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Abstract. In this paper we obtain explicit formulas for the values a¢ the center
of the critical strip of Dirichlet series connected with weight 2 parabolic forms of

the group I‘O(N) In particular, these formulas allow us to verify the Birch—Swinnerton-

Dyer conjecture on the order of a zero for uniformizable clliptic curves over certain

F-extensions. We also give applications to noncommutative reciprocity laws.

Introduction

Let X be an elliptic curve over the field Q, N its conductor, ‘@ a Neron differ-
ential, and L(X, s) the canonical Dirichlet series. Further, let x be the standard
modular curve over Q parametrized by the group I’ (H) Weil [16] cun]ectured that
there exists a morphism ¢ : X N~ over ( such rhat the differential ) (m) lifted
to the uppper halfplane H has the same Fourier coefficients as the Dirichlet series
L(X, s) (see the precise formulation in $5.2 of this paper). We call such a morphism
v a Weil uni formization of the curve X.

[n this paper we show that the existence of a Weil uniformization for the curve X
allows us to give explicic formulas for the values of L(X, 1), and also L(X ® K, 1),
for all possible abelian extensions K D (. These explicit formulas have the structure

predicted by the Birch—Swinnerton-Dyer conjectures. Comparison with Mazur’s theory

[10] of elliptic curves over [-extensions of Q also shows a good agreement with thﬁ
Birch—Swinnerton-Dyer conjecture. In particular, Mazur's "‘anomalous prime numbers’*

» 2l
-

appear in an analytic context.
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The general idea for obtaining explicit formulas for LIX®K, 1) consists in l'hﬁ: e
following, Let ®(z)dz be the preimage of @ on H, and let |0, i=| be the pl!llm .-"F'E
X (C) which is the image of the imaginaty semiaxis on H. From the Ela'ssumt n f,.‘""’?"-"

5V
representation for L(X, s), we find, after a suitable normalization of l{l, thlt ',T oL
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0 € H, i. e. of some parabolic point on AINE If the images of

have to integrate @ OVer some

s f the image of
| 4 Y, 1) we would
1) would be an integral

incided, then to comput¢ L.
o that the number L(X,

In general this is not the case,

~and ¢ cO
losed path in X(() (and even X(R)), s |
period of the differential . |
e which allows us to reduce to 1n-

d to do this in the case of

cultiple of the minimal real |
ess. we were able to find a cechnical devic
¥

Hecke operators are usc
extension K Q) we use the expansion of

reverthel
.':_-grntiﬂn over closed paths In X{L).

I'ﬂl.lﬂd fH.'h.f U, ill'H.i iH I'!‘I'L‘ Cilsg Uf 11 ;ll‘l{'!lilll I
| » . ! ‘ : o
1C SEfiES L{X@K S} "iln'.i[h I'ESP-E'CI'.' (g0 [h'!.' Chﬂ!‘ﬂ{:[t[h N Df thL (:'1111015 gruup dan Ci
J ] Ll

iecke-Weil lemma on Mellin tranforms of the series L (X, s). This device and the

aper, are presented In
onceptual center of the paper, they are presente

~ssulting formulas make up the ¢

§3-5.

The homology classes in the group H, (XN(C), Z) over which we must integrate |
J (@) to compute L(X @ K, s) are fundamental arithmetic invariants of the curves X
and X . Hence the paper begins by studying them:
‘he structure of the first homology group of a curve uniformized by any subgroup
the modular group, and in $2 we specialize this theorem to the case G = " (N).

8§86 and 7 contain applications of these results. Namely, S6 is devoted to com-

: : : : . . : b
saring them with the Birch—Swinnerton-Dyer conjecture. To make this comparison,

informaction about the rank of X(K) and the order of the Tate-

in §1 we prove a new theorem on

G of

wnust have independent
safarevi¢ group of the curve X@K. Mazur's theory [10], [11] (see also [9]) obtains

several results of this type, and they actually lend themselves to detailed comparison

vith our formulas.
In §7 we give new exact formulas for the coefficients of parabolic forms relative

to the group ru(N}, which call to mind the noncommutative reciprocity law or the
Eichler relations, where, however, we have an indefinite rather than a definite quater-
rion quadratic form.

Finally, $8 contains tables of arithmetic invariants and a discussion of them.

I am grateful to A. N, Andrianov, whose conversations with me stimulated some

new ideas for this paper,

I am also grateful to M. Z. Rozenfel'd, who computed vast tables of the functions
x* for the group [",(11) on the computer **System 4" of the Institute for Control Prob-

lems of the Academy of Sciences of the USSR, and to V. Drinfel’d, who composed similar
tables for the groups I' (N) with N = 14, 17, 19 and who kindly agreed to their publi-
tion in this article.

After completing this work, I learned that Professor Birch (England) has also ob-
-t ¥ d some results close to ours, and that Professor Mazur (USA) and Professor

3 ",~=."-I ton-Dyer (England) have independently examined the functions x*,

| S L Homology of modular curves
Gene . information. For the duration of the paper we use the following
] g ;ﬁ Climz > 01 is che upper halfplane; H = H U Q U (iee) is its com-
» with che usual topology;

is the group of automorphisms of I, which we identify with PL(2, Z) = SL(2, Z)/(%£1)
and whose elements are written as the corresponding matrices,

Let G C I be a subgroup of finite index. The topological space X (C) = G\H has
4 natural structure of a smooth compact complex space of topological dimension 2. By
d:H X -(C) we always designate the natural projection mapping.

Let i €EH, i ==1;p=e™/3 €H. Points in the set (i |J Tp) CX_(C) are
called elliptic points, and points in G(Q 1) (=) = S(I'(i <)) C X (C) are called para-
bolic points. The map ¢ is unramified outside these points. Both sets are finite.

1. 2. The classes |a, ﬁlG. Let @, 3 € H be two points such that éla) = ¢(B) €
X (C), or, equivalently, Ga = GfB. Then any path from a to 8 on H becomes a closed
path on XG(C) whose homology class depends only on @ and (8. This homology
class will always be denoted by the symbol la, ﬁ'G €H I(XG(C]. L).

More generally, integration allows us to associate a homology class with real co-
efficients to any pair of points a, 3 € H even if ¢(a) # &(B). We consider the differ-
entials of the first kind w € HO(XG(C). ('), Any class y € HI{XG(C). L) determines
a functional on the space of these differenuals: w v*Hf_f w. The group of such func-
tionals forms a lattice of maximal rank in the dual space of HD(KG(C}. 0'). Extending

this map by R-linearity, we obtain an R-isomorphism

H, (X (C), R) == Hom¢ (H°(X;(C), @Y, C).

Consequently for any two points i, [3 € Il the functional {.-_w-m—-ff t;':';(m) can be ident-
ified with a real first homology class, which we shall denote by la, ﬁlG in the general
case. Obviously, if ¢la) = @(f3) this notation coincides with the earlier notation. We
shall sometimes write {a, Bl instead of la, Bi. and ff'u'ﬂi @ instead of J’Ji ¢"‘ (w).
l. 3. First properties of the classes {a, Bl. Obviously, la, al=0, ia, Bl =
- 1B, al. The following properties are also obtained immediately from the definition:
a) la, Bl+ 1B, yt + 1y, al=0.
b) lga, gBl. = ta, Bl forall g €G.
c) If the genus of X (C) is nonzero, then la, Bl; € H,(X;(C), Z) if and only
if BE€ Ga or, equivalently, ¢ra) = &(f).
(Sufficiency follows from the definition, and necessity follows from the Abel-

Jacobi inversion theorem.)

The following fact requires a somewhat more detailed discussion.

I 4. Prupnﬁilinn. Let a€ H. The map

G—H,(Xs(C), Z) : g~ {a. gu}c | '- e

IS a surjective group homomorphism which does not depend on the cbﬂiﬂ-qu- be

kernel of this homomorphism is generated by the commutator, by the elliptic elemen
and by the parabolic elements of the group G. ' s .

. ey et T g =N ey L
= -’%‘ '----l"'J—_‘I."'!'l 3
s’ T b il [ W, -




g al is a homomorphism 1s easily obtained

£ mf. The fact that the map g ~—la,
y by applying 1.3 a) and b):

{a, gha} = {a, ga}+ (ga, gha) = {a, ga) + {a, ha).

" . - H . ¥ " | a "1 | lS
To prove the remaining assertions, we must use a direct geometric interpretation of thi

homomorphism.
We first suppose that Hla)
Let H? be the complement of i IV ] pin

che set of elliptic and parabolic points. The map
1y point

£ ?‘:r{fl} ‘o neither an elliptic nor a parabolic point,
)

I, and let .\'g;

s Y . .\'?_I(C) is an unramified

(C) be the complement of

' | ‘ ;. Consequently a 1 € M"Y determines a surjective
covering with Galois group G. Consequently ar

: ! 3 PR ) 3 X ir descrintion 1s as [ollows: suppose
humumurphlsm ?TI ".-"n. E‘;{[;}. ':._J’{.'.l}) + i, I[h Ll}"ll{.l[ EiLHLrI; L Pl

\L, ((.) starting at Alerl,

is pnfh has the form ga for a uniquely determined ¢

- p |:"]
! We life it o a path an /1 stare-
we are given a closed path on
! ‘ lement
ing at @. The endpoint of th

g € G. This element is what we assoc:

[t is clear from this description that the composite map

. S0
ate to the class of the urlgmul P.’i[h on A (‘,”'

1, (X2(C), ¢ (@) — G— H, (X6(C), Z)

(the second row takes g to \a, gal.) coincides with the canonical homorphism of the fun-

damental group of the surface .‘EE{C)
.YG{C). This immediately implies that the map is surjective and does not depend on the
choice of the point @. Further, the structure of the group 7,

we easily observe that the kernel of the homomorphism 7, - H  1s generated in 7,
nd the elliptic and parabolic points, which con-

into the homology group of the compactification

is well known; using this,

by the ¢ommutator and the circuits arou
tract in compactification. But the images of these circuits in G make up precisely the
. . . e . 0
elliptic and parabolic elements. This completes the discussion of the case a€ H,
_ . - ¥ o
Finally, let @ € I'(i, p, i=)and g € G. We choose a point @, €H 50 close to
o thar there exist open neighborhoods U, = (a, ag)y, Uy 2 (ga, 3'1&) in H such that

the union of their images &(U ) |J &U,) in X (C) is simply connected. We choose

a path from « to g& and one from &, to go, which coincide outside U [J U, .Since
their images on X G(C) coincide outside c;’J([.fl‘J U &l 2], it follows that the homology

classes of these paths are identical, so that {a, gﬂiﬁz h‘iﬂ, g2 ,i-. This completes

the proof, because all the required properties have been proved for the classes

iﬂ&‘%_??lc. IIMl.mq S\cm‘bnh x D

Distinguished classes, Ler ] = G\I" be the set of right cosets. We define
the map

§:J—H,(Xs(C), R)
as follows: if j € | and g is any representative of the class j, then

£0) = (2(0), g(i)}o. )

Obviously this class does not depend on the choice of the representative g (see 1.3 b))

We have thereby defined a finite family of homology classes &/ ); we shall call its
elements distinguished classes. We note that, in general, they are not integral,

~J

). '?‘Ll\

1. 6, l’mpu&lilinn. a) Any class in HI{XG{(:], L) can b

| ¢ represented as a sum of
distinguished classes.

