Chapter VII

Modular Forms

S1. The modular group

(1. Definitions

[ et H denote the upper half plane of C, i.e. the set of complex numbers
. whose imaginary part Im(z) 1s >0.

Let SL,(R) be the group of matrices (‘: fi) , with real coefficients, such
that ad—be = 1. We make SL,(R) act on C = Cu{oo} in the following
way:

. a b\ . . ~

if g = (C d) is an element of SL,(R), and if z € C, we put

| - az+b
cz+d

One checks easily the formula

Im(z)
(1) Im(gz) =
) ezt

This shows that H is stable under the action of SL,(R). Note that the element

0 —1
it is the group PSL,(R) = SL,(R)/{+1} which operates (and this group
acts faithfully—one can even show that it is the group of all analytic auto-

morphisms of H). _ |
Let SL,(Z) be the subgroup of SL,(R) consisting of the matrices with

coefficients in Z. It is a discrete subgroup of SL,(R).

Definition 1.—7The group G = SL,(Z)/{t1}is called the modular group;,
it is the image of SL,(Z) in PSL,(R).

If g = (i 3) :s an element of SLy(Z), we often use the same symbol to

denote its image in the modular group G.

-1 = (_1 0) of SL,(R) acts trivially on H. We can then consider that

1.2. Fundamental domain of the modular group

i 0 —1
Iet S and T be the elements of G defined respectively by (1 0) and

il _
(0 1) . One has:
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Sz = —1/z, Tz = z+1
SZ —— 1, (ST)3 — 1
On the other hand, let D be the subset of H formed of all points z such

that |z| = 1 and |Re(z)| < 1/2. The figure below represents the transforms
of D by the elements:

(1, T, TS, ST™'S, S, ST, STS, T~'S, T~ "} of the group G.

7
4,

ST~ |ST™'S

-1 0 +1

Fig. 1

We will show that D is a fundamental domain for the action of G on the
half plane H. More precisely:

Theorem 1.—(1) For every z € H, there exists g € G such that gz € D.

(2) Suppose that two distinct points z, z' of D are congruent modulo G.
Then, R(z) = t¥andz=2z"+1,0r |zl =l and z’' = —1/z.

(3) Let ze D and let 1(z) = {g|lg € G, gz = z} the stabilizer of z in G.
One has 1(z) = {1} except in the following three cases:

z = 1, In which case 1(z) is the group of order 2 generated by S

z = p = e*™3 inwhich case I(z) is the group of order 3 generated by ST;

z = —p = e""> in which case I(z) is the group of order 3 generated by TS.

Assertions (1) and (2) imply:

Corollary.—The canonical map D — H|G is surjective and its restriction
to the interior of D is injective.

Theorem 2.—The group G is generated by S and T.

Proof of theorems 1 and 2.—Let G’ be the subgroup of G generated by
S and T, and let z € H. We are going to show that there exists g’ € G' such

ab
that g'z € D, and this will prove assertion (1) of theorem 1. If g = (c d)

1S an element of G’, then
Im(z)
ez +d|*

(1) Im(gz) =
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Since ¢ and d are integers, the numbers of pairs (¢, d) such that cz+d| i
) S

less than a given number is finite. This shows that there exists ¢ ¢ ¢’

that /m(gz) is maximum, Choose now an integer n such that Tng ik s
part between —% and + 4. The element 2’ = %% belongs is D"gindas ;‘ea_.l
suffices to see that [z'| 2 I, but if |z'| < 1, ¢ , Indeed, it

| he element — 1/z" would h
an imaginary part strictly larger than Im(z"), which is impossible. Thus ?;Z
element g = T"g has the desired property.

We now prove assertions (2) and (3) of theorem I. Let ze D and let

b :
. :(? d) «G such that gz ¢ D. Being free to replace (z, g) by (gz, £

we may suppose that Im(gz) = Im(z), i.e. that lcz+d| is £1. This is clearly
impossible if |¢| = 2, leaving then the cases ¢ = 0,1, —1. If ¢ = 0, we have
@ = +1 and g 1s the translation by +4. Since R(z) and R(gz) are both
between — 3 and 3, this implies either 6 = 0Oand g = 1 or b = + 1 in which
case one of the numbers R(z) and R(gz) must be equal to — 4 and the other
to 3. If ¢ = 1, the fact that [z4+d|is <1 implies d = 0 except if z = p (resp.
—p) in which case we can have d = 0, 1 (resp, d = 0, —1). The case d = 0
gives |z] < 1 hence |z| = 1; on the other hand, ad—bc = 1 implies b = —1,
hence gz = a—1/z and the first part of the discussion proves that a = 0
except if R(z) = + 3, 1.e.if z = p or —p in which case we have a = 0, —1 or
a=0,1. Thecasez=p,d=1givesa—b=1and gp =a—1/(14+p) = a+p,
hence @ = 0, I; we argue similarly when z = —p, d = —1. Finally the case
c = —1 leads to the case ¢ = 1 by changing the signs of a, b, ¢, d (which
does not change g, viewed as an element of G). This completes the verific-
ation of assertions (2) and (3).

It remains to prove that G' = G. Let g be an element of G. Choose a
point z, interior to D (for example z, = 2i), and let z = gz,. We have seen
above that there exists g’ € G’ such that g’z € D. The points z, and g’z =
g'gz, of D are congruent modulo G, and one of them is interior to D.
By (2) and (3), it follows that these points coincide and that g'g = 1. Hence
we have g € G', which completes the proof.

Remark.—One can show that ¢S, T; S?, (ST)>) is a presentation of G,
or, equivalently, that G is the free product of the cyclic group of order 2
generated by S and the cyclic group of order 3 generated by ST.

§2. Modular functions
2.1. Definitions

Definition 2.—Let k be an integer. We say a function f is tveak!y modu{ar
of weight 2k'V) if f is meromorphic on the half plane H and verifies the relation

(2) f(2) = (cz+d)~*f (i; 2 b) for all (" 2) e SL,(Z).

d C

‘) Some authors say that £ is “‘of weight —2k", others that f is “of weight &
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. a b d = e~
Let ¢ be the image in G of (c d)' We have d(gz)/dz = (¢z+d)™?, The

relation (2) can then be written:

1(g2) (d(gz))"‘
f (z) i dz

Oor
) f(gz)d(gz)* = f(2)dz"

It means that the “differential form of weight k™ fi (z)dz" is *fnvarfam under G.
Since G is generated by the elements S and 7 (see th. 2), it suffices to check

the invariance by S and by 7. This gives:

Proposition 1.—Let f be meromorphic on H. The function f is a weakly
modular function of weight 2k if and only if it satisfies the two relations:

(4) fz+1) = f(2)
(5) f(=1/2) = 2%/(2).

Suppose the relation (4) is verified. We can then express f as a function
of g = e**, function which we will denote by f; it is meromorphic in the
disk |g| < 1 with the origin removed. If f extends to a meromorphic (resp.
holomorphic) function at the origin, we say, by abuse of language, that f
1s meromorphic (resp. holomorphic) at infinity. This means that f admits a
Laurent expansion in a neighborhood of the origin

+ o0

fl@) =3 aq"

— 0

where the a, are zero for n small enough (resp. for n < 0).

Definition 3.—A weakly modular function is called modular if it is mero-
morphic at infinity.

When f'is holomorphic at infinity, we set f(c0) = F(0). This is the value
of f at infinity.

Definition 4.—A modular function which is holomorphic everywhere
(including infinity) is called a modular Jform; if such a function is zero at

infinity, it is called a cusp form (“Spitzenform™ in German—*‘forme para-
bolique™ in French).

A modular form of weight 2k is thus given by a series

* &

(©) Q)= 3 ag" = 3 aemn

n=0

"'ﬂv'hiCI.l converges for |g| <1 (i.e. for Im(z) > 0), and which verifies the
1dentity

() J(=1/2) = 22(z).

It is a cusp form if a, = 0.
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Examples

1) If fand /" are modular forms of weight 2k and 2k
modular form of weight 2k 4 2k’. ;

2) We will see later that the function

the product £ is a

g |1 (1—¢"** = 9—24q*+2529° 147294 + . . .

n=1

is a cusp form of weight 12.
2.2. Lattice functions and modular functions

We recall first what is a /attice in a real vector space V of finite dimension.
[t is a subgroup 1" of V verifying one of the following equivalent conditions:

i) I' is discrete and V/I' is compact;
i1) I' 1s discrete and generates the R-vector space V;

1i1) There exists an R-basis (e;, ..., e, of V which is a Z-basis of T' (i.e.
[ =Ze @ ... D Ze,).
Let Z be the set of lattices of C considered as an R-vector space. Let M

be the set of pairs (w,, w,) of elements of C* such that Im(w,/w,) > 0; to
such a pair we associate the lattice

F(UJI, {UE) —— Z(Ul @ ZUJ'I

with basis {w,, w, }. We thus obtain a map M — % which is clearly surjective.

Let g = (j f!) e SL,(Z) and let (w,, w,) € M. We put

L

UJ; = a(.Ul +b(ﬂ2 B.Ild (Ué — CUJ'I dﬂJz.
It is clear that {w/, w}} is a basis of ['(wy, w,). Moreover, if we set z = w;/w,
and z' = w{/w,, we have

, L aEFD
cz+d

This shows that /m(z’) > 0, hence that (w;, w;) belongs to M.

