sign of y′ (resp. y′0); We

have g∞ = g00 (resp. g0 = g0∞).
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Proof .- We prove the lemma with respect to the hypothesis y′ 6= 0. The other assertion
can be proved similarly. We consider two cases.

First we suppose that x′

y′ is not integral. Let q be the unique integer such that

|q + x′

y′ | < 1 and (qy′ + x′) > 0. Since |y′| < x′, we have ε(y′)q < 0. The matrix(
−qε(y′ ε(y′)
−ε(y′) 0

)
belongs to SL2(Z) and we have

g0 = g

(
−qε(y′) ε(y′)
−ε(y′) 0

)
=
(
−(qx− y)ε(y′) ε(y′)x
−(qy′ + x′)ε(y′) ε(y′)y′

)
.

The nondiagonal entries of this matrix are nonzero. Since |y| < x, we have (qx −
y)ε(y′) > | − ε(y′)x| = x. Because of the construction of q we have |(qy′ + x′)ε(y′)| <
ε(y′)y′. We have (qy′ + x′)ε(y′)(−ε(y′)x) = −(qy′ + x′)x < 0. We have proved that g0

belongs to Sn. This proves the existence of the matrix. We now prove the unicity. Let
g0 ∈M2(Z) satisfying the conditions of the lemma. Let γ ∈ SL2(Z) such that gγ = g0.

We have gγ0 = g00 = g∞. So we have γ0 =∞ and γ is of the form
(
−qε ε
−ε 0

)
, with

q ∈ Z and ε ∈ {1,−1}. We have

g0 = g

(
−qε ε
−ε 0

)
=
(
−(qx− y)ε εx
−(qy′ + x′)ε εy′

)
.

Since x′

y′ is not integral, we have qy′+x′ 6= 0. So we have εy′ > 0 and ε = ε(y′). We have

also |(qy′+x′)ε| < εy′, that implies |q+ x′

y′ | < 1. Moreover the inequality εx(qy′+x′)ε > 0
implies qy′ + x′ > 0. So we have proved the unicity of q and consequently of g0.

Now we consider the second case: x′

y′ is integral. We first prove the existence

property. We find that the matrix g
(
−qε ε
−ε 0

)
, with q = −x′

y′ and ε = ε(y′), is equal

to
( nε

y′ εx

0 εy′

)
. We only have to prove that |x| < nε

2y′ , i.e. that |xy′| < n
2 . Since y′|x′

and |y′| < x′, we have |x′y′ | ≥ 2. Since xx′ + yy′ = n, we have 0 < xx′ < n, except
perhaps if y = 0. If y 6= 0, we obtain the inequalities

|xy′| ≤ 1
2
|xx′| < n

2
.

If y = 0, we have |y′| < 1
2x
′ (because g ∈ Sn) and the inequality

|xy′| < 1
2
|xx′| ≤ n

2
.

So the existence is proved. To prove the unicity we proceed as in the first case.

Lemma 4 Let d be an even positive divisor of n. The elements of the set

{
(
d d

2
0 n

d

)
,

(
d −d

2
0 n

d

)
,

(
d
2 0
n
d

2n
d

)
,

(
d
2 0
−n
d

2n
d

)
}
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belongs to the same class modulo SL2(Z). Moreover these sets form a partition of S ′n
which respects the classes modulo SL2(Z) when d runs through the positive even divisors
of n.

Proof .- The first assertion is proved by straightforward calculations. The second as-
sertion is obtained by comparing with the definition of S ′n and by using the lemma
2.

Lemma 5 We have
SnSL2(Z) ∩ S ′nSL2(Z) = ∅.

Proof .- Let g =
(
x −y
y′ x′

)
∈ Sn ∩ S ′nSL2(Z). We can not have y′ = 0 because of

the lemma 2. Since g ∈ Sn and y′ 6= 0, we use the lemma 3 to prove the existence of

an element g0 =
(
x0 −y0

y′0 x′0

)
∈ Sn ∩ gSL2(Z) = Sn ∩ S ′nSL2(Z) with |y′0| < y′. By

repeated use of the lemma 3 we obtain a sequence of matrices gm =
(
xm −ym
y′m x′m

)
∈

Sn ∩ S ′nSL2(Z) with decreasing |ym|. For some m we must have ym = 0. So we obtain
a contradiction.