In particular, the distinpuished classes
, : ) sses generate H (X _(C),
(s n n-.';fm-:':’. 1 G{ ) o

b) The representation of any class | o .
distinauished i;;’u S b! L;J:; :Ti u';‘:. ,; € fi.l{xf:((']' L) as a sum
_ 550 sen so that _mk{gﬁ{ﬁk} ~ dla,)) =

% :’rmuf CycC i'lf’ o .\: r-{. [ ) }-

<
"mklﬂk‘ )‘3&! of
0 (as a zero-dimen-

} ) Y R 5
, I runf: 1153,3 I mpumu-‘:}n .4, any class in HI(J{G(CJ, L) has the form 10, g(0)],
[ where p € G, If g(0) = i, then this class is distinguished and &(i =) - &(0) = 0

—

Otherwise, let g(0) = b/a be a rational number in lowest terms, a > 0. Also let b > O-

® = =N i ' il .1_— . - a . E ; ||l‘I " ' ;
the case 6 <0 1s treated similarly., We expand bla asa continied ractioniand coneidie

the successive convergents in lowest terms:
! ]

\ . \ =
- ) : " 4 o Pl
. =il w1 d y b ) )
Beooile U8 L Jowr Wby Py 4 ey D
“ (1 ":1‘_'4 ﬂr:—q i ' g i ! -‘J__l i ! S _‘_T J :
| ¥ 2 % = e ""'}5 -
| (the last two “‘fractions'' are” added formally). 1- J
.IJr : ! 1 ; -
? [t 1s well kﬁ{)“'n [1’13'[ bj-!.HJE— v b-‘:—lﬂk — {— I]k_ . SO [h.ﬂt_ r.’ ) \g N
\ , iy - 3
\ - bk (_1} bk-‘l i I H—‘ 3 1
'. By = =1. ] /
| ar  (—1)"a Yo 3 Sl
I -k R—1 J ~ ;
Hence the classes \
oy by | el L
, y —1 = {&k(0), g (ioc)) ) 1
Qp—y Gy , /
o o TR
) are distinguished. Finally, by 1.3 a), ’
[} n
b ~ [ Ok-1 O <
a a, a, ] —
k=—1 : h=—1
T'his representation obviously has the required properties, so the proof 1s finished. | |
. 7. Relations between thﬁlinguiﬁhuri classes. The group [ acts on the right on

the set of right cosets | = GI", In this group we consider the two special elements
§ &3 ((]J __l) and f'—-(: —1) g 2=!3=id.

0 0
The element 5 takes (0, 1 =) to (i =, 0) and successive application of ¢ takes
(0, i =) to (io, 1) and then to (1, 0). Using the definition of &j) (see (1)) and prop-

erty 1.3 a), we find two types of relations bef;weun distinguished classes:

w b)), ald) ' Qaqloy Aalell
'éf.r'r) 4%(!'5)!0, ’Lg 'é{f;\-“—jd- fﬂifﬂi;’fﬂ (3)
E(j) +&5(jt) +E(jt?) =0, &(j)=0, if j=jt (4)

(the second relation in each group follows because there is no torsion). We show that
in some sense this system of relations is complete. In order to formulate the result pre-
cisely, we introduce some new notation.
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) Algebraic formulation. We let € designate ‘he abelian group generated by
1. 8. a) Algebraic i A

he sy'mbﬂls (1) for all j € G\ 1, with the relations

' f =] (3")
(/) + (js) =0, (/) =0, if /=I5
t g € | belong to the class | €/,

he group C Gechains. Le
an the difference between the two

(e call the elements of t .
a b) By the boundary of the chain (f) we me
tf)(g{f o)) — :g}{g{u)) = Ga/c - Gb/d. | |
- rated by the set of parabolic points

it follows from (3") that the boundary

kernel by Z£; the

We consider this difference as

in element of the free abelian group gene
g\ U (i=)). Since s interchanges 0 and 1, ‘ 3
operator extends to the entire group C by linearity. We designate 1ts

elements of the kernel are called G-cycles.

lec B be the subgroup of C generated b .. 3 i
and by the clements (/) + (j¢) + (jt°) for the remaining [ ¢ casily
* are called G-boundaries.

defined in 1.5, extends to a homomorphism & :

Finall y elements (1) for all j € ] with
inally,

the condition | = J¢,

see that B C Z; the elen.ents of B

: - (C), )

The map (f.f;\I"-H,(.\b{ o LA .. nds | oegsm

C +H.(X-(C), R) because £() + £(js) = 0. Here £(Z) coincides with the integral

R A @

homology subgroup by Proposition 1.6 b), and £(B) = 0 by (4).

Thus we obtain a surjecuve homomorphism

. . ;
2/B—H,(X¢(C), Z). (5) \

The groups C, Z and B can be realized as the sub-

. : lation.
b) Geometric formu ), which we shall

groups of l-chains (l-cycles, l-boundaries) of some cell complex K(G

call a parabolic complex. Here is its description. ) |
O-cells are the elements of the set of parabolic points G\Q U i=). |
l-cells are in one-to-one correspondence with the set of orbits of the .gmup (id, s),

which acts on the right on G\I". Every such cell (j, js) joins two O-cells 1n the br.-:-undﬂr'_.'

(j) (or (js)): Ga/c and Gb/d, if {: ﬁ) belongs to the class . If thES:E U-cel‘l:. c:inn-

p. We choose the orientation arbitrarily.

cide, then the corresponding l-cell is a loo
jit. Then the 1-

2-cells are of two sorts: two-sided and triangular. Let JE ], ] =
cell corresponding to (7, js), as described above, is a loop: if g € [ belongs to the
class j, then Gg(0) = Ggt(0) = Gli=). We glue this loop by a 2-cell: we call such cells
two sided. | o o

Finally, let j € J, j # jt. Then the 1-simplices (7, js), (jt, jts) and (jt*, jt°s),

we glue it with a 2-cell; we call such 2-cells triangular.

form a triangle; -
cakes a G-chain (j) to

Ic is now clear that there exists a map C - CI(K(G)) which \
a K(G)-chain: ‘‘the simplex (j, js), oriented from Gb/d to Ga/c" (if (¢ 7) belongs

to the class ). We easily see that this map induces an isomorphism Z/B
H,(K(G), Z), which, together with (5), gives us a surjective map

H,(K(G), Z)— H,(Xq(C), Z).

——
—

(0)

- The following theorem is the fundamental result of this section. It gives a repre-
T of the group HI(HG{ﬁ), 7) by generators and relations which is conventent

n and is functorial in G.

Whine

iy . | |
LY Theorem, Tie L[ (9) and (GY ary ISsomariitsms.

L L} . i . . . ’ - . i § ) ¥ & :
Proal. We construct a complex L of the space X “{L] and represent H ,lf.".G{{:), L)
- ;

A5 the factor proup /rlff...].-" 5 lrl'_.j of the 1-1.',':.'{_‘1!'.*.‘: C‘f [. 1.[.1'] lhf.‘ 1'!’.Jljund:1;i55_

We then tmbed the group 7 in Z ,;I'l’. ) in such a way that =z mod B 1”__} = £(z) for
all =z € 72,

Finally, we show that the boundary of any 2-cell of the complex L belongs to Z
proup 13 of the form (p) (for ) = 1) or (1) + (41) « f'jr."?}.

Obviously all these resules and the surjectivity of £ give us the tsomorphism
FAVN | et /f]l'f_ }/HIU,] = Hl{."{ﬂ([ll, L), which we are trying to establish.

We realize this program in several steps,
a) Ureparation for constructing the complex L, Let 2, {3 € H be two points. We

g LR "IJ--uI-. & & LT ga PR TN Fe MR e P }is ! -
let 03 4 {: de W pnate the epment joining them along the chait‘-ic oriented from @ Lo
3. (We recall that the geodesics are semicircles and lines orthogonal to the real axis.)

The triangles, quadrilaterals, etc, which we refer to will be the figures on H
formed by peodesic segments joming the vertices of these figures, and also their
deimages Xt

images on N (L),
| ot i . . - . . .
We lee £ designate the intenior of the wriangle with vertices (0, 1, 1 =), and we
o f . N L " - #
let £ designate the union of the interior of the quad-

rilateral with vertices (i, p, 1 + 1, 1~) and the side

<i, p>, except for the vertex 1. Each of the quadrn-
laterals £, tE' and (E 1s a fundamental region for
the entire group I. In addition, all the 1-simplices in
Fipure 1—the half-sides and half-medians of the tri-
angle E"—imbed homomorphically into X (C). (These
are both classical assertions.)

b) Description of L.

