ELLIPTIC CURVES OVER Q:
A PROGRESS REPORT

B. J. BIRCH

Let E be an elliptic curve defined over the rationals Q: we may take E in Weier-
strass form y2 = x' 4+ A4Ax + B. with A, B integers. Its rational points form a
group, which we denote by Eg; the theorem of Mordell tells us that E¢ 1s finitely
generated. A principal problem of the theory is to determine the group Eg, and
in particular to determine its rank g; well-known conjectures, described in [14],
connect E, with the zeta function of the curve. Let us recall the appropriate
defimtions.

If p does not divide 6(27B% 4+ 447?) then the reduction E,, defined over the
finite field k,, is an elliptic curve; we call such primes good. The local zeta function
of E, over k,, 1s
i = a’pp_!)(l — &pp_a)

il #] =
(1 — g )] = pi—)

where «,, @, are the eigenvalues of the Frobenius transformation; so a,d, = p
and «, + @, = 1 4- p — N,, where N, is the number of points of E, with
coordinates in k,. We may define an L-function by

Li(s) = 10 = epp™) 7' (1 = &™)

where the product is taken over good primes. We know that o] = pY a0
L}_-(.a-_) converges for Re (s) > 3/2.

Now let w be a differential on E: we may take w = dx/2y. Then w gives a Haar
measure on the various completions of E, and we may form

M = , M (E) = [ W

(E) EQ,) ol (E) E(R)

where the integral M,(E) is over the p-adic points of E, and M (E) 1s an integral
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over the real points of E. Note that if p is good, then M (E) N,/ p=

{1 = a*pp'"')(l — a&,p~'). For any set S of primes including all primes dividing
6(27B*% + 44%) and the infinite prime, define

L:‘,S(-‘T) = II MJJ(E)_] II (1 — “IJP‘*H)_I([ = app_‘")ml.

IJES FGE:HI

We will be interested in whether L7 g(s) may be continued past s = 1, and, if
it may, in its behavior near s = 1 none of this depends on the particular choice of
the sct S, so in assertions for which S is irrelevant we will write simply L7 instead
nf L:.L,

Now we state the standard conjectures; in order for the others to make sense.
we need (not at full strength)

(1) Lg(s) may be continued as a meromorphic function over the whole plane,
and has a functional equation.

Given this, we may state the others.

(I11) Lg(s) has a zero of order g at s = 1.

(111 If g = 0, then L7:(1) = [ILII/|Eo|* I1I| is the order of the Tate-

. swhere
Safarevic group, and |Ey| is the order of E.

(1V) LY(s) ~ |IIIIR|Tors (Ey)| (s — 1)? as s — 1, where now [Tors (Eg)| is
the number of points of Ey of finite order, and R i1s an analogue of the regulator
of an algebraic number ficld, and measures the size of the generators of Ey.

For curves with complex multiplication, (I) is a theorem of Deuring [7]; accord-
ingly, it was rmtuml that such curves should be examined first. Curves of the
shape y° * — Dx, which have complex multiplication by i, were treated in
[2]. we prmed

(V) L%E(1) is rational, with bounded denominator,
and for a very large number of values of D, we verified (I1) and (I1T) in a weakened

form. To be precise, we found that L*(E, 1) = 0 whenever g > 0, and |Eol*LE(1)
was a positive square when g = 0; there 1s no known way of Cdluuldtmg 111, so
at present we cannot verify (Ill) as stated, but |[]]| is a square if 1t IS ﬁmte

Subsequently, Stephens [13] has treated curves of the shape x* + y” + Ar” = 4
with complex multiplication by v/1; he proved (V), and verified (II) (11I), and (1V)
(with the same gloss about []], and (1V) only approximately) in several thousand
cases. Rajwade [11] and Damerell [6] have completed the theory for all elliptic
curves over Q with complex multiplication; they have proved (V), and Damerell
has made a few computations.

In all this published work, the methods have followed [2] fairly closely; Lz(1)
is evaluated in terms of a closed formula involving @-functions. It seems unlikely
that this is really the right way to do it. Curves with complex multiplication are a
much smaller class than the class of elliptic curves that may be parametrized by
modular functions. For modular function curves, (1) is usually provable and
methods of evaluating LJ(1) are available which seem much simpler and more
cffective than those involving §2-functions (the ideas go back essentially to Shimura).
Though the methods applicable to curves parametrized by modular functions were
in fact sketched in [14], no one seems to have noticed, so it seems worthwhile to
publicize them further.

Wecill E:y? = x4+ Ax+ B a ‘good’ elliptic curve if, for some N, E i8
parametrized by functions on H/I'o(N), and ‘corresponds to’ a differential
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f(z2)dz = 3 a, exp (2ninz) dz on H/TW(N). I corresponds in two senses: the
curve £ s obtained by integrating / along paths on H/T'W(N), and also the zeta
function of £ is

. (2‘}1‘)5‘
[;}-j(ﬁ') = Z{I”n ; [1(‘;) ;

o
/ i)z d=.