We turn now to the proof of the proposition. The equation det
(
x −y
y′ x′

)
=

xx′ + yy′ = n has only a finite number of integral solutions with xx′ ≥ 0 and yy′ ≥ 0.
So the set Sn is finite. Let K ∈M2(Z)n/SL2(Z).

If K ⊂ S ′nSL2(Z), then the lemma 4 tells us that there exists a unique positive
divisor d of n such that

K ∩ S ′n = {
(
d d

2
0 n

d

)
,

(
d −d

2
0 n

d

)
,

(
d
2 0
n
d

2n
d

)
,

(
d
2 0
−n
d

2n
d

)
}.

We have in C[P1(Q)]∑
M∈K∩S′n

([M∞]− [M0]) = [∞]− [
d2

2n
] + [∞]− [− d

2

2n
] + [

d2

2n
]− [0] + [− d

2

2n
]− [0]

= 2([∞]− [0]).

If K ⊂ SnSL2(Z), we have in C[P1(Q)] (the sums are taken with respect to the

matrices M =
(
x −y
y′ x′

)
)

∑
M∈K∩Sn

[M∞]− [M0] =
∑

M∈K∩Sn

[
x

y′
]−

∑
M∈K∩Sn

[− y
x′

]

Because of the lemma 3, all the terms cancel each other except those corresponding to
y′ = 0 or y = 0. We obtain∑

M∈K∩Sn

[M∞]− [M0] =
∑

M∈K∩Sn,y′=0

[
x

y′
]−

∑
M∈K∩Sn,y=0

[− y
x′

]
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We now use the lemma 2 and we obtain that the last member is equal to [∞]− [0]. The
proposition is proved.

This result is very close to one obtained in [8], where the element appearing in
the proposition 18 is called the Manin-Heilbronn element for n odd (if n is even it is
called the Manin-Heilbronn element symmetrized by the complex conjugation). The
phenomenon underlying the proposition 18 was discovered by Heilbronn in a work
about continued fractions ([2]) and it was later used by Manin in the theory of modular
symbols ([4], [5], [6]).

Let us remark that the lemmas 2 and 3 enable us to construct systematically the
set Sn. The set S ′n is given directly by the lemma 4.

In [8], using a result of Heilbronn we gave an estimate for the cardinality of Sn: We
have the following asymptotic formula when n→∞

|Sn| ∼
12 log 2
π2

σ1(n) logn,

where σ1(n) is the sum of the positive divisors of n.

We can now introduce another universal expansion of modular forms, which seems
for practical purposes (i.e. explicit construction of bases of spaces of modular forms),
to be more useful than the series considered in the introduction.

We call the following series in C[M2(Z)][[q]] the Manin-Heilbronn expansion :∑
M∈S

MqdetM +
1
2

∑
M∈S′

MqdetM

=
(

1 0
0 1

)
q

+ (
(

2 0
0 1

)
+
(

1 0
0 2

)
+

1
2

(
2 1
0 1

)
+

1
2

(
2 −1
0 1

)
+

1
2

(
1 0
1 2

)
+

1
2

(
1 0
−1 2

)
)q2

+ (
(

3 0
0 1

)
+
(

1 0
0 3

)
+
(

3 1
0 1

)
+
(

1 0
1 3

)
+
(

3 −1
0 1

)
+
(

1 0
−1 3

)
)q3 + ...

3.2 The family related to Γ(2)

Let n be an odd integer > 0. Let

Un = {
(
x −y
y′ x′

)
∈M2(Z)/ xx′ + yy′ = n, x ∈ (1 + 4Z), x and x′ odd,

y and y′ even, x > |y|, x′ > |y′|}

and

Vn = {
(
x −y
y′ x′

)
∈M2(Z)/ xx′ + yy′ = n, x ∈ (1 + 4Z), x and x′ odd,

y and y′ even, y > |x|, y′ > |x′|}.
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Proposition 19 The element

θn =
∑
M∈Un

M −
∑
M∈Vn

M

satisfies the condition (Cn).