Proposition 2.—For two elements of M to define the same lattice it 1S
necessary and sufficient that they are congruenlt modulo SL,(Z).

We just saw that the condition is sufficient. Conversely, if (w;, w5) a-nd
(w!, w}) are two elements of M which define the same lattice, there exists

gz.

~
et

an integer matrix g = (g 3) of determinant + 1 which transforms the first

basis into the second. If det(g) was <O, the sign of Im(w;[w3) \’fﬂuld be
the opposite of Im(w,/w,) as one sees by an immediate com-putatlon. The
two signs being the same, we have necessarily det(g) = 1 which proves the
proposition. |

Hence we can identify the set Z of lattices of C with the quotient of M
by the action of SL,(Z).
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Make now C* act on Z (resp. on M) by:

[ Al (resp. (wq, w;) — (Awy, Mws)), A€

i is identi i by (wy, wz) 2z = w,/w,, and
The quotient M/C* 18 identified mth_ H { _ ”s
this identification transforms the action of SL,(Z) on M into tha_t of
G = SL,(Z)/{+1} on H (cf. n° 1.1). Hence:
Proposition 3.—7he map (w,, w;) — @ | Jw, gives by passing to the'quotient,
a bijection of X|C* onto H/G. (Thus, an element of H/G can be identified
with a lattice of C defined up to a homothety.)

Remark.—Let us associate to a lattice I' of C the elliptic curve Er = C|T,
It is easy to see that two lattices I' and I'" define isomorphic elliptic curves
if and only if they are homothetic. This gives a third description of H/G =
R/C*: it is the set of isomorphism classes of elliptic curves.

Let us pass now to modular functions. Let F be a function on Z, with
complex values, and let k € Z. We say that F is of weight 2k if

(7) F(AT) = A% F(T)

for all lattices I' and all A € C*.
Let F be such a function. If (w,, w,) € M, we denote by F(w,, w,) the
value of F on the lattice I'(w,, w,). The formula (7) translates to:

(8) F(lw,, Aw,) = A_ZRF(wl, w,).

Moreover, F(w,, w,) 1s invariant by the action of SL,(Z) on M.
Formula (8) shows that the product w3*F(w,, w,) depends only on
Z = w;/w,. There exists then a function f on H such that

9) Flwy, w;) = w; zkf(’-‘-’lfwz)-
Writing that F is invariant by SL,(Z), we see that f satisfies the identity:

Q) f(2) = (cz+d)" 2 (‘”“b) for all (“ Z)ESLZ(Z).

cz+d

Co%weljsely, it f verifies (2), formula (9) associates to it a function F on Z
wblch 1s of weight 2k. We can thus identify modular functions of weight 2k
with some lattice functions of weight 2k.

2.3. Examples of modular functions: Eisenstein series

Lemma 1.—Let " be a lattice in C. The series 3’ 1 [|y|° is convergent for
o> 2. et

(The symbol X’ signifies that the summation runs over the nonzero
elements of I'.)

We can proceed as with the series 21/n?, i.e. majorize the series under

consideration by a multiple of the double integral f f dxdy
(x?

extended
+ yZ)tn' 2
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over the plane deprived of a disk with center 0. The do
computed using “*polar coordinates’. Another method

series 1s thus reduced to that of the serjes Xl/no-!

Now let & be an integer > 1. If I' is a lattice of C, put
(10) O8] = X ST /e

yel©

This series converges absolutely, thanks to lemma 1. It js
of weight 2k. It 1s called the Eisenstein series of index k (or in
other authors). As in the preceding section, we can vie
M, given by:

(11) Gy, w;) = 3 1

clear that G, is

Here again the symbol £’ means that the summation runs over all pairs of

integers (m, n) distinct from (0, 0). The function on H corresponding to G,

(by the procedure given in the preceding section) is again denoted by G,.
By formulas (9) and (11), we have

(12) Gi(2) =) :

m,n (mZ-I"H)Zk .

Proposition 4.—Let k be an integer >1. The Eisenstein series G(z) is a
modular form of weight 2k. We have Gy (o0) = 20(2k) where { denotes the
Riemann zeta function.

The above arguments show that G,(z) is weakly modular of weight 2k.
\\i'e have to show that G, is everywhere holomorphic (including infinity).
First suppose that z is contained in the fundamental domain D (cf. n® 1.2).
Then

imz+n|* = m*zzZ 4+2mnR(z) + n?

> m*—mn+n* = |mp—n|>.

By lemma 1, the series X'1/|mp—n|?* is convergent. This shows that the
series Gy(z) converges normally in D, thus also (applying the result to G, (g~ 'z)
with g € G) in each of the transforms gD of D by G. Since these cover H
(th. 1), we see that G, is holomorphic in H. It remains to see that G, is
holomorphic at infinity (and to find the value at this point). This amounts
o proving that G, has a limit for /m(z) — co. But one may suppose that z
remains in the fundamental domain D; in view of the uniform convergence
iIn D, we can make the passage to the limit term by term. The terms
l/(mz+ n)** relative to m + 0 give 0; the others give 1/n**. Thus

MGz} =YV nt* = 2) 1/n** = 2{@2k) ' q.e.d.
n=1

Remark.—We give in n° 4.2 below the expansion of G, as a power series
In q - EZREI.
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t weights are G, and G,,
(because of the theory of
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Examples.—The Eisenstein series Of low:vcs
which are of weight 4 and 6. It 1S co?vement
multiples:

elliptic curves) to replace these by
(13) g, = 60G,, & = 140Gs.

We have g,(c0) = 1204(4) and g;(o0) = 280£(6). Using the known values
of ¢(4) and {(6) (see for example n° 4.1 below), one finds:

4 8
(14) g,(0) = ‘3’”’4’ 8s(®) = o7
If we put
(15) A = g3—27g3,

we have A(o0) = 0; that is to say, A is a cusp form of weight 12.

Relation with elliptic curves
Let I" be a lattice of C and let

] , 1 1
(16) fru) = — ¥ ((u——'y)z - z)

u yel Y

be the corresponding Weierstrass function'”). The G,(I') occur into the
Laurent expansion of {:

(17) 0 () = 12 - Y 2k —1)G(Tyu? 2.
U k=2

If we put x = @r(u), y = @r(u), we have

(18) y' = 4x>—g,x—gs,

with g, = 60G,(I'), g5 = 140G4(I") as above. Up to a numerical factor,
A = g5—27g3 is equal to the discriminant of the polynomial 4x3 —g,x —g;.

One proves that the cubic defined by the equation (18) in the projective
plane is isomorphic to the elliptic curve C/T'. In particular, it is a nonsingular
curve, and this shows that A is 0.

3. The space of modular forms
3.1. The zeros and poles of a modular function

. Let f be a merom?rphic function on H, not identically zero, and let p

e a pomt-t of H. The integer n such that f/(z—p)" is holomorphic and non-
zero at p 1s called the order of fat p and is denoted by v,(f)
(f)-

1) Se BT
R UZL;EZTEEDIEJH. CARTAN, Théorie élémentaire des fonctions analytiques d’une ou
mplexes, chap. V, §2, n° 5. (English translation: Addison-Wesley Co.)
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The space i

When [ is a modular function of weight 2k, the identity

f(z) = (cz—i-d)‘-?*f(flz-i-b)

cz+d

shows that v,(f) = v, (/f) If g € G. In other terms, v,(f) depends only on
the image of p In HXE?. Moreover one can define v_(f) as the order for
g = 0 of the function f(g) associated to f (cf. n° 2.1).

Finally, we will denote by e, the order of the stabilizer of the point p;

we have e, = 2 (resp. e, = 3) if p is congruent modulo G to i (resp. to p)
and e, = 1 otherwise, cf. th. 1.

Theorem 3.—Let f be a modular function of weight 2k, not identically
~ero. One has:

I k
(19) v, (f) + ) — v, (f) =~=.
PEH|G €, 6
(We can also write this formula in the form
I 1 k
(20) 0u(f) + o) + - 0,(f) + 2% p(f) =~
2 3 peH|G 6

where the symbol X* means a summation over the points of H/G distinct
from the classes of / and p.]

Observe first that the sum written in th. 3 makes sense, i.e. that f has
only a finite number of zeros and poles modulo G. Indeed, since f is mero-
morphic, there exists » > 0 such that f has no zero nor pole for 0 < [g| < r;

l
this means that fhas no zero nor pole for Im(z) > o log (1/r). Now, the part

, ]
D, of the fundamental domain D defined by the inequality /m(z) = -2-;103

(1/r) is compact; since f is meromorphic in H, it has only a finite number of
zeros and of poles in D,, hence our assertion.