O-cells. These are all the parabolic points and all the

i-elliptic points on X (C), the images of the vemices

and the midpoints of the sides of the triangles gE",
g € [.
l-cells. These are the images of the half-sides of

the triangles gE", g € I, oriented "'from the vertex to

che midpoint,”’ i. e. from the parabolic point to the i-

elliptic point.
It is convenient to introduce a family of l-cells indexed by the classes j € G\I'

by setting

21(j) = image (g (io0), g(i))in X¢(C) (7)

for any representative g € I of the class . 5
Since I is transitive on half-sides, it follows that any l-cell has the form ,(j)
| for some j € ]. On the other hand, the stationary subgroup of i in I' is equalto




N N VRN R

Ju. L MANIN

ble for k, j €] if k= or k = js; otherwise

. . ) =e.(k) is only possi :
i suence EI{I} . Moreover, for | # |5 we have e l(f) F l"‘1(‘”;»}'

} ifferent endpoints. i

: :’:(:) ‘nd EQFU o :lff es Df[:ht‘ classical fundamental region (- p, i, p) and
act, in this case (he IMages o

disjoint.

o-sided and triangular.

lasses j € ) for which jt = J: by defin-

its s-translation on .\’G(E) are
2-cells. They are of two types: (¥
The two-sided e.(j) are indexed by the ¢
ition, the cell e; (j) is H(gE' ), where g € 1 wep! |
/), and the half-median g<p, {> becomes

) We orient ¢. (;) in the usual way. Then

is any representative of the class J. (The

' : a cut from the cen-
interior of E maps to 1‘2(

ter to the boundary of this cell.
des () = ey (j) — v (fs). (8)
{E;(;' ™), 3{:}‘:} and ‘lg(l 4 1), g(f ca)>,

In face, 3&*2' () consists of the images of the paths

where g is a representative of J. According to (7), the first of them is e,(/), while the

II ! ! of
/ second is equal to the image

et (1 + i), gt (i =)> = <g 1), g(0)) = <gs(i), gs(i =),

i. e. —e,(js). Obviously e, () # ey (k), if | # k. o
The family of triangles E;(;') is indexed by the classes j€ ] for which jt 7 .

By definition, the cell e, (j) is @(gE “), where g € T is any representative of the -,.

class j. (This is the c:l[: E'=E'" | " U (’E' and all the classes J, jt and jt°

- B L] i - L] . g c . . ‘.'c
are distinct.) In the usual orientation induced by the complex structure, we ha

L5

des (j) = 3! (e (jt") — ey (j1°5)) (9)

a=o

(this follows from the analogous formula for the boundary of E* on H, which the read-

er can easily verify). Obviously e, (j) = e, (k) < | = kt?® for some a.

We easily see that L is a complex of the space XG(C}.
¢) Conclusion of the proof of Theorem 1.9, Following the plan announced at the

beginning of the proof, we construct the groups CyyZ, and B, of l-chains, l-cycles,
and l-boundaries of the complex L, and we define the imbedding C » C, as follows:
the G-chain (j) corresponds to the L-chain e 1(;’5} - 1{;‘). We easily see that this de-
finition is correct and commutes with the boundary homomorphism (the group of linear
combinations of parabolic points is naturally imbedded in the group of O-chains of L).
We show that the kernel of this homomorphism C - C is trivial. We consider a
nonzero G-chain Eﬂj(ﬂ- Using the relations (j) + (js) = 0 and (j) = 0 for ; = s, we

may assume this expression normalized so that nn. = 0 for all j. This G-chain cor-

S
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L

by (7), where g € | is any representative of the class ;. It hence follows by linearity
that = mod 13 I“‘} rf{..] for all = € 7,

Finally, it is clear from (8) and (9) that all the generators of BlfL]—th: boundaries

of 2-cells—belong to B C 7 and have the form - () for ; = jt and - (j) = (je) - (;’,?}
for 7 Jt. Hence Z [ HI“*J = B.

This completes the proof of the theorem.

Remarks, a) The parabolic complex K(G) constructed in 1.8 b) has the same 1-
homology as L, but is more economic than L of the O-cells of L only the parabolic
points arc left, since a pair of l-cells of L. with a common t-elliptic vertex corresponds
to a single l-cell in K(G),

b) The construction of the G-complex in 1.8 a) is formally applicable to any sub-
group G CI', for example to the unit subgroup. Taking into account the possible inter-
est in studying the limits lim H (X _(C)) and lim H 1 (X (C)) over systems of subgroups
(G:} C 1, we mention the following algebraic situation: in the case G = lel, the system
of equations (3) admits an explicit parametric solution. In order to construct it, we re-
call that I' is the free product of its subgroups Z, and Z,, which are generated by
s and t, respectively. Consequently any element of I can be uniquely represented
as a word es Er'*]Jt‘ﬁ’:}---5'1"'.'!’{5"'7, where . = 0 or 1 and ﬁr = 0, 1 or 2; in addition,
1 and ‘B‘

By t-words we mean the word f:fz, and also all words with ,B" = 1; by t4-words

can only be zero at the ends of a word.

: ) ;

we mean all words with 3 = 2, except for et”; by s-words we mean all words with

[ =0and a_ = l.
r rn

where m > 0 and g is a f-word. Every s-word, except for es, can be uniquely repre-

Every t*-word can be uniquely represented in the form g(st?)™,

sented in the form 3(512)"’5, where m > 0 and g 1s a t-word.
We introduce a family of independent variables U(g) indexed bv all -words g of

the group [

1. 10. Proposition. The infinite system of equations (3) in the unknouns &lg),

g € [, has the following general solution:

E(e)=—U()-=U(1?), E(s)=U(t)+U(#),

S(s82) =—U()—U () —U(st), &(h)=U(h),
ni—1 ‘ .
E(h(s)") = 3 (—1)"7'U (h (st st) + (— 1)U (h),

 (h(st?)"s) = — E(h(st?)")

for any t-word b.
e

/’ Proof. The relations &lgs) = - &g) and nf(,g.rz) = - &lgt) — £g) allow us inductively
o express all the & indexed by s-words and t?-words in terms of the & indexed by £
-words. It can be immediately verified that &g) can be chosen independently for all

the t-words g, and that the above formulas are obtained as a result of induction. R
&), because the chain e (js) - e,(j) belongs to the homology class 1g(0), gli «)] - B i

responds to the L-chain Eﬂj(el(;’s) - eliﬂ). If n, # 0, then j # js, and hence, as
noted above, ¢,(j) £ e,(js). In addition, if ning # 0, then j # k, ks, so that all the
~ simplices el(f}, el(js), elﬂz} and el(ks) are distince. It hence follows that
i ' Inr.(ulijﬂ - e, () £ 0.
We now assume that Z C Z, using the above imbedding. Then (j) mod B (L) =



o a nontrivial subgroup G C 1 naturally imposes ndditional relutiots:nl

| (Passing t
he parameters Ug).)

§-2. The curves .‘\'H

ork with the subgroups G C1 of the form

G = [(N) = {(f j)El‘}cE UmodN}

2.1 From now on, we shall w

§1, but we write XH(C]. la, fﬂH etc. instead

For the most part we keep the notation of ‘ '
| or require slight modi-

; e trivia
(C), la, ﬁ'lrﬂw}. Some of the results becom

of X ; ‘
Fog(N) genus XN(C} = 0; we usually exclude this case without ex-

fications in the case when

plicit mention.

The basic purpose of
the groups ru(N} and "‘explicitly’ |
begin by describing the special properties of the Riemann surfaces

chis section is to specialize the resules of §1 to the case of

' compute the groups HI(?{H(C}, ). However, we
?‘:N(C} which we

need later. o ’
is the existence of a special smooth projective curve A g

The principal property 1 . 1 .
defined over Q for which the space Ay (C) = FG(N} \H is canonically identified with

the set of C-points of X, (also X ((C) in the traditional notation).

" . : - X \
We enumerate some features of the Q-structure and the induced R-structure on XA .

Let j: H -+ C be the classical modular ifnrariﬂm; this is a holomorphic function
on H; we define jy by the condition Jn(2) =3EN:). Lec Q(;, 1) be the field of ration-
al functions generated by j and j,. It has transcendence degree 1, and ) is alge-
braically closed in it. The curve N, is a smooth projective model of this field.

We further set ‘FH = Spec Ql}, ".N]; this is an affine mucjel of the field. The map
H =Y (C) s 2z = (j(z), i(Nz)) extends to a map ¢ : [ - .k’H(f-) which, in turn, induces
an isomorphism l"u(.ﬂ')\.ﬁ;h‘f”(l:). F

Let /€ C(j, j,) be arational function on X ® C. Its lifting ¢ (/) to
H expands in aFourier series Eaﬂez"f"z with a finite number of coefficients a  # 0
for » < 0, This function is defined over Q, i. e. it belongs to QG, In), if and only if

a € Q for all n. Analogously, the differential on X, ® C with Fourier expansion on

H

}: Dae2aibi- g (g2mid) = 2o ) be 1 dez

| udcfmu'l over U if and only if b €Q forall n. .
- The local ring of the point &li =) consists of all functions with Fourier cocfficients
15 o= 0 for n <0, so that, algebraically, e*”'% is a preferred formal parameter of this

'1 Q-sceucture. 1o particular, (ol =) = fﬁ*(ﬂi <)) = a,. Hence the values at
_ @li o) of all functions defined over () belong to ). This means that

PmIE Xy (0).

. Themap 2o 1/N: belongs to the normalizer of the group 1 (V), and hence

S

._\

|

/

, We easily see that this involution interchanges ;
and j,, and thus comes from the canonical involution of the curve X, over 0 This" 5
volution takes (i =) to #(0); hence also #(0) € X Q). ; ' m.

The parabolic points on X, (C) other than ?n(0) and ¢, (1 =) do not necessaril
belong to X, (Q) (or even Ny (R)). ’

In fact, complex conjupation acts ‘ - :

———

induces an involution on l'ﬂ(N}\H.

bar, we have

# +
- ]
- 1 . e
; -— & — :

In other words, reflection of H relative to the imaginary axis becomes complex

conjugation on XN(C}- This follows from the formula e?71% = ¢~ 2Wiz

iz

and from the fact
, as an analytic local parameter, is defined over R. Hence to construct a non-
real parabolic point it suffices to find a rational number a€ Q such that - af€ ' (N)a
Such numbers always exist if N is divisi ﬂ |
ys exist if N is divisible b ' > '
y the square of a prime number > 3, as is

clear from the classical description given below of parabolic points.

