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B. J. BIRCH

The subject of this lecture is rather a special one. I want to describe some
computations undertaken by myself and Swinnerton-Dyer on EDSAC, by
which we have calculated the zeta-functions of certain elliptic curves. As a
result of these computations we have found an analogue for an elliptic curve
of the Tamagawa number of an algebraic group; and conjectures (due to
ourselves, due to Tate, and due to others) have proliferated. A preliminary
account of this work has been given in his Stockholm lecture 8 | by Cassels,
who has been very helpful to us at all stages. 1 would like to stress that
though the associated theory is both abstract and technically complicated,
the objects about which I intend to talk are usually simply defined and often
machine computable; experimentally we have detected certain relations
between different invariants, but we have been unable to approach proofs
of these relations, which must lie very deep.

As i1s well known, any elliptic curve over the rationals with a rational
point on it can be normalised to the form (" viz=x"'—axz’—-bz" with a, b
integers. The points of C form an abelian group, and the rational points of
(' form a subgroup, which I will denote by A; by the Mordell-Weil theorem
(in the form first given by Mordell [17 |; see Weil 27 | and Lang |14 | for more
conceptual proofs) we know that A is a finitely generated abelian group.

We write g for the number of independent generators of infinite order
of A, and f for the number of points of A of finite order. It is fairly easy, for
a given curve, to compute /: methods have been given for curves over the
rationals by Nagell (18] and for curves over a p-adic field by Lutz [16 ]
Nagell has eonjectured that for elliptic curves over the rationals f is abso-
lutely bounded, but this appears to be a very difficult question. There
remains the problem of finding an effective method of computing g.

Some years ago, Swinnerton-Dyer and I began a series of experiments by
which we attempted to relate the global properties of an elliptic curve to
its local properties; that is, we tried to relate the group A of rational points
on C to the groups C'” of p-adic points on C, or, what is nearly the same
thing, to the numbers N , of points on the (projective) curves

C,: y’z=x"’—axz*- bz’ (p).

At first, we were fairly naive; we simply computed [], < N,/p for various
curves ', and we were able to verify that this product was sméll, medium
or large according as g=0, g=1 or g=22. We formulated the conjecture that

106



| CONJECTURES CONCERNING ELLIPTIC CURVES

[1, x Np/p ~RK(log X)* as X — . Unfortunately, in the range of our com- ™
putations the product [l,. xN,/p oscillated violently as X Increased, so
the evidence for this conjecture was not really convincing.

However, there is often a better way of proceeding. For each prime D,

the curve €, has a zeta function, defined in the usual way (see for instance
28; 11]); it turns out to be

‘)
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[f we take the product over all p, we get

f('p (s) =

fel(s) = 11 Co ()= (s) (s —1)/L(s),
p

where {(s) 1s the Riemann zeta function and
|

[J('(S): Il |1+(Np_p__ l)p"ﬁ_l_pl--?ﬂ

Trivially, L (s) 1s analytic for Re(s) >2; Hasse has conjectured that L .(s)
can be continued analytically over the whole plane. Formally,

[Jf(]):ll (prfp) l;

so 1t was natural for us to reformulate our conjecture as:

If L(s) can be continued past s= 1, then L.(s) has a zero of order g at s=1.

In general, this cannot be checked, as we know far too little about (. We
looked at the particular case C: y’z=x"'— Dxz*, where there is complex
multiplication by 1. In this case, there is an explicit formula for N, in terms
of quartic residues (see [9; 10|); so the relevant L-function L (s), which

we write Lj(s) for short, turns out to be a Hecke L-series with Grossen-
é charakter,
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By good fortune and with help from Davenport, we found that Lp(1) may
be evalqated explicitly in terms of the Weierstrass p-function satisfying
4 p’*=4p'—4p, with periods w, iw; for instance, if D>1 and D=1 (4) then

Ly(l)= ¢ (9) —
’ D > D), p'—2p-1

where the sum is over a set of representatives 8 of the Gaussian integers
modulo D, and b is short for p(Bw/D).

Using this apparent analogue of a Gauss sum, we computed Lp(l) in
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about 2000 cases; in all cases that could be checked, our conjecture that

L,(1)=0 if and only if g >0 was confirmed. But we had a surprise; our com-
putations indicated that

[f D>1and 41 D, then o(D)=D""Lp(l)/w and o(— D)= (4D)'*L _,(1) /w

are integers.

Once one guesses that this is likely to be true, it is in fact rather easy to
prove with a bit of classifield theory—essentially Kronecker’s Jugendtraum.
Rather more appears to be true, namely that (D) =0, and «(D) is a power
of 2 times a square, but this we have not proved. (We have not even shown
that ¢ =0, which is formally obvious.)