1 & 1 d

To prove theorem 3, we will integrate — fon the boundary of D. More
' . 20

precisely:

1) Suppose that /has no zero nor poleon the boundary of Dexcept possit_aly
i, p, and — . There exists a contour % as represented in Fig. 2 whose interior
contains a representative of each zero or pole of f not congruent to 7 or p.
By the residue theorem we have

| jff: Y5 o (f)

2ni | [ peHIG

i

On the other hand:

a) The change of variables ¢ = e*** transforms the arc E4 into a circle w
centered at ¢ = 0, with negative orientation, and not enclosing any ze€ro or
pole of f except possibly 0. Hence

A
L PO R 4ol ek,
Qimr 2im | f iy
E w




|

i ':
| '
! |
! 1
| |
! I

s
-1 =% 0 72 1

Fig. 2

b) The integral of L 4 on the circle which contains the arc BB’, *‘*5' |

I

;_.,.- ol

negatively, has the value —v,(f). When the radius of this circle tends

2N 2
the angle B,B’ tends to -—63 . Hence:

-

14 1

2im 6
B

o(f).

Similarly when the radii of the arcs CC’ and DD’ tend to O:
1 df e B U;(f)

i f
C-

D!

T, _1
21'11"[)" 6 o(f).

D

¢) T transforms the arc 4B into the arc ED’: since f(Tz2) = f(z)

.‘r Lo =

"rﬁ_f

E
# 1 df
211:' [ g b
A D f
d) S transforms the arc B’ IRRRE st -
get: C onto the arc DC : since j(gz; k(.
df(Sz .
S)=%E+Mm i
{150 @ .
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hence:

l J r{/' I df j ( df(z) df(Sz)
Qi I 211? 2in f(z) f(Sz) )

B’
dz
2:-nr ( Qk?)

—2k( R
6
when the radiu of the arcs BB’, CC', DD’ end te
; df
Writing now that the two expressions we get for 2_—" are equal, and
i

passing to the limit, we find formula (20). ¥

2) Suppose that f has a zero or a pole A on the half line

” | 1 /3

<z|Re(2) = — 5> Im(z) > = ("

\

We repeat the above proof with a contour modified in a neighborhood of A
and of TA as in Fig. 3. (The arc circling around TA 1s the transform by T of

the arc circling around A.)

We proceed in an analogous way if f has several zeros or poles on the
boundary of D.

Remark.—This somewhat laborious proof could have been avoided if
one had defined a complex analytic structure on the compactification of H/G
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(see for instance Seminar
n° 21, lecture II).

on Complex Multiplication, Lecture Notes on Math,,

3.2. The algebra of modular forms

If k is an integer, we denote by M, (resp. MY) the.C-veCtor space of
modular forms of weight 2k (resp. of cusp forms of weight 2k) cf. n® 2.1,

def. 4. By definition, M9 is the kernel of the linear form f— f(c0) on M,.

Thus we have dim M,/M} < 1. Moreover, for k = 2, the Eisenstein series

G, is an element of M, such that G,() # 0, cf. n® 2.3, prop. 4. Hence we

have

Mk:ME@C'Gk ([‘Drkg?.).

Finally recall that one denotes by A the element g3—27g3 of Mg where
g: - 6061 and g3 = I40G3

Theorem 4.—(i) We have M, = 0 for k <0 and k = 1.

(ii) Fork = 0,2, 3, 4,5, M, is a vector space of dimension 1 with basis 1,
Gy Gas G4y G §~¢‘if}§-_{’?£§,ME = 0.

(iii) Multiplication by A defines an isomorphism of M, _¢ onto M )

Let / be a nonzero element of M,. All the terms on the left side of the

formula
1 1 k
(20) v, (f) +=0f) +=0,(f) + 2% v,(f) ==
R 2 3 peH|G 6
{;w‘"" “are >0. Thus we have k = 0 and also k& % 1, since  cannot be written In

C

'-rf,j‘;f_;-.__.a--**{f"'ﬂ:‘:he form n+n’/24+n"/3 with n, n’, n” = 0. This proves (1).

Now apply (20) to f = G, k = 2. We can write % in the form n+n’/2
+n"/3, n,n’,n" = 0 only forn = 0,n" = 0, n” = 1. This shows that v,(G>)
= 1 and v,(G,) = 0 for p #+ p (modulo G). The same argument applies to
G, and proves that v,(G;) = 1 and that all the others v,(G;) are zero. This
already shows that A is not zero at i, hence is not identically zero. Since the
weight of A is 12 and v(A) = 1, formula (20) implies that v,(A) = 0 for
p = o and v_(A) = 1. In other words, A does not vanish on H and has a
simple zero at infinity. If f is an element of M} and if we set g = f/A, it 18
clear that g is of weight 2k —12. Moreover, the formula

v,(8) = v,(f)—v,(4) = {U'" (/) l.fp i
v(f)—1 ifp= 0
show§ that v{,(g) is =0 for all p, thus that g belongs to M, _ ¢, which proves (ii1).
Finally, 1f‘ k <5, we have k—6 <0 and M2 = 0 by (i) and (iii); this
shows that dim M, < 1. Since 1, G,, G;, G,, G5 are nonzero elements of
M{}: M21 M35 Mq,, Mﬂ, we have dim Mk =1 for kK = 0; 2, 3, 4, 5, which
proves (it).

Corollary 1.—We have

21) TN {[k/ﬁl ifk = 1(mod6),k = 0
[k/6]+1 ifk # 1 (mod 6), k = 0.
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(Recull that [1] denotes the fnfegm! part of x. i
IEI 1
it m & x ; the largest Integer n such

expressions increase by one unit when w

e repla
formula 1s thus true for all &k > 0. place k by k+6 (cf. (iii)). The

Corollary 2.—The space M, has for basis the
with «, B integers 20 and 20+ 38 = k.

We show first that these monomials generate M,. This is clear for k < 3
by (i) and (11). For & =2 4 we argue by induction on k. Choose a pair ('y= 5)
of integers =0 such that 2y+38 = k (this is possible for all k > 2) "E"he
modular form g = G3G3 is not zero at infinity. If fe M,, there exists ‘/\ e C
such that f—Ag 1s a cusp form, hence equal to Ak with h e M, _¢, cf. (ii1).
One then applies the inductive hypothesis to A.

[t remains to see that the above monomials are linearly independent;
f they were not, the function G3/G3 would verify a nontrivial algebraic

equation with coefficients 1n C, thus would be constant, which is absurd
because G, 1S zero at p but not Gj.

Jamily of monomials G3G;

Remark.—Let M = %3 M, be the graded algebra which is the direct

sum of the M, and let & : C[X, Y] — M be the homomorphism which maps
X on G, and Y on G;. Cor. 2 is equivalent to saying that e is an isomorphism.
Hence, one can identify M with the polynomial algebra C[G,, G,).

3.3. The modular invariant

We put:
(22) T j = 1728g3/A.

Proposition 5.—(a) The function j is a modular &'ncria'n of. weight 0.

(b) It is holomorphic in H and has a simple pole at infinity.

(c) It defines by passage to quotient a bijection of H|G onto C. ¥

Assertion (a) comes from the fact that g> and A are both of we{g}li]t 1 :
(b) comes from the fact that A is #0 on H and has a simple zero at infinity,

while g, is nonzero at infinity. To prove (c), O'ne has to show ;hag 1FTAOES(QZE,
the modular form f, = 1728g; —AA has a unique zero modulo G.

this, one applies formula (20) with /' = f; gnd k = 6.;1"'1;3 only dece:lllio:;tlons
of k/6 = 1 in the form n+n'[2+n"/3 with n, n’, n* = 0 corresp

(1,0,0) or (0, 2,0) or (0, 0, 3).
ne point of H/G.

function on H. The following

!

(n, n’, n") =
This shows that f; is zero at one and only O

Proposition 6.—Let [ be a meromorphic
properties are equivalent: |

(i) £ is a modular function of weight 0;
(ii) f is a quotient of two modular forms
(iii) f is a rational function of J.

of the same weight;

e Py O

Wi Zaks
3 o \vib

*’i
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The implications (iii) = (ii) = (1) are immcc-iiatc. We shc:w that (i) = (iii).
Let f be a modular function. Being free lo'mulllplyf_by a su!tablc polxno@al
in j, we can suppose that / is holomorphic on H._ Since A is zero at !nﬁmty,
there exists an integer n = 0 such that g = A"/ is holomorphic at infinity.
The function g is then a modular form of weight 12n; by cor. 2 of theorem 4
we can write it as a linear combination of the G3G5 with 2a+38 = 6n. By
linearity, we are reduced to the case g i!_](}'SG?, i;. S o= G;G?/A". But the
relation 2x+ 38 = 6n shows that p = &/2and ¢ =@@gﬁrc integers and one
has f = G3?G3Y/AP* . Thus we are reduced to see that G%/A and G§/A are

rational functions of j, which is obvious.

Remarks.—1) As stated above, it is possible to define in a natural way

: : i
a structure of complex analytic manifold on the compactification H/G of

2o
H/G. Prop. 5 means then that j defines an isomorphism of H|/G onto the

Riemann sphere S, = Cu{c}. As for prop. 6, it amounts to the well
known fact that the only meromorphic functions on S, are the rational
functions.