Parabolic points, The parabolic points of X, (C) are in one-to-one correspondence
with the classes FD(N]‘\Q J (). In order to describe them we introduce the set THN),
which consists of pairs of the form [8; a mod (8, :E'_Sn" ")). Here & runs through all posi-
tive divisors of N, and the second coordinate of the r:[;air runs through any invertible
class of residues modulo the greatest common divisor of & and N&~ !, [f (8, N6~1) =1

we someumes put simply 1 in place of the second coordinate.

2. Prn[mhi[iun. [.ot :'-i")‘i."'a’. s € L (e, v8) = (v, NE)- 1! -
toe) o LIN) of the form

l. The map QU

i e [0, ({Ly I-”{:I"-I (a: "Véhl.)]l

L

(o~ |N; 1]

gives an !:?::.:.r,r.'{}rpf;.{'sm of the set of parabolic points on '\:N with TN ).
- —

L

Proof. The substitution

i 1 N
(N N _--JJfI”(NJ

takes 1o into (), so that it suffices to examine the action of rn(f‘v’) on (). The sub-

stitution (¢ 2)

Ne d takes

0T, au -~ buvd
— 0 — .
Ncu +4- dvd

This fraction is irreducible, and & = (Ncu + dvd, N), because (dv, N6~ 1) = 1. Finally,

(@it - bud)(NO™ "cut - dv) = aduv = uvmod (8, N3,
__ R
because ad ~Nbc =1 = ad = | mod (6, NO ~ ]). Cunscqucntly every clgﬁ# [ﬁwm&' .

(et [ =
--"--.

corresponds to the same element in 1I(N). The induced map [ ﬂ(N )\QU (i 2¢) &:ﬂfw}"ﬁ' '

-

is obviously surjective; the fractions /8, (v, 8) = 1, cover all pairs with first coordi
nate 0. Finally, this map can either be checked to be injective directly, or else we




. ju‘ l. MANIN

ro . Y

. .
| - | . of L'lﬂml.'.'n[.':
dr p& to thﬂ‘ fﬂCE that bﬂth sets consist ﬂf the same nI.IIT!IDI:‘I'
rer

2 . osition is proved. | |
g s i T'hc o of the point u/6 in FU(N) is generated by the
_—Remark. The stationary subgroup
Jement |

| e 6  —u
(: :) LU :)[_ﬁ T J'

= N&—1/(6, N6~') and ud’ =y 0=l

ynete: @ he set Pi(Z/(N)), "‘the pruif.‘r:tiw:- line over

2. 3. The sel I‘ﬂ(ﬁ.-'}\*r‘. We define t

" e ogeneous coordinates. , : I
Z/N) u:ﬂs p— ::'H d d'mf be two residue classes mod N which are repre
= d mod | :

AP
aies (¢ . d) and
: : " We call two such pairs (¢, ¢
- e integers ‘
sented by the relative prim . ; /{N)) such that
~ '}-") equivalent if there exists an in o
3 . & W - g Jlr [l:--l
(uc. W) IR ¢ h. We designate the equivalence class of the p

as 5 PYHZAN
hol tc"'?t By definition, the set of these classes is P '{Z (N)
Y(Z/(N)) by the formula

c and d.

u 1 ‘ 2 S 'II &, {,ZJ
El-ll- I b}f [hﬂ' ..; :'lrm

The group [ acts on the cight on P

-

3 (a6 2F): (be ).

- - - L irix (¢ 2
which assoctates tne malrix \ g

2. 4. Proposition. The map M - PYHZ/(N)),

N | s an isomorphism of
is constant on the cosets [ (N)g and induce p

to the point ¢ : d
right ['-sets

Lo (NN = PHZ/N)).

e —

Proof. We immediately verify that the map

)" (r; g') w ' d

. is constant on right cosets and commutes with the action of |'. In addition, the group
(NI and P'{Z/(N)), the unit class goes to the

r"{.’-

‘T acts transitively on both sets ',

a Iy . 1 r WAL pl " ] Ll
point (0 : 1), and the stationary subgroups of these two eleme

[",(N). This completes the proof. o ju|
| From now on, we shall often identify l“'D{N)\I* with PHZ/(N)) by means of the

above isomorphism. We translate the structures in §1 connected with ["U(N)\r‘ to the
~ language of PLUZ/(N)). See 1.5 for the definition of the map &: we recall that

s-_-(ll? —é) me r==(1l “E])
ﬁ

- 2.5. Comollary. a) The function &: PUZ/NY) - H (X (C), R) bas the form

=154},

nts coincide: they equal

- (10)

—
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31
where a, b, ¢, dare any integers with the conditions ad - be - l, F=¢ mod N
d = d mod N (by definition, a/0 = ! oa),
b) The action of the elements s and t on PYZ/(N)) is described by the formulas
(c:d)s = —d:c, (E:H)t:(?—&):q&. (11

c) Complex conjugation (see the end of 2.1) acts on the

~nNe fffof?lgm's.{wd clusses
fe 2 d) by the [formulas

E(c:d)=—E(d:c).
— (12)
—~ All these facts are verified directly from the definitions.

]'Tﬁ 1.8 we define the "'boundary’’ of any element in 1"0{.-'“-"1“* [": this is an element

of the free abelian group generated by the parabolic points of N (C). Identifying the

set of parabolic points with II(N) as in 2.2, we describe the boundary map:

) . ; ¥ i T o
2.6. Corollary. The boundary of the “'simplex’ ¢ : d equals

8y - d ™ mod (d,, N{’)‘,"J] - [,;_‘,-___; — - ﬁimud{hz, Nb?l}| ,

V1

J(c:d) _—

where 8, = (c, N), 8, = (d, N).

--‘.

Prool. It is clear from (10) and the definition of the boundary that the boundary is

 cqual to the difference between the classes [',(N)a/c and FG(I\r)b;'g_ By Proposition

) 2.2, the point a/c corresponds to the pair [31; H(C/SI] mod (31, :'\"51_1}], and

\ad - be = 1, so that ad = 1 mod (& NoT " and @ =d~'. The second pair is computed

ttnnlngnusly, and this proves the corollary.

——
2.7. Theorem. a) Construct the maximal torsion-free abelian group generated

e ¥

e v
hy the symbols (¢ : d), one for cach point ¢ :d € PYZ/N)), with the relations

e

[:Lf}-i"(—-d% "):I::I1I (14)

[:':J]+{{E——J) :E')+(——-c?: (E—E))=O. (15)
Further, let HN) designate the subgroup in it which is the kernel of the boundury

~ o
rennomorphsim (13). Then the map E:lc :d)»b/d, a/cl

! um.'.'urp hism

e 4s in (10), induces an

E: H(N)= Hy (X2 (C), Z).

1 b) Let




nts of the rational number b/a > 0. Then

{H -

0, L1 = 5 3= D" ek an),

be the successive converge

(16)

' (1: 1] and [p; 1] in the notation of 2.2. The points of I’I(Z/(ﬂ]] ?:I‘.’f.‘ thL:hl'urJ:l'l
points 1; :

! ! : : - ()
1 or 1:0. The simplex in K(I'j(N)) corresponding to the pair 0 :1 and 1 : h
¢ 2 : 0. ‘ N i
oins [1: 1] and [p; 1); all the other simplices of the parabolic complex are Igf}pluh:c
joins L1; ;15 e

bepin and end at [1; 1]. Hence, introducing the affine coordinate system ¢ :Cl :y:.
?83 -, in PUZ/(p)), we find that the map &: Z/(p) [ (o) - Hl(,\p( ), 1),

whose definition is provisionally completed by the conditions £(0) =¢() =0, is the

universal function satisfying the funcuonal equations:

(17)

(Universality holds in the class of such functions with values in torsion-free abelian
S
c

groups.) We note that E(c) = 10, 1/c} by (10) if ¢ # 0.

$3. Arguments of parabolic points

; : : s ' inte ; in the case
In this section we give explicit expressions for the integrals _ﬁﬂ 3] @
when the class la, Bl is not necessarily integral. To formulate and prove our results,
: . P —
we need some elementary facts about Hecke operators. We give them in the limited ¢

text in which we need them.
3. 1. Hecke operators and parabolic forms. Let a, b, c,d € R, ad - bc > 0. For

any function © on H we set

(g by, o az-{-h)d (ﬂz-f-_b)_ "
lhlkc dJ(Z)_lI (cz—i—d dz \cz-i-d i

action extends by linearity to the entire group ring:

;- O|(Fog) =3 av|e.
ffwhﬂnwmg special elements of this ring are called Hecke operators:

..... i
. |'. .

a; E':__C, Bt &= PL.

(‘mg“ :';'), meZ, m>0.

re A-‘

(18)

-y
O
X

g -
#

,
™

i
A

2.2. Hence {0, b/d} € K (X (C), Z), so that the right side of (20)
linear combinations of the tundamental periods of the differential @ - vith respect |
some integral homology basis. The coefficients of these linear combinations ar

They satisfy the following rel
oL

Fri Fl

ations on the space of functions on / with period 1.

and T;, r = T + pT

Let G C17 be a subgroup of finite index.

bolic form if there exists a differential of ¢
]

that ¢ () = D(z)dz, where bl

mn for (m, n) =1,

A functon D(z) on H s called a G-para-
1e first kind w on the surface NG(C] such

- XG(C] 1s the canonical projection. |
3.2

Py into itself,

I’rupuail‘.inn. I/ (m, N) =1 then

'.-"m takes the space of Iﬁﬁfr‘u']-pf:rfzbﬂh': [orms

Thus the ober: s 1T o N = i
F'hus the operators UM[ (m, N) = 1] generate a commutative operator alegbra on the

. - . : . ® ] ]
space of | n(N)-;a;tmbui:c forms F.‘*-’ . They are Hermitian relative to the Peterson scalar

product. It is also worthwhile to keep in mind that the Q-subspace r,:‘r: {HU{\’..;, (1)) is

invariant relative to T

m this 1s clear either

from the direct description of the action of
fm on the Fourier coefficients (Atkin and Lehner (1], formula (3.1)), or else from the
invariant definition of T 51 ' g de * e e N

f m USIng correspondences on }‘H ,-: 'k.‘-."

In particular, P has
1 basis of cigenfunctions for the Hecke alge

bra all of whose Fourier coefficients are
algebraic.
The theory of Hecke operators with indices not prime to N is more complicated.