See [7] for the proof. These elements θn are somewhat more canonical than the Manin-
Heilbronn elements. Let us mention that they satisfy the following relations in Z[M2(Z)]
([7])

θnθn′ = θnn′

if n and n′ are coprimes odd integers, and

θpq = θpθpq−1 − p
(
p 0
0 p

)
θpq−2

if p is an odd prime number and q an integer ≥ 2.

3.3 The set X

Let n be an integer > 0.

Proposition 20 The element∑
a>b≥0,d>c≥0,ad−bc=n

(
a b
c d

)
∈ C[M2(Z)n]

satisfies the condition (Cn).

Proof .- The proof is similar to the proof of the proposition 18. Let

Xn = {
(
a b
c d

)
∈M2(Z)n/a > b ≥ 0, d > c ≥ 0, ad− bc = n}.

Lemma 6 The set of elements
(
d b
0 n

d

)
∈ M2(Z) (resp.

(
n
d 0
b d

)
), with d > 0 and

0 ≤ b < d is a set of representatives of M2(Z)n/SL2(Z). These elements are the only

elements
(
α β
γ δ

)
∈ Xn such that γ = 0 (resp. β = 0).

Proof .- The proof of this lemma is similar to the proof of the lemma 2.

Lemma 7 Let g =
(
a b
c d

)
∈ Xn such that c 6= 0 (resp. b 6= 0). There exists

an unique element g0 =
(
a0 b0
c0 d0

)
∈ Xn ∩ gSL2(Z) such that

(
a
c

)
=
(
b0
d0

)
(resp.(

b
d

)
=
(
a0

c0

)
). We have g∞ = g00 (resp. g0 = g0∞).

30



Proof .- We prove the assertion corresponding to c 6= 0. We prove first the existence
of g0. Let m be the smallest integer ≥ d/c. We have m ≥ 2. We have ma− b > a > 0
and c > mc− d ≥ 0 by construction of m. So the matrix

g

(
m 1
−1 0

)
=
(
ma− b a
mc− d c

)
belongs to Xn and the existence is proved. Now we consider the problem of the unicity.
We have

g−1g0 =
( a0d−bc0

n
b0d−bd0

n
ac0−a0c

n
ad0−b0c

n

)
=
(
a0d−bc0

n 1
−1 0

)
∈ SL2(Z).

We use the notation m = a0d−bc0
n . We have

g0 = g

(
m 1
−1 0

)
=
(
ma− b a
mc− d c

)
.

Since g0 belongs to Xn, we must have c > mc− d ≥ 0. We deduce that m must be the
smallest integer ≥ d/c. The unicity is proved.

Lemma 8 The set Xn is finite.

Proof .- We have to prove that the set of quadruples (a, b, c, d) ∈ Z4 solutions of the
equation n = ad− bc, with a > b ≥ 0 and d > c ≥ 0, is finite. We have the inequality
n = ad− bc ≥ ad− (a− 1)(d− 1) = a+ d− 1. Therefore the four numbers a,,b, c and
d are all positive and smaller than n.

We finish now the proof of the proposition 20. Let K ∈M2(Z)n/SL2(Z). We have

in C[P1(Q)] (the sums are taken with respect to the matrices M =
(
a b
c d

)
)

∑
M∈K∩Xn

[M∞]− [M0] =
∑

M∈K∩Xn

[
a

c
]−

∑
M∈K∩Xn

[
b

d
].

Because of the lemma 7, all the terms destroy each other except those corresponding
to c = 0 or b = 0. We obtain∑

M∈K∩Xn

[M∞]− [M0] =
∑

M∈K∩Xn,c=0

[
a

c
]−

∑
M∈K∩Xn,d=0

[
b

d
].

We now use the lemma 6 and we obtain that the last member is equal to [∞]− [0]. The
proposition is proved.

Remark .- The linear combination of matrices appearing in the proposition 20,
satisfies a stronger condition than the condition (Cn): for all K ∈M2(Z)n/SL2(Z) we
have in Z[Q∗+\Q2]∑

M∈K
uM ([M

(
1
0

)
]− [M

(
0
1

)
]) = [

(
1
0

)
]− [

(
1
0

)
].

This is an easy consequence of the lemmas used in the proof of the proposition 20.
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3.4 An additional family

Let n be an integer > 0. Let us mention an other family of elements of Z[M2(Z)n]
satisfying the condition (Cn), and even the condition (C̃n) of the section 1.8.