How should one interpret the integer +(D)? It seems that we are con-
structing an analogue of the Tamagawa number of an algebraic group (see
Weil [29], Ono [19; 20; 21), Borel [2]); our analogue is actually somewhat
simpler than the original. Let us consider C in affine form, y’=x*—ax—b;
then ' has a Haar measure given by the differential dx/y. We define the
Tamagawa measure of C formally by (C)= /(. dx/y- 1], fw|dx/y|,,
where /,(.,1s over all real and /'»m over all p-adic points of C. Note that
taking a different differential adx/y makes no difference, by the product
formula. We call a prime p good if p is finite and the mod p reduction C,
has genus I; if p= = or if C, is no longer an elliptic curve we call p bad: so
the bad primes are just the factors of (4a’—27b%) ». Then for good primes
JSow = N,/p, so for the particular curve C): y*= x"— Dx we have

. TMee2
r(Cp)= 11 Lp}|dx/y|p - (Lp(1)) . = LL1)

pl2D

T'he factors other than L;(1) are easily computed; in all cases that we can
check we find that

ifg=0,then +(Cp)=f*?) | TS |.

Here / is as before the number of points of finite order of C), and |T'S| is the
conjectured order of the Tate-Safarevi¢ group. I must explain this briefly.
(The standard presentation is tleat given by Lang and Tate [15].)

In order to compute A/nA,‘o{l?ecuses the method of descent. Following
Cassels [4; 5|, I like to do this in terms of coverings. An n-covering consists
of a curve D) defined over @, together with a commutative triangle

w In

C -C 20
. 7 '
L] ”, / {5—6{,@'
K. h . . . t
with associated generic points N o 8 -©*0
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the rational map X — x is defined over @, and the map X & x, is a bira-
tional equivalence but only defined over the algebraic closure Q. Two n-cov-
erings given by D, )’ are equivalent if there is a birational equivalence
over @ between their generic points X, X’ such that the obvious diagram
with x=nx,= nx; commutes. Equivalence classes of n-coverings form a group
(as is seen most easily by identifying them as elements of a homology group
H'(Gge, Aa), see [15]); there is a natural isomorphism between A/nA and
the subgroup consisting of classes such that D has a rational point.

Unfortunately, this subgroup is not effectively computable, as one has no
certain method of telling whether a curve D has a point or not; the best we
can do at present is to compute what Cassels calls the Selmer group, S~
|Classes of coverings for which D has a point in every completion of Q|. The
Selmer group is a finite computable object, computable in the logical sense
and also in the more practical sense that there is a working machine program
1| for computing S*. So, for each n, S'™ gives us a computable upper bound,
call it v(n), for g (v(n) is the rank of the group v™ obtained by factoring cut
the image of the torsion subgroup of A from §™.)

Selmer (22| found experimentally that the difference »(n) —g was always
even: this has been partly explained in an important series of papers
3: 4: 5; 6; 7| by Cassels. Cassels shows inter alia that »(p""') —v(p") 15 al-
ways even when p” is a prime power; In view of this, Selmer’s observation
would follow from the very natural conjecture that -

v(p") =g as soon as r is large enough,; ,

from now on, we call this stronger statement the Selmer conjecture.

Since A/nA is mapped to a subgroup of S™, we can form an exact se-
quence 0 —A/nA 8" —(TS), —0. Then (T'S), measures the differ-
ence between A/n A and S"; it is the part of the Tate-Safarevi¢ group 1T'S
consisting of elements whose order divides n. We get the whole of the Tate-
Safarevi¢ group by using the inclusion (7'S),C(TS), it nim and taking
limits.

The_sp-_called_Tatgéa_t’areyi_é___gpgj_egture (adopted by Lang, Cassels and
Tate,| but apparently disowne | )

d by Safarevic) asserts that 7S is always
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a finite group; this is a very natural strengthening of the Selmer conjecture.
Unfortunately, the evidence is very weak; in fact, T'S has not yet been fully
computed for a single curve. It is very difficult to compute more than (T'S),
for a general elliptic curve over @, and (7T'S) ; for a curve of shape y?=x"— B.
Cassels’ theorem implies that if 7'S is finite then its order must be a square.
In our computations leading to the formula

“(Cp)=f* | TS| ifg=0"

we actually verified that [‘E(T(CU) was an integer square, usually 1, and was
divisible by the order of (7°S), when this could be calculated.
There is one attractive way in which the formula 7(C)=f °/ | TS| has



heen tested by Cassels. Suppose that C, C’ are [-i1sogenous over Q, so that

there are rational maps
Cr.C A C

with A’ A a multiplication by [ on C, and A\’ a multiplication by [ on (.
Suppose that [ is prime. We may estimate |A/lA| by means of |[A/\" A’ |
and |A'/NA|. It 18 enough to describe the estimation of |[A/A\A’|; we do
this by means of \'-coverings: let S*’ correspond to A/\"A” as S™ corre-
sponds to A/nA, then the order of S™' gives an estimate for |A/NA’].
Between them, S and S’ give an estimate »(\) +v»(A") for g (the “number
of first descents,”” in the classical terminology); for =2, this estimate is
very easy to obtain, even by hand. Using the methods of 5| one can show

without real difficulty that »(l) =v(X) +v(X") (mod?2).
Returning to our formula, C and C’ taken modulo p have the same

number of points for all good p, so the Tamagawa ratio

T(C)/T(C’r)z II (,{pl/ﬁ,lpl
bad p v~ |

is in fact a finite product taken over p= « and those primes for which one
of C. C’ has a bad reduction. According to our formula, we should have
H(C) [ (C) = |fAC)/fHC) || TS(C") | /| TS(C) | |; here both sides are elemen-
tary, so it ought to be possible to verify this.