We shall only indicate the operators U, p prime:

Up = ﬂgf ! b) "Tﬂ““(g ?) (19)

b=

In the article by Atkin and Lehner [1] it is shown that U;, (P\,} CPy if p|N, and thar

the UP commute with all the T'm, p A m.
We shall henceforth assume N fixed;

i a, ﬁfH denotes the element 1n H[(.\"H(C), R),
defined in 1.2,

[n addition to the general properties of the classes {a, Bl we note that
R m, 3 + ”|N = tﬂ-’-; B!N forall m, n € 7.

ment ({1} 7)) belongs to PU(N]

| m . . .
., G T)al is ¢qual to zero as the image of a parabolic element under the homomor-
phism I-‘H(N] - HIL\"N(C), /)

This follows because the parabolic ele-

if we use Proposition 1. 4: the class la, a +m IH =

3.3. Theorem. Let the lr'ﬂ(h')-purru'mhc form ¢ = tﬁ*(M)a’d’-’! be an eigenfunction

for the ll¢cke operator Tm, (m, N) =1 - ¢ | r = c, ®. Then
) I oo . .:- L
(E d — C.-n) J' q}dz e E J (UR cm : d"f.'
d/mn 0 i df.mdl“':— N :;"‘5{"
4 . '1 "-‘.T.I‘- e
Comment. Since (m, N) = I, we have b/d € FG(N)(U) for all d[m hy e

oy

‘_: ll-.
f'.._, L$ i:fr "

¥ -

Puted using the theory in $%1 and 2 (see, in particular, formula (16)).

o T
o Unla i

L] -

- - ..* ﬁ

i Rt
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% ' 0 for sufficiently large m by the well-known growth estimates for the

coefficients of parabolic forms.

Thus we mayv assume that the exXpressio Pt
0) under the Abel-Jacobi map of the curve X (€

‘s of differentials of the first kind for which the correspond-

as (20) give us an explicit form for the
) (with origin

arguments of the point &l

& (i =)) relative to the bas
ing parabolic forms are eigenfunctions for |

Another point of view on formulas (20) emerges il

! T Ddz £ 20) and (16) give expressions
fix ®. Then, under the assumpuon J, GOd= + 0, (20) an {f | P P, .
' d in terms of the expansion 1n con-

of the operators T on i P
< d-1.

™,
-

[hr." Ht:r:kt.' np::r.uurs.

we consider m variable and

) _ .
for the eigenvalues ¢

rinued fractions of all numbers of the form by d, dim
ew lead to interesting number-theoretic results,

. N < £

—

Both points of vi which we shall
ot

examine in greater derail below in §§6 and
—~3.4. Proof of Theorem 3.3. For any element g € PL(

—

2 R) and function  on

s i

H we have
e £(7)

‘(ﬂJ]g)dz = |'IIJ(gz]d (g2) = | (D(z)dz.

!i.'ii Q)

'nt._—l—"— 1"-‘

ormulas for the action of the Hecke operators (18):

Using this, we obtain the ft}llﬂwing f _ I
i & o S - W r{ + |ﬁ
{] d—1 ;‘_5'3-_ d ( J’é} T)(ﬁ 1|.-_:" -,:‘ /f
; Yz =S % " ®dz. 2 o) 4D
joirae=33" | @ ,‘
“ e ) gt b
We susbritute @ = 0, B =1 here and use the fact that O} T = c!rlt;:!___.:i N |
fe d—1 /0 i’.g:: ' |
CmJ'LDd-Z:Z E \'T‘ fud.?,
0 d/m b= {L U
i x_-:i’ / r
so that L :
b 1
f oo d—-ln: ; |
{Zd—cn.)\@&:ZZj‘I’df: 2 oo |
dfm 0 d/m b=0y djm [ b |
bmod d u'd

as was to be proved.
"~ More generally, this same device of ‘‘closing the path of integration”’ allows us

to compute the arguments of any parabolic point.

3. 5. Theorem. Under the conditions of Theorem 3.3, let a € ). Then

i -
(Be-c)for-3 | w
d/m @ djm . §

!:modd‘“'ﬁ'i“""ﬁ'lﬁ

;Pumry N there exist infinitely many values of m, (m, N) =1, such that
- la, ma/d® + 5/13"!5,6 HI(XN(C)I L) for all b. llence if ® is an eigenfunction for

hl_— .

the inclusion la/d?® « b/d € " (N) o
L/ T

5 L
Proposition 2. 2, we conclude that we must verify that
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. b

all the Hecke operators Tm, (m, N) =1, then m can be chosen so that

- . the right sid
(22) c:nruams the periods of w over integral homology classes e

Proofl. (22) follows immediately from (21), as in the previous theo

To prove the second assertion, we set = ¥ L
(i, N6~ ') = I, and take
| mod (5, N6~ 1),

According to 1. 3 ¢), integrality of the class Vo, la/d? .

o z S ""lll e
u/vé, where OIN and (u, vd) =

for m any prime number ! with the conditions | TN and / =

b/d{ is equivalent to
Taking into account that 4 - ! or | and using

in the irreducible re !
‘ . resentation
of any of the fractions i

lomlt g b _uime
0l [ S [

:'Lc product (numerator) x (denominator) &~

r‘

ust consider separately the cases when this fraction is reducible (then the greatest

Is congruent to uv mod (5, N6~ ). We
ommon divisor of the numerator and denominator equals /) and when it is irreducible
[n both cases the required congruence follows from / =1 mod (8, N6~ 1)

We note chat all / ¥ N are suitable for square-free N, and thatall / =] mod N

The theorem is proved.

e

It E’h{:ﬂ follows from (21) and (22) that the corresponding arguments of all the parabolic
points of XN(C) are rational linear combinations of the fundamental periods. Here is

the algebraic-geometric formulation of this fact:

3. b CDI‘{}”Hr}'. Let o XN
v ox, Q)

« basis of eigenvectors for T
m

-+ X be a morphism of curves over D, and let the space
be invaria : : " '

variant relative to the Hecke operators T | (m, N) =1, and bave
with rational eigenvalues at least for some sufficiently
large m. The a ' ‘ g ' |
; ge m. Then for any two parabolic points x,y € X (C) the divisor class ¢lx) -
Uly) on X ® C has finite order. (1)

3. 7. Special case. Let ¢ : X o
X over (). We call this morphism a Weil uniformization for X (in the weak sense) if
/ : : :
U © ¢(ix) is zero on X, and the one-dimensional subspace (¢ © @) *HO(.\", QY is

invariant relative to the npcr{_aﬁmr's Tm, (m, N) = 1, with rational eigenvalues.

-+ X be a morphism of Xy onto an elliptic curve

The following ass_:rtiﬁ'ﬁs are easily deduced from the above:

a) Jff the curve X has a weak uniformization  ; Xy = X, then there exists another
weak uniformization for which the images of all the parabolic points coineide with zero
on X,

In facr, it suffices to take the composition of ¥ with the multiplication X e

for suitable » and then use 3. 6.

(1) Added in proof .. V. Drinfel'd has shown me that Theorem 3. 5 casily implies that s ;

classes even have finite order on XH.



zation. let @ be a differential of the [irst
H. Further, let y* he a generator of
ation) classes in f‘f](.":N(C), =)

b) Let Yy: Xy - X be a weak uniformi

X. and let ®(z)dz be 1S preimage on
relative to conjug |
aximal period of a point of [inite order in X (). Then

kind on .
the subgroup of real (invariant
w' o= f},+ w, and let t be the m

| oo

Ym&:$wtsel (2%

In fact,
th“ *Dl{{.llm]
| ®dz= | o
S W op(o)

The second integral is taken over the image of the imaginary axis, which lies entirely

in X(R) and joins the point of finite order ¥ © $(0) € X(Q) with zero U oo plim) €

\((Q)). This implies the assertion.
3.8. Finally, we give a somewhat strengthened result from the second chapter of

[9]. where the device of closing the path w
context. Here we are not required to apply the Hecke operators, but, on the other h

the integrand contains parabolic forms of a special type arising in the Hecke-Weil theory
and in the study of zeta-functions of modular curves over abelian extensions of the

field Q.

Suppose that @ = Ea”ezﬂ""" is a parabolic form relative to I“D(N), m>1,m€E

as first introduced in a somewhat different
and,

Z:let x¥:Z - C be anrimitive Dirichlet character mod m. We set

b -

208 — |

g(X) = 2 L(b)e ™ (Gaussin sum)and @, = E X (1) aner™ine;
b mod m

n=1]
finally, let Ddz = ¢ ().
3.9. Theorem., Let 8= (m. N), and let (5, N6~ ') =1. Then

),
-2

'

oo

\1 M, dz = 5-%’- > %(b)
> bmodm (24)
v

ﬂli""

and |~ blm, 1/81 € H (X (C), Z) for all bmod m, x(b) # 0.
1 Prool. In fact, by a well-known lemma (see Weil [16], Ogg [12] or Manin [9)),

= 8% ¥ Y _pho (a‘f +;E-)-

L b mod m

i &
2 0 | owd=L2 5 74 | 0@
o e el . n

-
.......

e ——— g Wy T —— g, m—

for any a € E ccause 2 47 . o2
4 , because l'.’,‘:rn.::-dw-; x(b) = 0 since the character X 1s primitive.

In particular, if (6, N67 1) = I, then for any b with )_({b) 0, i.e (b,m)=1 wt-
) ~ T e o l - - ' o
have b/m € | o (NG~ by Proposition 2. 2. Hence 1b/m, 1/6 iHE. Ht(}(N(c) 1), which
. ? 1

explains the choice a = 1/8. The theorem s proved

In [9] we examine the case 6 = |,

§-1. L-series at the center of the critical strip

4.1.1_. a differenti ) !
¢t @ be a differential of the first kind on XH @ C. As above, we set

| I g . : i '
b ¢y (w)/dz = - 2m 2a e "I"% and define the Dirichlet series L by the formula
fad

Ly(S) = E a,n=—>*,

e

(25)

[t 1s w ') has ! ! !
ell known that L (5) has an analytic continuation onto the entjre plane given

by the formula

oo

L,(s) —= i (2a)° D (i -
(s) e \ Dy (iy) y=—dy

and, in particular,

Lo(1)= | Dy (2)dz = ® (26)

j
i F I
,:f.,'."l;i:._“,

(see, for example, Manin (9] Lemma 9. 2).