()

In taking this formula for 1 ,(s). we have implicitly made a canonical choice for
factors of the Euler product corresponding to the bad primes. The analytic con-
ductor of Eis the minimal N for which all this is possible.

The above properties are more than enough to characterize ‘good’ elliptic
curves. 1t s generally believed that if £ has analytic conductor N then it also has
algebraic conductor &, in the sense of [1O] and [16]: in view of results of Igusa [9].
a good curve with analytic conductor N has good reduction at primes not dividing
N. Il E s a good curve, its L-function satisfies « functional cequation, for the
involution Wy zes> —1/Nz of H/T'((N) takes f(z) dz to €f(z) dz, with € = 1.
and then Ap(s) = —eN' A L(2 — §) where A (8) = (2m)7'U(s)L(s). and L ;(s)
may be continued over the whole plane: in a similar way Lp(s, x) = Y a,x(mn"*
has a functional equation for any character X with conductor D prime to M.

Virtue in the sense we have just described appears to be a great deal to ask of a
curve. However, no one has yet found an elliptic curve over Q which is not
1Isogenous to a ‘good’ curve: following Weil [16] we may conjecture that every
clliptic curve over Q is isogenous to a good curve. A necessary corollary of such
a conjecture would be that two elliptic curves with the same zeta function should
be isogenous—this seems likely, in fact Serre [12] goes a long way toward proving
it (see also Tate [15]). For fixed N. it is not too difficult to list all 1sogeny classes
of elliptic curves with analytic conductor N—it comes down to a question of factor-
ing the Jacobian of H/I'(N) (up to isogeny) as a product of simple abelian
varieties, and this may be accomplished by studying the operation of the Hecke
algebra on the one-dimensional homology of H/T'o(N). A computational pro-
cedure 1s described in some detail in [14, pp. 146-148]. (At the time, the procedure
was not guaranteed to work, but necessary information. that certain Hecke
operators have distinct eigenvalues, has since been supplied by Atkin and Lehner
[1].) It is desirable to make a comparison with lists of all curves with algebraic
conductor N; using Baker's theorem. it is now possible to make such lists, and we
hope to do so.

There are obvious advantages in looking at good curves—they are born equipped
with an almost excessively rich structure. One has simply to pull out the informa-
tion one needs. Let us give a few examples.

First, let us check that L7(1) is rational, and show how to compute it. Lx(1) is
a rational multiple of Lg(l)/M4(E), and M,(E) is essentially the real period of E.
On the other hand, Lg(1) = 271 [3° f(2) dz: there is a function on H/I‘_n(N)
with all its zeros at 0 and all its poles at . so it is clear that Ly (1) is a rational
multiple of a real period of the Jacobian of H/I'y(N), and reasonable to Suppose
that this period is actually the real period of E. So L%(1) is computable, using no
more than qualitative information about the differential on H/I'y(N ) correspond-
Ing to E.

We have control not only over the L-function of E over Q. but also of E over K

whenever K is an abelian extension of Q. If x is a character with conductor D
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prime to N, then

10
Ly(s, X) = Za”l’(n)nhﬂ = —-2:::-:’/ Zan?((n) exp (2winz) dz
0

== E A;thfD)., say,

O<b<clD

where

o = DT exp (—2miab/ D)x(a)

(a, D))=

1s a Gauss sum, and

* a0

I(b/D) = —2#; / f(:: -} b) dz = ——.f.m'/ f(2) d:z
J 0 D J D

s an integral of a differential along a path. To compute Lg(1, X) in terms of the
periods of E is a matter of one-dimensional homology, expressing the paths
[h/D.ir] (or, directly, the I-chain 2.M[b/D,ir]) in terms of the homology
cycles on H/TI'o(N). The homology computation is a simple one, reminiscent of
the continued fraction expansion of A/ D: it is easy to do by hand and not hard
LO program.

In particular, if X happens to be the quadratic character corresponding to
Q(A 7). then the L-function of the curve E(A): Ay = x' + Ax + Bis essentially
Lr(s.X): s0o we may compute all of these. The functional equation of Lg(s. X)
contains a factor ex(N). so (I1) predicts that the parity of g should depend on the
quadratic character of ¥ modulo D—this seems consistent with the Selmer con-
jecture, that g has the same parity as the number of first descents.

One would like very much to evaluate Li(1) exactly. Unhappily, even if
Le(l) =0, Ly(]) = 2 [0” f(iz) log z dz is a thoroughly unmanageable function.
about which we have as yet nothing good to say.

A most enticing hope is that, besides being able to evaluate the L-functions
involved in the conjectures more casily, we should actually be able to prove the
conjecture sometimes.  The idea originates with Heegner [8]; its point is that
H/T'o(N), and hence any ‘good’ curve. is born equipped with points on it whose
coordinates are in predictable class fields. In favorable circumstances, it is possible
Lo pull down these points, so that we may explicitly construct generators for Ej,
Just as the conjectures predict. T have given details elsewhere [3]. [4]. [5] but so
far I have only been able to make the ‘pull down” argument work for curves E(p)
of the pencil py? = x* + Ax + B for which +p is prime.
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