2) The coefficient 1728 = 2°3° has been introduced in order that j has
a residue equal to 1 at infinity. More precisely, the series expansions of §4
show that:

90

l < .
(23) j@)=-+ 744+ > c(nq", zeH g=e*"=
q n=1 '

One has:
c(1) = 2%3° 1823 = 196884, c(2) = 2''5.2099 = 21493760.
The c(n) are integers; they enjoy remarkable divisibility properties'":

n=0(mod2) =c(n) =0(mod2**?) ifa>1
n = 0(mod 3) = c(n) = 0(mod 3%°*3) %
n = 0(mod 5%) = c¢(n) = 0(mod 5°*!) i
n=0(mod7%) = c¢(n) = 0(mod 79)

n = 0(mod 11%) = ¢(n) = 0 (mod 119).

§4. Expansions at infinity
4.1. The Bernoulli numbers B,

They are defined by the power series expansion:(?)

‘1) See on this subject A. O. L. ATKIN and J. N. O’BrieN, Trans. Amer. Math. Soc.,

126, 1967, as well as the paper of ATKIN in Computers in mathematical research (North
Holland, 1968).

‘¥ In the literature, one also finds *‘Bernoulli numbers” b, defined by

X
ex— |

E bkx"/k! .

k=0

hence b, =‘l. J_b, = =12, bysy =0if k > 1, and by = (—1)*~!B..

The b notation is better adapted to the study of congruence properties, and also to general-
1zations a la Leopoldt.
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X X % 2k
4 = ] — = & —1)k+1 X
Numerical table
] 1 ] ] 5 691
By 7 = By = — ’ B 2 Ty By = — B P
PTE T T TR TR T
7 3617 43867 283,

B, = -, Bg = , By == B = 617! g 11.131.593_
6 510 798 330 138 y
103.2294797 13.657931 7.9349.362903

B2 = , Bis = , Bia = :
2730 6 370

The B, give the values of the Riemann zeta function for the positive even
integers (and also for the negative odd integers):

Proposition 7.—1If k is an integer =1, then:

22k—1 -
25 2K ) = B, 7",
( ) g( ) (2k)' kT
The i1dentity
o0 22.&221.:
26 cotgz =1 — B
- — k; *(2k)!

follows from the definition of the B, by putting x = 2iz. Moreover, taking
the logarithmic derivative of

. = z*
(27) sinz = Z HI;[l (l szz) ,
we get:
52
(28) zcotgz = 1+2 "21 R
© o 2k
B 1—2n; kzl n;‘ 2k

Comparing (26) and (28), we get (25).

ﬂ,z 4 6
Examples {(2) = 2=, ¥4 = 5555 {6 = 5357
11-3 ﬂlﬂ 69171'12
“.8) iR 52’ - 3557.11° il 3653 72.11.13°
14
Fhy s e 2

36.52.7.11.13
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4.2, Series expansions of the functions Gy

We now give the Taylor expansion of the Eisenstein series G,(z) with

21::*'

respect tog = €
[ et us start with the well known formula:

i I
(29) w colgmz = — Z z+m A -

We have on the other hand:

sy

N

cosmz . i gLy i S
— — S8 | = I = 7T lTr Z q s
(30) wcotgmz = i S Trq-—l 15 vy

Comparing, we get:

aD 1 3 ad
o = jm— 2im q".
(31) Z (z+m z—m) HZD

-
&

By successive differentiations of (31), we obtain the following formula
(valid for k = 2):

| k n
2im ,,
ke 2 mia) (k-—l)'( ) Z 5

Denote now by o,(n) the sum X d* of kth-powers of positive divisors of n.
d|n

Proposition 8.—For every integer k = 2, one has:

(2im)** & 5
—1{\n 4
k- D)1 2 "

(33) G.(z) = 2U(2k)+2

We expand:

|

G,(2) )) 1

(n,myF(0,0) (nz+m)**

HEDH2'Y ¥

n=1 mel (HZ-I-I’H)Zk i

Applying (32) with z replaced by nz, we get
2(_2,”021: 0 0

Z Z dlk—lqad

(2k—1)! 4=1 a=1

G (z) = 2{(2k)

Vi 2k oo
(22(k—1)l)' Z o2r-1(M)q".

Corollary.—G,(z) = 20(2k)E,(z) with

= 28(2k) +

(34) E@ = 147 3, o (0)4”
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B,

One defines E,(z) as the quotient of G ( iR
«(2) by 2¢(2k):
s given by (34). The coefficient Y& 1S computed ugi,(lg ;} :pls7c.lear that E,(z)

. \2k .
y = ) QW N O e Bk
(2k—1!22k)  @k=1)! 2%-Tg = (=1 B
Examples
3 . 1
== L 4
Es | + 240 "Z_;l os(n)q", g, = (2m) 5_2,_3. E,
. < a ]
Ey =1-504 n;l os(m)q", g3 = (2m)° 33 33 E,
E, = 1+480 z o,(n)q" (480 = 2°.3.5)
n=1
Es = 1-264 Z oq(n)g" (264 = 2°.3.11)
n=1
Eg = 1 4 62;? o,.(n)q" (65520 = 24.3%.5.7.13)
n=1

E;=1-24 2 a,3(n)q"

n=1

Remark —We have seen in n° 3.2 that the space of modular forms of
weight 8 (resp. 10) is of dimension 1. Hence:

(36) E2? = E,, E,E; = E;s.

This is equivalent to the identities:

n—1
0,(n) = a3(n)+120 Zl ay(m)as(n—m)

n—1
l1og(n) = 2los(n)—100;3(n)+ 5040 mgl a4(n)os(n—m.

More generally, every E, can be expressed as a polynomial in E, and £;.

4.3. Estimates for the coefficients of modular forms

Let

a0

(37) f2)= Y aq" @@= &)

n=0
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be a modular form of weight 2k, k = 2. We are interested in the growth of
the a,:

Proposition 9.—If f = G, the order of magnitude of a, is n**~'. More
precisely, there exist two constants A, B > 0 such that

(38) An** 7 < la | S Bttt
Prop. 8 shows that there exists a constant A > 0 such that

a, = ("_])kAHZk—I(”)1 hence |a,| = Aoy (n) = An** 1,

On the other hand:

IJJ A 2: I 5 l

2l 2k — 2k— 1
B din d**~1 i=1 d

= A{(2k—1) < + oo.

Theorem 5 (Hecke).—If f is a cusp form of weight 2k, then
(39) a, = O(n").
|

n"
Because f is a cusp form, we have a, = 0 and can factor g out of the

expansion (37) of /. Hence:
(40)  [f(2)] = O(g) = O(e™*™)  with y = Im(z), when g tends to 0.

Let ¢(z) = | f(z)|y*. Formulas (1) and (2) show that ¢ is invariant under
the modular group G. In addition, ¢ 1s continuous on the fundamental
domain D and formula (40) shows that ¢ tends to O for y — oo. This implies
that ¢ is bounded, i.e. there exists a constant M such that

(41) /(@) = My ™ forzeH.

Fix y and vary x between 0 and 1. The point g = e*™** runs along a
circle C, of center 0. By the residue formula,

remains bounded when n — o0.)

(In other words, the quotient

|
] %
a, = .ff(Z)q 1 1dq=ff(x+fy)q‘"dx-
27
C} 0

(One could also deduce this formula from that giving the Fourier coefficients
of a periodic function.)

Using (41), we get from this
a,| £ My~ke2m

This inequality is valid for all y > 0. For y = 1/n, it gives |a,| < e*"Mn".
The theorem follows from this.

Corollary.—If f is not a cusp form. then the order of magnitude of a,

is n?k—1

We write f in the form AG,+/ with A = 0 and a cusp form 4 and we



gxpansions at infinity

Ing i 95
apply prop. 9 and th. 5, taking into account the SRR
compared to R fact that n* is negligible”

Remark.—The exponent k of theorem 5 can be im

Deligne has shown (cf. 5.6.3 below) that proved. Indeed,

a, = O(n*~'"%ay(n)),
where oo(n) 1s the number of positive divisors of »#. This implies that

S k—1/2
a, = O(n*~1%"%) for every e > 0.

4.4. Expansion of A

Recall that
A = g3-27g} = (2m)'?27°37(E3-EJ)

(42)
= (2n)'%(g—249* +2529> —1472¢% +. . ).

Theorem 6 (Jacobi).—A = (Zw)'zqnljl(l = a")Es.

(This formula is proved in the most natural way by using elliptic functions.
Since this method would take us too far afield, we sketch below a different

proof, which 1s ‘““elementary’’ but somewhat artificial; for more details, the
reader can look into A. HURwITZ, Math. Werke, Bd. I, pp. 578-595.]
We put:

(43) F(z) = q [1 0—¢""

n=1
To prove that F and A are proportional, it suffices to shouf that F 1s a
modular form of weight 12; indeed, the fact that the expansion of G has

constant term zero will show that F is a cusp form and we know (th. 4) that
the space M2 of cusp forms of weight 12 is of dimension 1. By prop. 1 of

n° 2.1, all there is to do 1s to prove that:
(44) F(—1/z) = z2'*F(2).