Proposition 21 The element∑
a>b≥0,d>−c≥0,ad−bc=n

(
a b
c d

)
−

∑
b≥a>0,−c≥d>0,ad−bc=n

(
a b
c d

)

of Z[M2(Z)n] satisfies the condition (Cn).

The proof of this proposition is based on the same kind of arguments than those
used in the proofs of the propositions 18, 19 and 20. We leave this to the reader.

Remark .- The same proposition holds if we exchange simultaneously the signs of b
and c in the two sums of the proposition 21.

If we set A = {
(
a b
c d

)
∈ M2(Z)/a > b ≥ 0, d > −c ≥ 0}, and B = {

(
a b
c d

)
∈

M2(Z)/b ≥ a > 0,−c ≥ d > 0} then we obtain an other universal Fourier expansion:∑
M∈A

MqdetM −
∑
M∈B

MqdetM

=
(

1 0
0 1

)
q

+ (
(

2 0
0 1

)
+
(

1 0
0 2

)
+
(

2 1
0 1

)
−
(

1 1
−1 1

)
+
(

1 0
−1 2

)
)q2

+ (
(

3 0
0 1

)
+
(

1 0
0 3

)
+
(

3 1
0 1

)
−
(

1 1
−2 1

)
+
(

1 0
−2 3

)
+
(

3 2
0 1

)
−
(

1 2
−1 1

)
+
(

1 0
−1 3

)
)q3 + ...

It would be interesting to find other elements satisfying the condition (Cn). It
seems that Zagier has recently found such elements closely related to the trace formula
of Hecke operators.

4 Construction of modular forms

4.1 Modular forms as linear maps on the Hecke algebra

Let M be any of the following vector spaces: Sk(N), Sk(N,χ), any of the previous ones
but extending spaces of cusp forms to spaces of holomorphic modular forms (i.e. includ-
ing Eisenstein series), any of the previous ones but restricting to spaces of newforms,
any of the previous ones but considering antiholomorphic modular forms instead.
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Let T be the corresponding Hecke algebra, i.e. the complex commutative subalgebra
of EndC(M) generated by the Hecke operators T ∗n and T ∗n,n (see section 2.3 and 2.5, n
is an integer > 0) which we will denote simply by Tn and Tn,n.

The statement and the proof of the following theorem is modeled on [1], page 306.

Theorem 6 Let α be a linear map T→ C. Then

∞∑
n=1

α(Tn)qn

is, except for the constant coefficient, the Fourier expansion of an element of M .

Proof .- We denote by an the linear form on M which associates to a modular form its
n-th Fourier coefficient. We have an = a1 ◦ Tn.

Lemma 9 The bilinear pairing of complex vector spaces

M × T → C

(f, T ) 7→ a1(Tf)

is nondegenerate.

Proof .- Let T ∈ T. Suppose that for all f ∈M we have a1(Tf) = 0. We have then for
all n ≥ 1

0 = a1(TTnf) = a1(TnTf) = an(Tf).

So we have Tf = 0 for all f ∈M . We deduce the equality T = 0.
Conversely, let f ∈ M . Suppose that for all T ∈ T, we have a1(Tf) = 0. Then for

all n ≥ 1, we have
a1(Tnf) = an(f) = 0.

So we have f = 0.

We turn now to the proof of the theorem. It follows from the lemma that there
exists f ∈M such that α(T ) = a1(Tf) (T ∈ T). Then we have the equalities

∞∑
n=1

α(Tn)qn =
∞∑
n=1

a1(Tnf)qn =
∞∑
n=1

an(f)qn.

The later expression is the Fourier expansion of f . This concludes the proof of the
theorem.