This allows us to interpret the fundamental results of the last section in terms of
explicit formulas for the values of the serjes L
I:"I

critical serip; an

at the point s = 1, the center of their

d we gather these formulas together here for more convenient reference.

i l} J » 3 ¥
b2, Theorem. a) Under the conditions of 3.1, suppose that P is an eigen-form

for the Hecke operator Tm, (m, N) = 1. and that a, =1. Tlen
-\
( dd - n) Lo(y= > [ o (27)
Jd/m dim | b
ﬁl’!‘lﬂ;[d l”'a—'] \

b) Under the conditions of 3.1, let X be a primitive character mod m > 1, let
{ , ' Ol _— .
gly) be: :‘be Gaussian sum, and let L. x)= E"=l x(n)a"n S i {m, N) =8,
(6, N6~') = 1, then

Lm.xll) __g(;) Z f(b)

o mod m
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i Proof. Formula (27) follows from (20) and (26) if we take into account that
| Formula (28) coincides with (24).
are formulas (27) and (28) with the Birch—=Swinnerton-

D |T
) m
= 4. 3.
Dyer conjectu

formized elliptic curv
surselves to a remark on the behavior of the curve Xy itself.

- am¢'w for a, = 1.
[t is interesting to comp . _ _
re (see [8], [9] and [15]). In the next two sections we do this for Weil uni-

e aETRNAIEH re we sha
es over () and for some abelian extensions of (). Here we shall

limir
[et .
Dyipy == —270 > a, (k) e
A=)
tly in P 1St f the eipenfunctions for the Hecke operators with the
be the family in P, consisting of the eigen .
i
proper multiplicities (k =1, -+, genus X ; :Jlm = 1). Then the product
[Jae8vE [ (s) coincides with the Hasse-Weil sertes of the curve X corresponding

k=l a{k ) _ | : ! [ . f.} J | N [[
to the one-dimensional cohomology of X, to within the Euler factors for 1A

appears that the precise form of these exceptional factors is not known: Serre suppests
" ® L 4 5 O gl N = = & & -I" ¥ : ‘..'f_'
characterizing them in terms of the /[-adic representations connected with X, but thes 4
are not sufficiently well known. On the other hand, Atkin and Lehner [1] introduced |
|
the useful notions of ''new forms'' in P, and the canonical partition of P, into two {
terms. The first term is generated by the new forms; there a one-dimensional subspace
corresponds to every weight of the Hecke algebra. The second term 1s generated by the |
‘*old forms,"”’ which are constructed in a natural way from the new foms in P, for d |N.
A more detailed examination of this construction and its translation 1n
(X ..;(C?h Z) (or, rather, H 1('\:.*4 . ) should allow us to conjecture the correct form
i

f the L-function of the curve ""‘N and compute the exact value of L(1) using (27).

——

93, Weil uniformization

5.1. Let X be an elliptic curve on (). The following notation will be fixed for the

duration of this and the next sections: N is the conductor of X; @ is a Néron differ-

g 1s the canonical Dirichlet series connected with \,

ential on X; L\, s5) = 2 .4,
the fundamental part of the Hasse-Weil zeta-function of this curve, and L(X @ K, 5)1s

the apalogous series for X over K if K 2 () is any finite extension. We emphasize that
the Euler factors of L at the points of degeneracy of X are assumed to be normalized

in the way that 1s now generally accepred, as described, for example, in Weil's article

-3
n

[16] and in the author's survey article [9).

5. 2. Definition. A Weil uniformization (in the strong sense) of the curve X is a
morphism of curves W : Xy - X over () with the following properties:

a) g ° & E » Xy (€) = X(C) takes i~ to the zero point of X(()).

b) ¢ © @) w=®i)dz = - 21 E-:I a
of the Dirichlet series L(X, s).

¢) The form ®(z) is an eigenfunction of all the Hecke operators T (see (18))
for (m, N) = 1, of all the operators Up for the primes p N (see (19)), and of the
standard involution operator {_g, ; ) of the curve XN

T

mi .
eiinz dz, where (u”} are the coefficients,

FAaRaAbDULIC FUIN IS AND ZLETA-FUNCLIU

It probably follows from a) and b) that @ (z) is 4 ‘new form”’ in the sense of Atk
ot Atkin-

l.ehner (see [1]). Then properties ¢) are automatically fulfilled

In anv cas 1]
| .. | any se, conditions
), b) and ¢) are not independent (see, for example, Cartier [4])
tl '. § : L] L] L] o+ . I - | |
Yeil conjecture. A ny elliptic curve oyer Q) admits a Wey) unt formization in ¢}
o E ],IJ
irong Sense. )
B 1SCUSS | ‘ T ‘ |
or discussions of this Conjecture, see, in particular, the anticles by Weil [16]
the author [9] 10 d | L >
’ . 710, and by Cartier [4]. In [16) and (9] it is shown that

mitting a We ! zat| e eries
g uniformization, the L-sefies over () and over any abelian extension of 0
L

for curves ad-

have analytic cont lon s : T .
i ; nudation s OnNto []‘IE . 5 - - iy .
entire plane, as in 54, In this section we give

) e > Vi " b -Series ; '
formulas for the values of L-series at one (the center of their critical strip), and we de
duce from them that the uniformization o s untque

5. 3. Let the curve X, the differential @ and the strong uniformization ¢ be fixed
We introduce two fundamental number-theoretic functions connected with (X w, )

. + = : e
We let y and vy designate the

generators of the groups of real classes and

C = e

x= 3 1) (e} + 0 are defined by the equations

. | | of purely
inaginary classes, respectively, in H,(X(C), Z) and we ser W

5.0 Definttion The functions

P {—a, O}y £ P, {a, O}y = x=(a)y=

(the signs are taken either all plus or all minus).

We recall thae | a, 0 {H (3 HI(X;'*-'(C}' R). x*(a) is rational by the results of 3.6

-

and 3, 7. ! |V '
1s relatively prime to N, then we even have x*(a) €

If the denominator of o
' +

;{;i i : . . ."l" : — » & —
I'he functions x" ans x~ have pertod 1; x " is even, and x ~ is odd. We have

normalized the signs in a way that is not entirely natural because of a desire to remain
compatible with the notation in [9].
Using these functions, we can explicitly distinguish irrationality in the formulas

for L(1]),

5.5. Theorem. For all m, (m, N) = 1. we have

W+ \
(Dd—an)Lx,n=-2/(3 x (P-)J (29)
“d/m - d/m d,
o bmodd
& Proof. Formula (29) follows from (27) with Y () in place of w, if we take into

account that the differential @ is defined over R, so that L(X,1)€E€ R and

|y ().
[u - E—-
‘T d
Hence the real part of the sum on the right in (27), which is equal to half of its sum
with it complex conjugate, has the form |

RS . Lo

) z Y (m) - ? >_'

“ dim d/m
bmod b modd

i |u, ;—I + {u.-g-l




1s was to be proved. C K' of the

To formulate the
field Q. Let the discriminants D an | ;
f real points of the field K, r

Further, let r, be the number of real p
? ' | +ra let rl' r; and r' have the ana
2 ] , B | >
f Dirichlet characters belonging to K' but notto K, let m,

Y 1) =1 and - if )= 1) = = Vs

two abelian extensions K
ese fields be relatively prime to N.

, the number of purely |
logous meaning for K"

next result, we consider

d D' of th

imaginary points, and r =71,
We let M designate the set o |
be the conductor of the charater X SIBD X

5 6 'ﬁ:eurem. i'ﬂ tbe abm.*e notdliron we ;J.-:H-'tl'

LXK, LX®K, 9.,

; ' b
— o _ Teq=—"3 | TR (. ‘ .D
— D—,r wy = W)L (2 ke 1) (30)
D =l bmod iy
Proofl. We set L, (X, s) = Eﬂil x(n)a"n""‘"and uase the formula
(31)

LX®K,s)=]lLy(X,9),

irichlet characters associated wich the field
product in the right side of

{ (here we use
where X runs through the D K (here we

che fact that D and N are relatively prime: otherwise the s
(31) may differ from the canonical Dirichlet series for X ® K by a finite number of

Euler factors; sce 9], Lemma 7. 3). Dividing the formulas (31) corresponding to K

and K by one another and substituting in the right side of expression (28), we find

r—
——

LX®K,ILX®K, )|, = L] Lyx, 1

=M
~LEs (3 %) | w@). (32)
xeM My \bmodm, -2 o]
Further, we know that "
1
1 x Y
> 2
g(t)| = mand [] &2 — ‘9—-
xeM My D

by the Hasse-Artin formula. Finally, the inner sum in (32) transforms as in the previous

theorem, giving
| S1BA X <

> k) | vw-= 2 Tib)xsisnx (). (33) |
bmod 1, I—il- K 2 ymodmy s

Mﬂ# the transisition from (32) to (30), it remains to note that the number of

Wﬁwﬂi in M equals r' ~r, and the number of odd characters equals r; -r. |

i e since the fields K and K' are normal over (), it follows that only

ing three combinatiens of the numbers r and r’ are possible: either r, =
=0, =Yrorelse ry = Y1, 1 = Yr
S TR UG e S

g !
¥

i .
t
l I’;

)

b

r~ Y " E
5. 7. Theorem. 1f a Weil untformization (more precisely, a pair (X, @)

) ex151s {or
the curve X, ,

then it 1s unique.