We use for this the double series

, 1
G(z) = zz

~ % (m+nz)*’ e ;g‘ (m-}—HZ)z

1

1 s H(2) = ;;; (m—1+nz) (m+nz)

Hi(z) = Z":; (m— 1 +nz) (m+nz)

(m,n) runs through all meZ, neZ with

. y o . at :
where the sign ¥’ indicates th 17 and H,. (Notice

(m,n) # (0,0) for G and G, and (m,n) 7 (0,0), (1,0) for
the order of the summations!)

The series H, and H are easy to calculate explicitly because of the formula:
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m—1+nz m-+nz

i;; _ 1 +nz) (m+nz) i

One finds that they converge, and that
H.'= 2, I 2 —2mifz.

Moreover, the double series with general term

] 1 1
(_.*n—-—l nz) (m+nz) (m—I-HZ)Z (m nz)* (m +nz)

is absolutely summable. This shows that G, —H, and G — H coincide, thus
that the series G and G, converge (with order of summation indicated) and

that

27l

G,(2)-G(z) = Hi(@—H(@2) =— -

It is clear moreover that G,(—1/2) = z2G(z). Hence:
(45) G,(—1/2) = 2°G(2)—2miz.

On the other hand, a computation similar to that of prop. 8 gives
2 o0
(46) G,(z) = "% _ 872 Y ay(n)qg".
n=1

Now, go back to the function F defined by (43). Its logarithmic differential 1s

dF  dq - d <
(47 o a2t 1 o T | "
) F q ( :1,§=1 o ) q (1 24 nzl ﬂ.l(n)q ) |
By comparing with (46), we get:
dF ]
(48) ALY AT
F o .m
Combining (45) and (48), we have
dF(—1/z) 6i dz 6idz
= —G{(—-1/2)= = (z2G (2) — 2miz)
F(—1/z £ 2 l
49) ) JELAes z T 2
dF
pidita), o &
F(z) Z

T_hus thf: two functions F(—1/z) and z'*F(z) have the same logarithmic
differential. Hence there exists a constant k such that F(—1/z) = kz'*F(z)
for all ze H. For z = i, we have z'2 =1, —1/z = z and F(z) * 0; this
shows that k = 1, which proves (44), q.e.d. ,

Remark.—One finds another “elementary” proof of identity (44) in
C. L. SIeGEL, Gesamm. Abh., 111, n° 62. See also Seminar on complex multi-
plication, 111, §6.
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4.5. The Ramanujan function
we denote by =(n) the nth coefficient of the cusp form F(z) = (27)™ '2A(z)

Thus
(w8

(50) 2 g = q [] (1-¢")*,

=

The function n+ 7(n) is called the Ramanujan function.

Numerical table ‘")

T(I) — 11 7(2) —— -—24, T(3) — 252, T(4) — 1472, T(S) - 4830,
H(6) = — 6048, 7(7) = — 16744, 7(8) = 84430, 7(9) = — 113643,
(10) = — 115920, 7(11) = 534612, 7(12) = —370944.

Properties of (n)
(51) r(n) = O(n°),

hecause A i1s of weight 12, cf. n° 4.3, th. 5. (By Deligne’s theorem, we even
have #(n) = O(n''/?"%) for every ¢ > 0.)

(52) r(nm) = 7(n)v(m) if (n,m) =1
(53) #(p"* 1) = 7(p)7(p") —p'l+(p"~') forpprime,n > 1, cf. n° 5.5. below.

The identities (52) and (53) were conjectured by Ramanujan and first proved
by Mordell. One can restate them by saying that the Dirichlet series

+(n)/n* has the following eulerian expansion:

L(s) = 1

| 48

n

; l .
(54) L(s) = - -, cf.n°5.4
ngﬂl—ﬂ"(p)p $p
By a theorem of Hecke (cf. n° 5.4) the function L. extends to an entire

function in the complex plane and the function
(2m) T*T(s)L(s)

1S invariant by s+ 12 —s.
The 7(n) enjoy various congruences modulo
quote some special cases (without proof):

pi2, 36 83 7,23, 691. We

(35) 7(n) = n*o,(n) (mod 33)
(56) 7(n) = no,(n) (mod 7)
(57) r(n) = o,(n) (mod 691).

For other examples, and their interpretation 1n terms of ‘‘/-adic repre-
sentations” see Sém. Delange-Pisot-Poitou 1967/68, exposé 14, Sém. Bourbaki
1968/69, exposé 355 and Swinnerton-Dyer's lecture at Antwerp (Lecture

Notes, n° 350, Springer, 1973).

o ‘Y This fablc is taken from D. H. LEHMER, Ramanujan’s function 7(n), Duke Math. J.,
l » 1943, which gives the values of () for n = 300.
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We end up with an open question, raised by D. H. Lehmer:

Is it true that 7(n) # O for all n = 17
It is so for n < 10"°.

§5. Hecke operators

5.1. Definition of the T (n)

Correspondences.—Let E be a set and let X be the free abelian group
generated by E. A correspondence on E (with integer coefficients) is a
homomorphism T of X into itself. We can give T by its values on the ele-

ments x of E:
(58) T(x) = ) n(x)y, ny(x)eZ,
yeFE
the n (x) being zero for almost all y.
Let F be a numerical valued function on E. By Z-linearity it extends to a
function, again denoted F, on Xg. The transform of F by T, denoted TF, is

the restriction to £ of the function Fo 7. With the notations of (58),
(59) TF(x) = F(T(x)) = ), n(x)F(y).

yeE

The T'(n).—Let Z be the set of lattices of C (see n® 2.2). Let n be an integer
= 1. We denote by T'(n) the correspondence on 2% which transforms a lattice
to the sum (in Xj) of its sub-lattices of index n. Thus we have:

(60) I'ml'= > I ifleR
' (I': T")=n

The sum on the right side is finite. Indeed, the lattices I'’ all contain nI’
and thflr number is also the number of subgroups of order n of I'/nI" =
(Z/nZ)*. If n is prime, one sees easily that this number is equal to n+1

(number of points of the projective line over a field with » elements).
We also use the homothety operators R; (A € C*) defined by

(61) RI'=A' iflTe®

Ff:armu!as.—-—lt makes sense to compose the correspondences 7'(n) and
R;, since they are endomorphisms of the abeljan group X,.

Proposition 10.—7/e correspondences T(n) and R, verify the identities

(62) R,R, = R, (A, p € C¥)

(63) R,T(n) = T(n)R, (n21,2eC¥
(64) I'(m)T(n) = T (mn) if (m,n) = 1

(65) I(P")YT(p) = T(p"*')+pT (P"")R,  (pprime,n = 1).

Formulas (62) and (63) are trivial.
Formula (64) is equivalent to the following assertion: Let m, n be two
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relatively prime integers =1, and let I'" be a sublattice of a lattice I' of
‘ndex mn; there exists a unique sublattice I'" of I', containing I'”, such that
(0:T") = n and (I'":I") = m. This assertion follows itself from the fact that
the group I'/T", which is of order mn, decomposes uniquely into a direct
sum of a group of order m and a group of order n (Bezout’s theorem).

To prove (65), let I' be a lattice. Then T(p")T(p)L, T(p"*HI' and
T(p" ")R,L are linear combinations of lattices contained in I' and of index
p" " in T' (note that R,I" is of index p? in I'). Let I'" be such a lattice; in the
1bove linear combinations it appears with coefficients a, b, ¢, say; we have
‘o show that @ = b+pc, i.e. that a = 1+ pc since b is clearly equal to 1.

We have two cases:
) T is not contained in pI'. Then ¢ = 0 and a is the number of lattices I'',

termediate between I and I'”, and of index p in [: such a lattice I'" contains
pI'. In T'/pI" the image of I'" 1s of index p and it contains the image of 1"
which is of order p (hence also of index p because I'/pI’ is of order P*);
hence there is only one I'" which does the trick. This gives a = 1 and the

formula a = 1+ pc is valid.
i) L” < pI. We have ¢ = 1; any lattice I'” of index p in I' contains pl,

thus a fortiori I'". This gives a = p+1 and @ = 1 +pc is again valid.

Corollary 1.—The T(p"), n > 1, are polynomials in T(p) and R,.
This follows from (65) by induction on n.

Corollary 2.—The algebra generated by the R, and the T(p), p prime, IS
commutative; it contains all the T(n).
This follows from prop. 10 and cor. 1.

Action of T(n) on the functions of weight 2k.
Let F be a function on Z of weight 2k (cf. n° 2.2). By definition
(66) R,F = A~*F forall A e C*.
Let n be an integer =1. Formula (63) shows that

R,(T(n)F) = T(n) (R,F) = A~ **T(n)F,

in other words T(n)F is also of weight 2k. Formulas (64) and (65) give:
(67) T(m)T(n)F = T(mn)F if (m, n) = 1,
(68) T(p)T(p")F = T(p"tHYF+p' ~3*T(p"~")F, pprime,n 2 l.

0.2. A matrix lemma

Lﬁ. I' be a lattice with basis {w,, w,} and let n be an integer =1. The
following lemma gives all the sublattices of I' of index n:

Lemma 2.—/et S, be the set of integer matrixes (g 3) with ad = n,

>
azl,0=b<d If o = (g 3) is contained in S,, let T, be the sublattice
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of I having for basis

- ﬂ{ﬂ1+bm2: UJE 5 sz-

yd
S, onto the set I'(n) of sublattices of index

The map o> L'g 15 @ bijection of

n I
: mThe fact that T, belongs to I'() follows from the fact that det(c) = n.

let [’ e I'(n). We put
y, = /(I +Zw,) and

Conversely
Y, = Zw,/(I'" N Zw,).