4.2 Proof of the main theorem

We prove now the theorem 1 by putting together all the parts of this paper. We write

x =
∑
λ∈EN

Pλ[λ].
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We consider m(x) =
∑

λ∈EN [Pλ, λ] ∈ Mk(N). The equality b(x) = 0 is equivalent to
m(x) ∈ Sk(N) (proposition 6 combined with the fact that Sk(N) is the kernel of ∂).
Because of the relations

φ+ φ|σ = φ+ φ|τ + φ|τ2 = φ− φ|J = 0,

the linear map φ factorizes through a linear map onMk(N) (see proposition 3), which
induces a linear map φm on Sk(N). It is a consequence of the theorem 3 and the propo-
sition 10 that the Hecke algebra on Sk(N) is canonically isomorphic to the complex
algebra generated by the operators Tn on Sk(N). The map

T → C

T 7→ φm(Tm(x))

is a linear map on the Hecke algebra. We use the theorem 2 and the proposition 20 to
establish the following equalities

φm(Tnm(x)) =
∑
λ∈EN

φm(
∑
M∈Xn

[Pλ|M̃ , λM ])

=
∑
λ∈EN

φ(
∑
M∈Xn

Pλ|M̃ [λM ])

=
∑
M∈Xn

φ|M (x).

Because of the property φ(P [x]) = 0, if x /∈ EN , we do not have to make the restriction
λM ∈ EN . By application of the theorem 6 we obtain that

∞∑
n=1

φm(Tnm(x))qn =
∞∑
n=1

(
∑
M∈Xn

φ|M (x))qn

=
∑
M∈X

φ|M (x)qdetM

is the Fourier expansion of an element of Sk(N).
Let A be an element of Sk(N) such that for all f ∈ Sk(N), we have a1(f) =< f,A >

(We can take the element A1 of section 3.3).
Let f ∈ Sk(N). Let φf be the unique linear form Sk(N)→ C such that φf (y) =<

f, y > for all y ∈ Sk(N). By considering the linear form φ equal to φf composed with
the canonical surjection from the kernel of b to Sk(N) and by choosing an element
x ∈ Ck−2[X,Y ][(Z/NZ)2] such that b(x) = 0 and of image A in Sk(N) as parameters,
we obtain the following Fourier expansion of f

∞∑
n=1

φ(Tnx)qn =
∞∑
n=1

φf (TnA)qn =
∞∑
n=1

a1(Tnf)qn =
∞∑
n=1

an(f)qn.

This proves that all modular forms can be obtained by this method.
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If φ satisfies the additional condition

φ(P [λu, λv] = χ(λ)φ(P [u, v])

((λ, u, v) ∈ (Z/NZ)3, P ∈ Ck−2[X,Y ]), then f belongs to Sk(N,χ). This follows from
the proposition 14 and the theorem 6.

Remark .- 1) We will outline now the proof of the statement following the theorem
1 in the introduction. The Hecke operators operate on Bk(N) (see the operator T ∂∆ of
the section 2.1). One can construct an isomorphism of complex vector spaces between
the space of Eisenstein series of weight k for Γ1(N) and ∂(Mk(N)) ⊂ Bk(N). Moreover
this isomorphism is compatible with the action of Hecke operators. This can be seen
through the Eichler-Simura isomorphism. Since we have the exact sequence

0→ Sk(N)→Mk(N)→ Bk(N),

the Hecke algebra forMk(N) is isomorphic to the Hecke algebra for the space Sk(N)⊕
Eisenstein series. By application of the theorem 6 we should then prove the following
result. If the element x in the theorem 1 does not verify b(x) = 0, then the series∑

M∈X
φ|M (x)qdetM

is, except for the constant term, the Fourier expansion at infinity of a modular form of
weight k for Γ1(N) which is not necessarily parabolic.

2) If x belongs to the new part ofMk(N), then the Fourier expansion is the Fourier
expansion of a newform. This follows from an application of the theorem 6.

3) As noticed in the introduction, we can replace the series connected to X by the
Manin-Heilbronn series: With the hypotheses of the theorem 1, the series∑

M∈S
φ|M (x)qdetM +

1
2

∑
M∈S′

φ|M (x)qdetM

is the Fourier expansion of an element of Sk(N). The possibility of producing modular
forms using the sets S and S ′ was already noticed by Manin (see [4] and [6]).