Proof. The values of L(X,

1zed by formulas (29)

.” and Lx{.ﬁf, l) are uniquely defined and are characrter-
and (33), in which the numbers x"(a} can be computed from any

s XS Then (30)
x (b71), and (33) allows us to compute all the

uniformization. We consider all characters X with prime conductor [ 1 2N

allows us to compute the sum 3
P{.JI'I?I 1..Fl|'.i|r

with nonprincipal characters mod ! in terms which do not
depend on the choice of uniformization. Consequently the numbers x*(5/]) for ! T 2N
do not depend on the choice of uniformization Y. These numbers determine the values

f the | s groups . H (X, (C), ;
of the homomorphism of homology groups 1/, : H,(X(C), Z - H,(X(C), 2)
ogy classes of the form {0, b/1 IN

sums E’F: mods X(6)x “(b/1)

' on the homol-
, as 1s clear from Definition . 4. Suppose that these
classes generate the entire group H (X H_.(C), Z)
the homomorphism

. Then 1t follows from the above that

| s is uniquely determined. But ¢ is also determined uniquely from
Vs if we require, as in 5.2

a), that the distinguished points of the curves Xy and X

corresponds to each other. Hence it remains to prove the following fact:

-

0. 8. Lemma. The homology classes {0, b/HN 2 HI(XN(C), L) generate the en-

tirc homology group when | 42N runs through the prime numbers and b runs through

a complete system of residues mod |,

. ,
Prool. We use a method of Weil [16]. Let ( i,: 3 ) € FD (N) be any element. We

have

[ * *

La Nex 4+ d

.

| by ;1 x
(,1\?5 d_) (0 ;}

By Dirichlet’
By Dirichlet’s theorem, x can always be chosen so that the number Ncx + 4 is a prime

Setting a = 0 in Proposition 1. 4, we now immediately obtain the assertion of the

lemma, and with it the uniqueness theorem.

Remark. Another variant of the uniqueness theorem (with a completely different
proof) is contained in Cartier's report [4].

$ 6. The Birch—Swinnerton-Dyer conjecture and Mazur's theory i

L L
Y | T

last section; in particular, X is an elliptic curve over

. : Xy = X is a Weil uniformization in the sw .. TR
I this section we compare formulas (29) and (30) with the Birch—Swinnecton-Dyer
conjecture. Its complete formulation in the form convenient for [9]. Hes

= us is given in [9]. He
we limit ourselves to several special cases with which our resules m* Airactle o
pared. Rlacia .
. SRR i LA

e L
- - = - v »
E - f -k
Ja - . ._:I'\Jr _-—._--.:
- IS U
--_d'_ A 1 J .-- e
N o %y

We keep the notation of the
Q, N is its conductor, and ¢ :

| All of these special cases, along with the conditional resules
Birch~Swinnerton-Dyer conjecture and the conditional formulas of

f A
i L}
of this tv
- ] " ]
i
r. — - a.
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in the text with a
6. 1. (Conditional formu

n asterisk.
la for LX), 1):

0, ank X(Q) > 0,
J — " . 5
LX, 1) =1y 1] (71, (X (R))] H (71, (X mod p)l. 34)" |
[.‘: (Q)]° pIN '
1

e following notation 1S used: [[r'] is the number of

of the curve X -\:(U) 1 s the r

nected components of

In this and the other formulas, th
set G: I 1s the Eafarevic-Tate group
:’-"ﬂ{."{(ﬂﬂ is the group of con
group of connected components of the

elements in the
group of Q-points of finite

the real points of \'; and 7,
closed fiber of the Néron model of the curve

In comparing (34)" with (23) and (29), the following circ
a) The general structure of the formulas is the same: LAX

However, 1n our

order;

(N mod p) is the
\ over the pninr 12
umstances deserve mention:
1) is the product of

formula the denominator of this number divides

w? by a rational number.

[:;E{Q)] and even the maximal peri
cal factors in (34)

(0). This evi-

¥ must strongly cancel with ._[;‘:»T(U]]E . Ligozat
Accordingin his com-
(X(Q)], and the

od of the points of finite order in A

dently means that the lo
(8] c:.::rﬁpuz;:d these factors for all twe
product of the local factors 1

lve curves .\’.ﬁ. of genus )8
i

putations, the s always exactly cqual to
hypothetical value of [1ll]

b) The condition L{X. 1) =
ormization map Y °@: H - v(C). This is the property

to a closed path which is homotopic to zero in A
© ¢ on the imaginary semiaxis, namely
infinite order In X(0)

equals 1.
0 expresses a simple topological property of the ani- |

chat  © ¢ takes the imaginary

(R). In particular, in this

emiaxis
ase there are branch points of ¥

he form (¢ © qﬁ}*m . Do they have any relation to the points of
y the Birch=Swinnerton-Dyer conjecture’? Rk

the zeros of

hose existence is predicted b

6. 2. Conditional formulas lor LIX® K,
we further suppose that X(K'Y = X(K): the group of

and notation of Theorem 5.0,
m K to K'. Then the Birch-

rational points of X does not increase when going fro
Swinnerton-Dyer conjecture leads to the following expression (for the details, see [9]):
2
P D z £ o rrem V2 aF'—r
LX DK, YLK DK, )y =[5 [ W 17 [0 (X (R
H (715 (X mod v')]
SE 7 (35)"

“ (, (X mod v)] (1)
v/ N

_except that [lll] denotes the order

The notation here is similar to that used in (34)#
[lI'] denotes the same for the

of the Safarevit-Tate group of the curve X ® K and
~ curve X @ K' and so on. In the case when rk X(K') » tk X(K), we must have zero on

- thesight in (33) , while if the index [X(K'): X(K)] is finite, then the right side is
- multiplied by a rational number, which we do not write out explicitly here.

"

s)/LIX @ K,s) | ._;- With the conditions ¥

(:['Hn Al iﬂ 4 ':] . : A i g
p F, (3 } ;H]d (3’) ﬂgtlﬂl bhﬂ'ﬂr’ﬁ il EUD{J Structur;ﬂ Ldpfeement U'f [h EU 1 S
s rmu :l-..

and allows us to derive ; :
L T ¢ '.‘ILrI‘r"L 4] h}iji}[hutl(::ll f{_‘llf”'lul_‘l fﬂr thf: rAL 10 ”t' Ihl'_' Or iLr f 'I
LTl s 1LY :‘l{i

\\.. L T Ay
9 ll s Y L . ;
farevic-Tate groups under the above conditions:

) ![ o (Fmode :

1] ; rr—r T
() [ (X (R))) 7 “ (71, (X mod v')] ye M
u' N

1 |
2 [ b::.j,-. - (hhh‘ignx[ﬁi‘]‘]_ (36)

L] 1 be hL L qu L3

can independently prov : :
: ¢ the following ass :
sserrion abour the righr si ,
ght side being a squa
: re.

i » i T
h. 3, | roposition, Let M = 1},\’ E M|y 15 not real {. Then

_';1:_,-( 2 I(b)rﬁiﬂﬂx(i)t]ﬁﬁszr (37)

_bmuj iy L mx

r=M

of the characters Y € M.

} 3 -

I’rool. According to 5.2 c), the standard involution za~ - 1/Nz also induce
N | e i P S an
involution on the curve X . Let this involution act on the homology of X by mulupl
C tl - = . y 1 | i
ation by = C = + 1 (the sign is chosen to agree with Weil's notation 1n [16])

a b -
c d oo K% %) ! Thus the class

0 |1
0 ) and hence takes |
Ne Nb d

yatio
gation (_

poes to the class

A B s M []

(we are using Proposition 1.4). But c¢=-N" lp= 1 mod a, because ad — Nbc = 1
Turning now to Definition 5.4, we find from this a functional equation for the func-

trons X t,

x= (.{’_) = Cx% ( —I’f_"b_'mmia );

a
a
so that

_H'"lb-lmwm)
m

2, % (b) x* (‘b_) = ;’1 (— N7 " mod m) x= (

b
o % [~ N):_:_:-i(b)xﬁ (i)

m




residue classes mod m, and x * chosen correspond-

= m,y, b runs thr ough the
B s (37) corresponding to complex conjugation

combining the sums in

ing to sign x ). Thus, _
11 factors outside, we obtain

characters and bringing 2

” _i.( :E' % (b) x> (E_f.’_)) = gT?, (39)
el 2 _bmod my X

ield of the characters

x Y(b/m) € 7., and

s a root of unity and T is an integer in the value f
N) = 1 by assumption, because

signX (p/m ) are even functions, so that the

where ¢ 1
xy € M (T is integral because (m

finally because the func:mns b -v--)L(b)x

On the other hand, nx{:ﬂ ‘ |
over () appear with every sum under the product sign. Fcnrmul;l (39) shows that ad-
joining a square root of this number (divided by ¢) to () does not take us outside the

value field of the characters X. Consequently, only primes which ramify in this value

field appear with odd exponent in che left side of (32). (This argument was menuoned

to me by A. N. Andrianov.)

The proposition is proved. |
Remark. Of course, formula (38) is also applicable to real characters X; It 1S

crivial in the case Cx(—- N)=1, and in the case Cx(=N)= -1 it shows that
2 modm X (B)x *(b/m) = 0. This argument was used earlier in a snme-whnt different
form to actually construct forms of the curve X over quadratic extensions (corre spond-

ing to real y) whose L-series vanishes at s =1 (see, for example, the appendix to

Birch [2]).
6. 4. We now compare the behavior of the right sides of (30) and (35) over cyclo-

comic -extensions K of the field (). Inthis case we have Mazur’s results [10], [11],
(9] concerning the behavior of the groups X(K) and (XY @ K) obtained using Iwasawa’s
theory of ["-modules. Our formulas agree very well with the conditional interpretarion

of Mazur’s theory in the language of L-functions, and they also allow us to make some

the conjugates

predictions in the cases when the ['-module technique has so far been insufficient.

We introduce the following notation. Let [ be an odd prime, {4 2N (the casc [ = 2
differs in inessential details, and the case [ | N requires separate consideration, which
we shall not go in:!;n here). Let G = [ ¢ € Z,| ¢!=' = 1}. The group G acts on the field
Q{(-)‘ {n = 2Tl In (""'-"" Cfl, gEG. Weset K = Q(é +1}(' K. Uﬂ_i .

mlf Q=K,C K, C--.CK_. The Galois group I' = GalK_/Q is canonically
ceo 1 +1Z)° B L. Wesee T =T'!"; then Gal(K /Q=T[/I" =

e E Iillllunn xn-l/ Q corresponds to the primitive Dirichlet characters
" F Illluu values are roots uf 1 of order I‘t All nf these chamcters are

Wil Lol

(404

Mg = ] ( D) L(b)x*

(%)
PAST pr binod " r ) |
According to (30), f\”__l 1s the nontrivial additional factor in the value of L at one
which appears in going from Kooy to K__, . I X(K"_z) = X(Kﬂ_l). then, by (36)*,
this same number must also be the nontrivial factor in the expression for the order of

Ul _,. As has already been noted, N EL.
We further set A = L(X, 1)/W7: this is a rational number (possibly zero). We re-

call that {uﬂ) are the coefficients of the canonical series L(X, s).