These are cyclic groups generated respectively by the images of w; and w,.
7 be their orders. The exact sequence

O%YE—}F/F,"—?' YI_'?""O

shows that ad = n. If w; = dw,, then wy e I''. On the other hand, there

exists w] € ['" such that
w{ = aw; (mod Zw,).

It is clear that | and w; form a basis of I'’. Moreover, we can Wwrite w; in

the form
W, = aw, +bw, with b € Z,

where b is uniquely determined modulo d. If we impose on b the inequality
0 < b < d, this fixes b, thus also w;. Thus we have associated to every

[ e T(n) a matrix o(I'") € S,, and one checks that the maps o+ I', and
'+ o([’) are inverses to each other; the lemma follows.

Example.—If p is a prime, the elements of S, are the matrix ((p) (1))

and the p matrices ((1) i) with 0 = b < p.

5.3. Action of T(n) on modular functions

Let k be an integer, and let f be a weakly modular function of weight 2k,
of. n° 2.1. As we saw in n° 2.2, f corresponds to a function F of weight 2k on

A such that

(69) F(D(wy,w,)) = w3 *f(wy/w,).

We define T(n)f as the function on H associated to the function n**~ ' T(n)F
on X. gNote the. numerical coefficient #n?*~! which gives formulas ‘“‘without
denominators” in what follows.) Thus by definition:

(70) T(n)f(z) = n** " '"T(n)F(T'(z, 1)),

or else by lemma 2:

7 TOfG) = ™" ¥ d-zv(“”b) |
azl,ad=n d
0sb<d
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Proposition 11.—The function T(n)f is weakly modular of weight 2k. It
s holomorphic on H if /is. We have: |

(72) r(mTIn)f = T(mn)f if (m,n) = [,
(73) T(P)T(P)f = T(P" ) +p* 'T(p" Y, ifp Is prime, n 2 |,

Formula (71) shows that T(n)f is meromorphic on H, thus weakly
modular; if in addition f is holomorphic, so is 7(n)f. Formulas (72) and
(73) follow from formulas (67) and (68) taking into account the numerical
coefficient n”* ™! incorporated into the definition of T(n)f.

Behavior at infinity.—We suppose that f is a modular function, i.e. is
meromorphic at infinity. Let

(74) f(2) = ), c(m)q"

meZ

be its Laurent expansion with respect to g = e***.

Proposition 12.—T7he function T(n)f is a modular function. We have

(75) T(n)f(z) = Z’z y(m)q™

with

(76) yim) = ) az"_‘c(@).
t:n:lg:i m) a

By definition, we have:

T)f(z) =n" 71 o) ” W 3 c(m)e2mim(az+b)/d

ad=n, a=1 meZ.
0=b<d
Now the sum
Z 821!: bm/d
0=b<d

is equal to dif d divides m and to 0 otherwise. Thus we have, putting m/d = m":

T(H)f(Z) e n2k-—l Z d—2k+lc(mrd)qam’.

ad=n
azl, mel

Collecting powers of ¢, this gives:

2k—1
T(m)f(z) = ), q" ) (5) C(‘“—d)-

ueZ al(n, 1) a

a=1

Since f is meromorphic at infinity, there exists an integer N 2 0 such that

cim) =0if m £ —N. The c(p—d) are thus zero for p £ —nN, which shows

a
that T'(n)f is also meromorphic at infinity. Since it is weakly modular, it 1s a
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modular function. The fact that its coefficients are given by formula (76)

follows from the above computation.

Corollary 1.—(0) = oqx—1(1)c(0) and (1) = c(n).
Corollary 2.—If n = p with p prime, one has

w(m) = c(pm) if m = 0 (mod p)

w(m) = c(pm)+p**~te(mlp)  Ym = 0 (mod p).

Corollary 3.—If f is @ modular form (resp. a cusp form), so is T(n)f.
This is clear.

Thus, the T(n) act on the spaces M, and M} of n° 3.2. As we saw above,
the operators thus defined commute with each other and satisfy the identities:

(72) T(mT(n) = T(mn) 1if(m,n) =1
(73) T(p)T(p") = T(p"*")+p**'T(p""") ifpis prime,n 2 1.

5.4. Eigenfunctions of the T(n)

Let f(z) = Z ¢(n)g" be a modular form of weight 2k, k > 0, not identically
n=>_0

zero. We assume that f 1s an eigenfunction of all the T'(n), 1.e. that there
exists a complex number A(n) such that

(77) T(n)f = A(n)f foralln = 1.

Theorem 7.—a) The coefficient c(1) of q in fis 0.
b) If f is normalized by the condition c¢(1) = 1, then

(78) c(n) = A(n) foralln > 1.

Cor. I to prop. 12 shows that the coefficient of g in T'(n)f is ¢(n). On the
other hand, by (77), it is also A(n)c(1). Thus we have c(n) = An)c(1). If

c(1) were zero, all the ¢(n), n > 0, would be zero, and J/ would be a constant
which is absurd. Hence a) and b).

Corollary 1.—Two modular forms of weight 2k, k > 0, which are eigen-

Junctions of the T (n) with the same eigenvalues A(n), and which are normalized,
coincide.

This follows from a) applied to the difference of the two functions.
Corollary 2.—Under the hypothesis of theorem 7, b):

(79) c(m)e(n) = c(mn) if (m,n) =1

(30) c(P)e(p") = c(p"* ) +p2e(p").

Indeed the eigenvalues A(n) = c(n) satisfy the same identities (72) and
(73) as the T'(n).

Formulas (79) and (80) can be translated analytically in the following
manner:
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(81) D (s) = i c(n)/n’
n=l|

be the Dirichlet series defined by the ¢(n); by the cor. of th. J, this series
converges absolutely for R(s) > 2k.

Corollary 3.—We have:

|
82) Do(s) =
( | J pI;[P l _C(p)p-s+p2k—l—2s

By (79) the function n > c(n) is multiplicative. Thus lemma 4 of chap.

VII, n” 3.1 shows that ®,(s) is the product of the series = c(p")p~". Putting

n=0
p ° = T, we are reduced to proving the identity
= 1
83 c(p"\T" = where &, (7)) =1- T+ p2k—172
(83) ,,ZD (P") (Df,p(T) r.o(7) c(p)T+p 7

Form the series

oo

UD) = (5 coT") (1-c(pT 4173,

n=20

The coeflicient of T'in ¢ is ¢(p)—c(p) = 0. That of T"*, n = 1, is

c(p"" ) —c(p)e(p")+p* te(p Y,

which is zero by (80). Thus the series i is reduced to its constant term ¢ (1) =1,
and this proves (83).

Remarks.—1) Conversely, forinulas (81) and (82) imply (79) and (80).

2) Hecke has proved that ®, extends analytically to a meromorphic
function on the whole complex plane (it is even holomorphic if fis a cusp
form) and that the function

(84) X (s) = 2m) " T'(s)D(s)
satisfies the functional equation
(85) X.(s) = (—l)ka(2k—.s').

The proof uses Mellin’s formula

A s dy
X/(s) = f (fi)~f(eony 2

0
combined with the identity f(—1/z) = z*f(z). Hecke also proved a con-
verse: every Dirichlet series ® which satisfies a functional equation of this
type, and some regularity and growth hypothesis, comes frf}m a modular
form f of weight 2k; moreover, f is a normalized eigenfunction of the 7'(n)



duct of type (82). See for more details
d A. WEIL, Math. Annalen, 168, 1967,

104

if and only if ¢ 1s an Eulerian pro
E. Heckg, Math. Werke, n° 33, an

5.5. Examples

. i, - 2 -
a) Eisenstein series.—Let k be an 1nteger =4

Proposition 13._The Eisenstein series G, is an eigenfunction of T(n);

the corresponding eigenvalue is oy (n) and the normalized eigenfunction is

a0

(86) (= D) 4!; E, = (—1) Ak + ;.2‘1 ok—1(N)q".

The corresponding Dirichlet series 1s {(5) (s —2k + l)._ -
We prove first that Gy 1s an eigenfunction of T'(n); 1t suffices to do this for

T(p), p prime. Consider G, as a function on the set Z of lattices of C; we have:

G (D) =) /%%, lof. n° 2.3,

yel’

T(p)GD) = 5 Y 1/

(C:T')=p vel”

and

Let y e . If y e pI" then y belongs to each of the p+1 sublattices of I' of

index p; its contribution in T(p)G,(T) 1s (p+1)/y**. If y e '=pl’, then y

belongs to only one sublattice of index p and its contribution i1s 1/y**. Thus
T(p)G(') = G (I')+p ): I/YH = G(I') +pG(pl)

yepI
= (14+p' )G (),

which proves that G, (viewed as a function on X) is an eigenfunction of
T(p) with eigenvalue 1+4p'~**; viewed as a modular form, G, is thus an
eigenfunction of I'(p) with eigenvalue p**~'(1+p' ~%*) = o,,_,(p). Formulas
(34) and (35) of n° 4.2 show that the normalized eigenfunction associated with
G, 18

B o0
(—1)* 4; | nzl aak-1(1)q".
This also shows that the eigenvalues of 7'(n) are o,,_,(n). Finally
D, T (n)/n* = a**~!|ad”
n=1| a d =1
i 1 ds 1 as*i- 1 — 2k
(dél f ) (a;‘l / )

= L(s)l(s—2k+1).
b) The A function

Proposition 14.—The A function is an eigenfunction of T(n). The corre-
sponding eigenvalue is v(n) and the normalized eigenfunction is

(2m)~ A =g ] (1-¢")* = i m(n)q"

n=1
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This is clear, since the space of cusp forms of weight 12 is of dimension

|, and is stable by the T'(n).