4.3 Construction of bases of Sk(N)

Proposition 22 Let (ψi)i∈I be a basis of the complex vector space HomC(Sk(N)+,C)
(resp. HomC(Sk(N)−,C)). Let A ∈ Sk(N)+ (resp. Sk(N)−) such that TA = Sk(N)+

(resp. TA = Sk(N)−). Then, for i ∈ I, the modular form fi of Fourier expansion

∞∑
n=1

ψi(TnA)qn

runs through a basis of Sk(N) when i runs through I.
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Proof .- The fact that fi (i ∈ I) is a modular form is a consequence of the theorem
6 and of the theorem 3. We suppose that the family of modular forms (fi)i∈I is
linearly dependant, i.e. there exists a family of complex numbers (λi)i∈I such that∑

i∈I λifi = 0. We set ψ =
∑

i∈I λiψi. We have ψ(TnA) = 0 for all n ≥ 1. Since
TA = Sk(N)+, the elements TnA generate Sk(N)+ when n runs through the integers
≥ 1. So we have ψ = 0. Since (ψi)i∈I is a basis of HomC(Sk(N)+,C), we have
λi = 0 for all i ∈ I. Because of the equality of the dimensions of Sk(N)+ and Sk(N)
the proposition is proved with respect to Sk(N)+ (for Sk(N)− the proof is of course
similar).

Remark .- It is in fact difficult to find an element A in Sk(N)+ expressed as a
linear combination of Manin symbols and satisfying TA = Sk(N)+. But the set of such
elements is Sk(N)+ minus the union of a finite number of proper subspaces.

We can restate the proposition 22 as follows.

Corollary 1 Let A be as in the proposition 20. Let x ∈ Ck−2[X,Y ][EN ] such that the
image of x in Mk(N) is equal to A. Let (φi)i∈I be a linearly free family in the space
of linear forms φ ∈ HomC(Ck−2[X,Y ][EN ],C) satisfying

φ+ φ|σ = φ+ φ|τ + φ|τ2 = φ− φ|−I = 0,

and
φ = φ|η.

We suppose also that the space generated by the family (φi)i∈I is in direct sum with the
space of elements of HomC(Ck−2[X,Y ][EN ],C) which factorize through the linear map

b : Ck−2[X,Y ][EN ]→ C[Γ1(N)\Q2]k.

Moreover we suppose that the family (φi)i∈I is maximal with respect to the above prop-
erties (i.e. the cardinality of I is equal to the dimension of Sk(N)). Then∑

M∈X
φi|M (x)qdetM

runs through the Fourier expansion of a basis of Sk(N) when i runs through I.

Proof .- This is a direct reformulation of the proposition 22, obtained by considering
the results obtained in the section 1.3, 1.4, 2.2 and 4.2. The list of equalities satisfied by
φi (i ∈ I) expresses that φi factorizes throughMk(N)/(1− ι∗)Mk(N). Because of the
direct sum, the family of linear forms induced by (φi)i∈I on Sk(N)/((1− ι∗)Mk(N) ∩
Sk(N)) ' Sk(N)+) is linearly free. So the family of linear forms on Sk(N)+ defined
by (φi)i∈I is linearly free. It is a basis because of the maximality condition. We are in
position to apply the proposition 22, with (ψi)i∈I equal to the family of linear forms
on Sk(N)+ defined by (φi)i∈I .
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Let A1 be the unique modular symbol in Sk(N) such that for all f ∈ Sk(N), we
have a1(f) =< f,A1 > and a1(f) =< ι(f), A1 >. Let A+

1 + A−1 be the decomposition
of A1 with respect to the direct sum

Sk(N) = Sk(N)+ ⊕ Sk(N)−.

Proposition 23 The modular symbols A+
1 ∈ Sk(N)+ and A−1 ∈ Sk(N)− verify

TA+
1 = Sk(N)+ and TA−1 = Sk(N)−.

Proof .- Because of the proposition 7, we only have to prove that no modular form
f ∈ Sk(N) is orthogonal to TA+

1 . We have for f ∈ Sk(N) and n an integer ≥ 1

< f, TnA
+
1 > = < Tnf,

1
2

(A1 + ι∗(A1)) >

=
1
2
< Tnf + ι(Tnf), A1 >

=
1
2

(a1(Tnf) + a1(ι(ι(Tnf))))

= a1(Tnf)
= an(f).

If f is orthogonal to TA+
1 , we have an(f) = 0 for all n. So f = 0. The proposition is

proved.

Remark .- The modular symbol A1 defined above is a canonical element ofMk(N).
It would be interesting to obtain an expression as a linear combination of Manin symbols
of A1.
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