This Cassels has done. In fact, with the above notations, [ prime, but g

not necessarily zero, he proves that
(C)/r(C")=[S™'/S™M] . |ker\ /ker\ |:

when g=0 and T'S is finite, this gives the identity we require; the analogue
with the work of Ono (21 ]|is very striking. There is another deduction to be
made from Cassels’ formula. Let us assume the Selmer conjecture; then
g=v(l) =v(N\)+v(N\) (mod2); so the parity of g is determined by the Tama-
gawa ratio. This ratio is easy to compute, and whether it is an odd or an
even power of [ is essentially a matter of congruences; for instance, for the
curve C): y*=x"— Dx it depends on the residue class of D mod 16, on the
sign of 1), and on the number of primes =3 (mod 4) whose squares divide D
exactly. So the Selmer conjecture leads to a simple sufficient condition
determining a very large class of curves with infinitely many rational points.

There are several other ways in which our conjectures should be tested.
[ have described the results obtained for the particular class of curves
y?=x"— Dx, with complex multiplication by i. The other complex multipli-
cation cases (see Deuring Ill)]) may be checked; In particular, fairly exten-

sive results consistent with our conjectures have been obtained by N. M.

Stephens using ATLAS for the Selmer case y'=x'— D, with complex multi-

plication by /(- 3).
There is another class of elliptic curves with goo
ra has kindly pointed out to me. Let j(r) be the mo

d zeta-function, as Shimu-
dular function; then for
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any integern, j(n ) is algebraic over Q(j(+)); so Q(j(7), J(n 7)) is the function
field of a curve, call it I', for short. This curve has been investigated by
Fricke [12], who describes twelve cases (n=11, 14, 15, 17, 19, 20, 21, 24, 27,
32 36, 49) in which I', has genus 1; write J, for the Jacobian curve of 1,
(J, is equivalent to I', except when n=17, when TI';; appears to be a 2-cov-
ering of JJ,..) The zeta-function of J, may be identified (see Shimura [24))
as an Euler product investigated by Hecke [13|, and may be continued
meromorphically over the whole plane. As Shimura points out, L,(1) is an
integral of a modular function, and is certainly positive; so according to our
conjecture J, should have only finitely many points. Fortunately, this seems
to be so: it is fairly easy to verify in the nine cases where n is composite.
(In these cases, J, has a rational point of order 2, so we can find another
curve 2-isogenous to J,; one can then show that J, has only finitely many
points by computing A-coverings.) Shimura also exhibited a large class of
curves related to o/, (equivalent to J, over @(D'*) but not over @) for which
L(1)=0; for n composite, one presumes that these are cases in which Cassels’
theorem on the Tamagawa ratio predicts that the number of generators
should be odd.

Finally, what if g is positive? Here, nothing is known yet, but one can
make guesses; Tate has given a fairly detailed conjecture. One feels that
Lc(s)/(s—1)*at s=1 should give a measure of the density of rational points
on the curve C; so first one must decide how to measure this density. To
do this, one needs a canonical measure for the size of the generators of A.
This has been provided; I can give no reference beyond a letter from Tate to
Cassels. The idea arises very naturally, for instance, from Lang’s discussion
of heights in his book on Diophantine geometry [14|. Let A(P) be any
sensible measure of height; if for instance P is the point (x, vy, 2) with x, y, 2
coprime integers satisfying y°z=x’ —axz* —bz’, one might take h(P)=
x|+ |y|+ |z| or max(|x|,|y]|,|z|). Then lim[n *log h(nP) | exists; call
this limit H(P). Then H(P) is a canonical measure of the height of a point;
it is in fact a quadratic form on A, and may be computed explicitly __ it is
bound up with the Weierstrass o-function. Tate suggests an analogue of
the classical class number formula (and of Ono's formula for algebraic tori)
iIn which the determinant of the quadratic form H takes the place of the
regulator, and in which the order of T'S takes the place of the class number.

[ have not attempted to cover more than a corner of the theory of elliptic
curves; for a wider survey with an excellent list of references, I refer to
Cassels |8, and for the associated Galois cohomology I refer to Tate (26 |.

In a footnote, Cassels refers to valuable work of Serre 123 |, which has sub-
sequently become available.
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