Corollary.— We have

(52) r(nm) = 7(n)7(m) if (n, m) = 1,
(53)  w(p)(P") = (P )+p" +(p"" ") ifpisaprimen > 1.

This follows from cor. 2 of th. 7.

Remark.—There are similar results when the space M? of cusp forms
of weight 2k has dimension 1; this happens for

- =6,38,9, 10, 11, 13 with basis A, AG,, AG,, AG,, AG., and AG,.

5.6. Complements

5.6.1. The Petersson scalar product.
Let f, g be two cusp forms of weight 2k with £ > 0. One proves easily
that the measure

u(fg) = f(2)gz)y**dxdy[y* (x = R(z),y = Im(2))

is invariant by G and that it is a bounded measure on the quotient space H/G.
By putting

(87) i8> = [ £ = | ey *dxdy.
H|G D
we obtain a hermitian scalar product on M, which is positive and non-
degenerate. One can check that

(88) (T(n)f, 8> = {f, T(n)gy,

which means that the T'(n) are hermitian operators with respect to {f, &.
Since the T'(n) commute with each other, a well known argument shows that
there exists an orthogonal basis of M, made of eigenvectors of T(n) and that

the eigenvalues of T'(n) are real numbers.

5.6.2. Integrality properties.
Let M,(Z) be the set of modular forms

f= % o)’

of weight 2k whose coefficients c(n) are integers. One can prove that there

exists a Z-basis of M (Z) which 1s a C-basis of M,. [More precisely, onzi can

check that M,(Z) has the following basis (recall that /' = ¢ 1(1—g"):
k even: One takes the monomials E3F” where «, B € N, and «+ 38 = k/2;
k odd: One takes the monomials E;E5F? where «, Be N, and a«+38 =
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(k—3)/2.] Proposition

conclude from this that the
oers'!);

12 shows that M(Z) 1s stable under T'(n), n = 1. We

coefficients of the characteristic polynomial of T(n),

ting on M, are inte in particular the eigenvalues of the T'(n) are
actin 1y, L

algebraic integers (“‘totally real”, by 5.6.1).

conjecture.

, an-Petersson : ol
5.6.3. The Ramanujc be a cusp form of weight 2k which is a

Let = 2 c(n)g’, c(1) = 1,

n= |
normalized eigenfunction 05 the 7(n). .
Let O, (T) = | —c(p)T+p**~'T?, p prime, be the

n° 5.4, formula (83). We can write

b, (T) = (1—a,T) (1 —o,T)

polynomial defined in

(89)

with

(90) a,+ o, = c(p), o, =P

2Kk—1

The Petersson conjecture is that o, and o, are complex conjugate. One can

also express it by:

|C’:p‘ _ ‘a‘;I - pk-*lfzj
or
e(p)| £ 29",
or
lc(n)| £ n*"'%0,(n) foralln = 1.
For k = 6, this is the Ramanujan conjecture: |7(p)| < 2p''/%.

These conjectures have been proved in 1973 by P. Deligne (Publ. Math.
I.H.E.S. n°43, p. 302), as consequences of the “Weil conjectures” about

algebraic varieties over finite fields.

§6. Theta functions
6.1. The Poisson formula

Let V' be a real vector space of finite dimension n endowed with an
invariant measure p. Let V'’ be the dual of V. Let f be a rapidly decreasing
smooth function on V' (see, L. ScHWARTZ, Théorie des Distributions. chap.
VII, §3). The Fourier transform f” of fis defined by the formula

D) ') = | e 2= ().

v

This 1s a rapidly decreasing smooth function on V'
| LFt now I bf’ a lattice in V' (see n° 2.2). We denote by I'’ the lattice
In V' dual to I'; it is the set of y e ¥’ such that (x, y)> € Z for all x e I'. One

‘Y We point out that there exists an exnlici Vi
plicit formula giving the trace of T'(n), cf.
M. EicHLER and A. SELBERG, Journ. Indian Math. Soc., 20, 1956.

¢¢¢¢¢¢
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checks easily that I'" may be identified with the Z-dual of T (hence the
terminology).

Proposition 15.—Let v = w(V/T"). One has:
92) 2. Jx) =~ ¥ 10,

l
xel® U yel’
After replacing p by »™'u, we can assume that u(V/I') = 1. By taking a
basis ey, ..., e, of I', we identify ¥ with R", I' with Z", and . with the
product measure dx, ... dx,. Thus we have V' — R, I'" = Z" and we are

reduced to the classical Poisson formula (SCHWARTZ, loc. cit., formule (VII,
7:5)).

6.2. Application to quadratic forms

We suppose henceforth that V is endowed with a symmetric bilinear
form x.y which is positive and nondegenerate (i.e. x.x > 0 if x + 0). We
identity V" with ¥’ by means of this bilinear form. The lattice T’ becomes
thus a /attice in V; one has y € I'” if and only if x.y e Z for all x eI

To a lattice I', we associate the following function defined on R*% :

(93) Slt) =" Y g "
xel’
We choose the invariant measure p on V such that, if ¢,,...¢, is an

orthonormal basis of V, the unit cube defined by the e; has volume 1. The
volume v of the lattice I' is then defined by v = n(V/T), cf. n°® 6.1.

Proposition 16.—We have the identity
(94) O () =100 ()

Let f = e ™" 1t is a rapidly decreasing smooth function on V. The
Fourier transform f” of f is equal to f. Indeed, choose an orthonormal basis
of ¥V and use this basis to identify ¥ with R": the measure n becomes the

measure dx = dx, .. .dx, and the function f is

£ = e ™+ +xd

- nx3

We are thus reduced to showing that the Fourier transform of e ™ is e =™,

which is well known. ‘ 0
We now apply prop. 15 to the function f and to the lattice ¢'/“I'; the
volume of this lattice is #"/?v and its dual is ¢t~ '/*T"’; hence we get the formula

to be proved.

6.3. Matrix interpretation

Let e,,..., e, be a basis of I. Put a;; = e;.e;. The matrix 4 = (a;;) 1s
positive, nondegenerate and symmetric. If x = Zx;e; is an element of V, then

X.X = Eaux;xj.
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The function © can be written

—mtiag XX j
- ) = e 4
(95) O (1) MZE:Z

The volume v of [ is given by:
g o det(A) %

(96)
. ¢, be an orthonormal basis of ¥

This can be seen as follows: Let &;, . .

and put
E:EI;\...K*\BH, e = e N...NE,

We have e = Ae with A| = v. Moreover, e.€ = det(A) €., and by comparing,

we obtain v? = det(A).
Let B = (b;;) be the m
the dual basis (¢/) to (e;)

atrix inverse to A. One checks immediately that
is given by the formulas:

e, = Z b;e;-
The (¢} form a basis of I'". The matrix (ej.e;) 18 equal to B. This shows in
particular that 1f ' = w(V/T'"), then we have v’ = 1.

6.4. Special case

We will be interested in pairs (V, I') which have the following two
properties:

(i) The dual T of T' is equal to I,
This amounts to saying that one has x.y € Z for x, y € [ and that the

form x.y defines an isomorphism of I' onto its dual. In matrix terms, 1t means
that the matrix A = (e;.e;) has integer coefficients and that its determinant
equals 1. By (96) the last condition is equivalent to v = 1.

If n = dim V. this condition implies that the quadratic module I" belongs
to the category S, defined in n° 1.1 of chap. V. Conversely, if T €S, 18
positive definite, and if one puts ¥ = I' ® R, the pair (V, ) satisfies (1).

(ii) We have x.x = 0 (mod 2) for all x e I'.

This means that T is of type 11, in the sense of chap. V, n° 1.3.5, or else
that the diagonal terms e;.e; of the matrix A are even.

We have given in chap. V some examples of such lattices 1.

6.5. Theta functions

Ir? 'thlS section and the next one, we assume that the pair (V, I') satisfies
conditions (i) and (i1) of the preceding section. |

Let m be an integer =0, and denote by r-(m) the number of elements
x of I’ sz.lch' that x.x = 2m. It is easy to see that rp(m) 1s bounded by a
polyngmla] in m (a crude volume argument gives for instance re(m) =
O(m"?)). This shows that the series with integer coefficients
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oo

> re(m)g™ = L +re(l)g+. . .

m=0

converges for || < 1. Thus one can define a function 8. on the half plane H
by the formula

(97) 0r(z) = ZU re(m)q™ (where g = ez’”:).
We have:
(98) 0[-(3) = Z q(-"--"-'].r"z {2 Z ern':(.t..r}.

xel’ xel’

The function 6 1s called the theta function of the quadratic module . It is
holomorphic on H.

Theorem 8.—(a) The dimension n of V is divisible by 8.
(b) The function Or is a modular form of weight n/2.

Assertion (a) has already been proved (chap. V, n° 2.1, cor. 2 to th. 2).
We prove the identity

(99) Ir(—1/2) = (iz)"*0(2).

Since the two sides are analytic in z, it suffices to prove this formula when
= = it with t real >0. We have

O(it) = ¥ e ™D = @(1).

xel”

Similarly, 0-(—1/it) = O (¢t™'). Formula (99) results thus from (94), taking
Into account that v = 1l and I' = I,
Since n is divisible by 8, we can rewrite (99) 1n the form

(100) Or(—1/z) = 2""20.(2)

which shows that 6 is a modular form of weight n/2.

[We indicate briefly another proof of (a). Suppose that » is not divisible
by 8; replacing T, if necessary, by '@ ' or T@ T @ I' @ I', we may
juppose that » = 4 (mod 8). Formula (99) can then be written

Or(—1/2) = (=1)"42"26,(z) = —2"20,(2).

If we put w(z) = 0.(z)dz"'*, we see that the differential form w is transformed
INto —w by S:z+— —1/z. Since w is invariant by T:z+> z+ 1, we see that ST
transforms w into —w, which is absurd because (ST) = 1]

Corollary 1.—There exists a cusp form f of weight n/2 such that
(101) Or = Ex+fr where k = n/4.

This follows from the fact that Or(o0) = 1, hence that 8-—E, is a cusp
form.

Corollary 2.— We have re(m) = lk 03k 1(m)+O(m") where k = n/4.
k
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This follows from COT. 1, formula (34) and th.[d:

R k. —The ‘‘error term’” fr is In general not zZero. Houfcvlg-:r Siegel
mark.— _
has pi'oved that the weighted mean of the fr is zero. More precisely, let C,

i ism) | ifying (i) and (ii)
to isomorphism) of lattices 1' veriy
e (uger of the automorphism group of ' € C, (cf. chap. V,

and denote by gr the or
n° 2.3). One has: l
— . fr= 0
(102) FEZCH gi‘
or equivalently
L g = M,E whereM,,=zfl—.
(103) I‘;‘n ;; Sl n*~k rec, gr

Note that this is also equivalent to saying that the weighted mean of the 6 -

is an eigenfunction of the T'(n).
For a proof of formulas (102) and (103), see C. L. SIEGEL, Gesam. Abh.,

n° 20.

6.6. Examples

i) The case n = 8.
Every cusp form of weight n/2 = 4 is zero. Cor. 1 of th. 8 then shows

that 8- = E,, in other words:

(104) r(m) = 2400,(m) for all integers m = 1.

e—

This applies to the lattice I'g constructed in chap. V., n° 1.4.3 (note that this
lattice is the only element of Cyg).

i) The case n = 16.
For the same reason as above, we have:

(105) O = E, = 1+480 ) a,(m)g™.

m=1
Here one may take I' = I'y @ ['g or ' = T';¢ (with the notations of chap. V,
n° 1.4.3); even though these two lattices are not isomorphic, they have the
same theta function, i.e. they represent each integer the same number of
times.

Note that the function 6 attached to the lattice 'y @ I'g is the square of
the function 6 of I'g; we recover thus the identity:

o0

a0 2
(1+240 m; a3(m)q"') = 14480 ) o,(m)q™.

m=1

i11) The case n = 24.

:l'he space of modular forms of weight 12 is of dimension 2. It has for
basis the two functions:

E =1 455520 ¢

691 nlzll ull(m)q B



‘ 111
Theta functions

F=02n)"1?A =¢q [] —q™)** = Z: r(m)q™.
m=1 m=

The theta function associated with the lattice I' can thus be written

(106) 91“ s E6+CrF with CFEQ_
We have
(107) re(m) = 62;?) o (m)+crr(m) form = 1.

The coefficient ¢ is determined by putting m = 1:

65520
691

(108) Cr — rr(l)

Note that it 1s 0 since 65520/691 1s not an integer.

Examples.

a) The lattice I' constructed by J. LEecH (Canad. J. Math., 16, 1964) is such
that r~(1) = 0. Hence:

65520
or = — —2%32.57.13/69].
r 691 /691

b) For I' = I'y @ T'y @ I'g, we have r(1) = 3.240, hence:

432000
B = = 27133537691
C 691 (o
¢c) For I' =T',,, we have rr(l1) = 2.24.23, hence:
697344
Cr = = 2939
r 591 27/691.

6.7. Complements
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Abel lemma: VI.2.1.
approximation theorem: 111.2.1.

Bernoulli numbers: VII4.1.

character of an abelian group: VI.1.1.
characteristic (of a field): 1.1.1.
Chevalley theorem: 1.2.2.

contiguous basis: 1V.1.4.

cusp form: VIL.2.1.

degenerate (non. .. quadratic form): IV.1.2.

density of a set of prime numbers: Vi4d.l.
density, natural: VI.4.5.

Dirichlet series: VI.2.2.

Dirichlet theorem: 111.2.2, VI.4.1.
discriminant of a quadratic form: IV.1.1.
dual of an abelian group: VI.1.1.

Eisenstein series: VII.2.3.
elliptic curve: VIIL.2.2.

fundamental domain of the modular group:

VIIL.1.2.

Hasse-Minkowski theorem: 1V.3.2.
Hecke operators: VII.5.1., VII.5.3.
Hilbert symbol: III1.1.1.

invariants of a quadratic form: IV.2.1,

V.1.3.
1Isotropic vector and subspace: IV.1.3.

lattice: VIIL.2.2.
Legendre symbol: 1.3.2.
L function: VI.3.3.

Meyer’s theorem: 1V.3.2.
Minkowski-Siegel formula: V.2.3.
modular character: VI.1.3.
modular function and form: VIIL.2.1.
modular group: VIL.1.1.
multiplicative function: VI.3.1.

orthogonal direct sum: IV.1.2, V.1.2.

p-adic integer: I1.1.1.
p-adic number: II.1.3.
p-adic unit: I1.1.2.
Poisson formula: VIL.6.1.
primitive vector: 11.2.1.
product formula: T11.2.1.

quadratic form and module: IV.1.1.
quadratic reciprocity law: 1.3.3.

Ramanujan conjecture: VIL.5.6.3.
Ramanujan function: VII.4.5.
represented (element...by a quadratic

form): IV.1.6.

signature of a real quadratic form: IV.24.

theta function of a lattice: VIL.6.5.
type of a quadratic form: V.1.3.

weight of a modular function: VIIL.2.1.
Witt’s theorem: IV.1.5.

Zeta function: VI1.3.2.
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7 N, Q, R, C: set of integers, positive
’inte’gers (0 included), rationals, reals,

complexes.
{*- set of invertible elements of a ring A.
F,: field with g elements, Lokl

(.r): [ egendre symbol, 1.3.2, 11.3.3.
1
e(n), w(n): 1.3.2, i35

Z.,: ring of p-adic integers, 11.1.1.

r,: p-adic valuation, 11.1.2.

U = Z}: group of p-adic units, 11.1.2.

Q,: field of p-adic numbers, 11.1.3.

(a, b), (a, b),: Hilbert symbol, I1IIL.I.1,
111.2.1.

V=Pu{oo}: IlL.2.1, 1V.3.1.

@, @: orthogonal direct sum, IV.1.2,
V. 1.4

f~ g:1V.1.6.

fig, f—g:1V.1.6.

d(f): discriminant of a form f, [IV.2.1,
IV.3.1.

e( ), e,(f): local invariant of a form f,
IV.2.1, 1V.3.1.

S, 3.: V.1.1

d(E), r(E), o(E), 7(E): invariants of an
element of S, V.1.3.

I., I_, U, T's, I'sim: elements of S, V.1.4.
K(S): Grothendieck group of §, V.1.5.

G : dual group of a finite abelian group G,
VE XA,

G(m) = (Z/mZf)*: VI1.1.3.

P: set of prime numbers, VI.3.1.

{(s): Riemann zeta function, VI.3.2.

L(s, x): L-function relative to x, VI1.3.3.

G = SL.(Z)/{+ 1}: modular group, VII.1.1

H: upper half plane, VII.1.1.

D: fundamental domain of the modular
group, VII.1.2.

p = e27i[3: VII.1.2.

g = e?mz: VIL.2.1.

A set of lattices in C: VIIL.2.2.

Gk = 2), g, 23, A = g2—27g5: VIIL.23.

B, : Bernoulli numbers, VII.4.1.

E,.: VI1.4.2.

o (1): sum of k-th powers of divisors of n,
Vii.4.2.

r: Ramanujan function, VII1.4.5.

7T(n): Hecke operators, VII.5.1, VII.5.2.

rr(m): number of representations of 2m by
I', VIL.6.3.

f-: theta function of a lattice I', V11.6.5.