6.5. Theorem. a) A, =0 mod ! «f and only if either a, = 1 mod !/, or | divides

the numerator of A (all primes divide zero).
b) For n > 2 we have N =0 mod | if und only 1f either a, =1mod I, or a,

0 mod I, or [ divides the numerator of A

i

In particular, for all other | we have N £ 0 for all n.
i

||
—_

Prool. Let [ be a prime divisor of [ in Q(C:} [f my=1", then )(ui')fﬂ
for all b, (b, ) = 1, so that y(b) = 1 mod ! _,. Consequently

Vi 25 1[ %( ._1 x'(—%))fﬂori (—i}- 2 X (-;:-))'“P:_Hnmdf. (41)

. mod{ hmod i (b.0y=1

0 )=1

Hence we muse clarify the behavior of 14 E{&.Hzl v "(b/I™) mod [. To do this we set
m o= 1" n>2 in formula (29):
’ ) = (a2 ¢
LA S L pols ) (42)
‘ J.’Jfﬂ.f:u]‘fI L ¥4 ' "
Subtracting formula (-'iE}”_E from (42) . we find
\ 4 0h T
R (*) - (@ —ap1 — L) A,
; ; (43),

Lo e

In the sum on the leftthe obstacle is the residue classes & = 0 mod /; in order to

remove them, we again subtract {'*‘i_‘i)”_] from (43]"

l - + b n o, ‘et .
- S (—-) = (@ — 2y - O — L =1 YA

~ bmod "
(b=

We now consider the cases n = 2 and n > 2 separately.
| -1, we find from (44) that

The case n = 2. Since HIE = a,

i (j’) = (gt -I)(a;--—1--£)3.

2 (b.0)=1
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u .
. Conversely, if

¢ [|(a~ 1), then [[A,

2 lear from this that if /A o .
B e \. This proves assertion a).

|A, but :'-f’(.;.- - 1), then !/ must divide the numerator of

The case n > 2. Ve have

ﬂl’” — (Ifalﬂ-l'—“l '_-_.lr{!f,il__: — IIIIIFI_—I ”H}l] !I

1C 1 ' 4) 15 c¢ t to

y : oefficient of A 10 (44)1s congruen
o that a,, = a mod /. Hence the ¢ e
"'2{::— 1} mod /. It is hence clear that tf a {u - 1) 0 mod ! and does not appe:
We now suppose that

l
n the d:nnmmamr of A, or if [|A, then we hm.r:. fl A

(a—1) =0 mod /. but that [ appears in the denominator of
1V 1
hecause this 1s the number of points

1. —1) A is an integer by (43) 5 « :—;’— | £ 0, t
1'111I the reduction of N mod /, fin:llh. @, —1~=11s divisible by no higher than the first

' - | / ; : : v denominator
2 h} the Weil estimate '“Tfl - \/ [, {_{Jﬂhﬂf]lll:.ﬂti} the le nom C

A The number

ower of | for { > f | |
2 r - " " -5 » by ~ &

L] & - & = - 5 — " 1 w l"l ::' -1:1 I.| I 'U.Ln [hlleL -LI,._:'L [-]L
f A is not divisible by /7 and «, = 1 mod [. On the other hane

{ - e we eastly obtain
ormula @, =4,4,, la )y <2, %€ castily obt

== (l‘];—_! Jzii{;;_-g — (IIIIIF;-—:; o “I”_: o Eﬂirt—q.i.]-

ﬂfl e I:-’!.II:;—-], :‘ ﬂ:":—-'.'

" . i . 1 2 e v rea ) 5 1 1 | J."I]
tence the coefficient of ) in (43) is divisible by so that the left side of (43) anc

\

are divisible by /.

n-1
if [ divides *'\”_1

Conversely,

‘lear from (44) that

but does not divide the numerator of A, then 1t 1s

[ divides

n—1
@ — 20 ju—y T 0p—2 = (G — 1y imod .

The theorem is proved.

We derive several conditional corollaries from the theorem, using the Birch—
swinnerton-Dyer conjecture, and we compare them with Mazur's unconditional results.
We recall that /12N and that primes [ for which a, =0 mod [, are called super-

itngular for X (Deuring), while those for which a, =1 mod [, are called anomalous

or X (Mazur).

H.0. 'Cﬂrﬂuur}' i. I/ [?‘C“)}] <o, and if | does not divide the numerator of A =
LAX, 1Y/W" and is neither anomalous nor supersingular for X, then the group .Y(Km)

s finite, and the l-component of the groups W(X® K ) has bounded order as n + .

In fact, according to Theorem 6.5, under the conditions of the corollary we have
L(X @K 1);4 0 for all n, so that rk X(K ) =
the gmup «'K(K ) is finite. Finally, the ratio of local factors in (36)
n - = to within a 2-component, and by Theorem 6. 5 the new factors in 1 (}4%) are

becomes | as

not divisible by /.
This corollary is conditionzl, but this very result is proved precisely in Mazur's

- theory under the assumption that / does not divide
Eﬁn‘,_ (LX) T [no(X mod p)]
pIN

| E istead of the numerator of A: this agrees well with (34) 3

‘F-—M_

). On the other hand as Mazur showed,

e Pl S - e T W —— -
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A i

6.7. Corollary . 1f [X(O)] < = and | either divides the numerator o

[ Aorisas
uper.
stngular or anomalous prime for X, then '

kX (Ka) -+ (X D K)"] = 50 a5 n— o

In fact, if the quotient s

L{X @ H”, s )/ LN

- F g =
rk X {!\”) + =, otherw;se

@ K 5) |

nel? «=1 €qual zero for infi-

mreely many values of n, then

[ (XK )

=0 mod
(WX @ K, )] o

s ng by Theorem 6.5 and formula (36) )

for all n f we take | 1)
1 We take into account the stabilization

of the local factors.

I'he parallel unconditional result in Mazur's theory was only proved for anomalous

primes, and assens the following: f ri", =1 mod ! then either tk "f{f\ ) >0 (and this

rank s necessarily frnite), or [U(Y ® } ) =, or else both hold together

Thus, in this place Mazur's theory pamall}- overlaps Corollary 6.7* but partially

complements it: combining both results, we find for a, =1 mod! we must )

LI @K, WY &5 e

The ::upr:rsmgular primes have so far resisted the ['-module technique; hence it
i

have

might be Interesting to note a partial result relating to them:

6.8. Corollary . 1f [X())] < =, and if | is supersingular and does not divide the

numcrdator of A, then the group X(KI} 1s still [inite.

[n fact, Theorem 6.5 b) shows that L(X @ Hl, 1) # 0. For anomalous numbers !/
with the condition L(X, 1) # 0 there are no apparent reasopns why L(X @ Ky, 1) cannot

vanish, but the author does not know any examples where i1t does vanish .

6. 9. Cnru[]ur}' If tk X(Q) >0, then for all |1 2N

rk X (Ka) + [LL(X 3 K2 — o0.

The reasoning is the same as in the proof of Corollary 6. 7, since in this case we
= O mod ! for all n and /.
Mazur [10] conjectured that the rank of X(K ) remains bounded (at least for non-

must have A = 0, so that A
supersingular /).

The parallel conjecture under our conditions is the following:

6. 10. Conjecture. ﬁ" # 0 forall n 2 ny (X, 1).

[ 'am unable to prove this result in any case except those which are included in
Theorem 6. 5. Possibly investigating A p-adically for p|N could give useful infor-

mation.

[n cerrain special circumstances we can prove that the numbers h. are divisible
by certain special primes. In order to formulate the result precisely, we

following

6. 11. Definition. An isogeny x: X = ¥ of elliptic curves over Qiﬁ



(X%

dmissible if , for any prime p, it induces a separable morphism of the connected com-
idmissiole b,

of the closed fibers of the Neron models of the curves X
of admissible isogenies can be proved without dif-

and Y over p.
yonents
The following two properties

ficulty:

ogeny : ra Né¢ hfferential.
a) Let y:X - Y beoan admissible tsogeny, and let w,, be a Neron /¢

* 2 ) : .
Then x (w,) ts a Néron differential on X.

! : " and a divis zeros can only
) is rcgular on the Néron model of X and a divisor of zeros car y

*
In fﬂﬂ't, X (m.r
include the components of the
b) If an admissible 1sogeny X : X
ical L-series of the curves X and Y coincide.
We need only verify that the divisors of the conductor and the Euler factors of the

¢ the points of degenerate reduction, and this 1s proved directly from

fibers where the isogeny X is inseparable.

. Y exists, then the conductors and the canon-

L-series coincide a

the definitions. |

.
Let v : X = Y bean isogeny, and let }’.i. and be the generators of the real

Yy |
(+) and imaginary (—) homology classes of the curves X and Y, respectvely. We shall
+ *

say that Y has type (¢ o) if xelyy) = g7y

6. 12. Proposition. Ler y : A - Y be an admissible 1sogeny of curves of type
(¢°, q7), and let N be their common conductor.

a) If U .\".,‘1 + N is a Weil umiformization of the curve X, then its composition

with y is a Weil uniformization of the curve Y.

b) Ler «x .: be the functions associated to the curve Y according to Definition 5. 4,
If the denominator of the number a € () is relatively prime to N, then

xy (@) = 0modg*, xy (a)= 0modg". (45)

Prool. Assertion a) is obtained from properties 6. 11 a), b) and the definition of
uniformization in 5.2: we need only choose the Néron differentials on X and Y com-

patibly. Assertion b) follows from Definition 5.4 and the definition of type (g T og).

6. 13. Corollary. Let K' O K be abelian extensions of the field () with discrim-
inant relatively prime to N, and let M, r, r.. etc. be defined as they were before
Theorem S.6. Then

rﬂ_f:

12 ( (46)

reM 2

Y r@)eE "(—,;f—’—)) = Omod (¢ ™" (")

b mod My 7.

Using formula (36}‘: we can derive from this conditional corollaries concerning
the behavior of WX ® K') and X(K'), if we only ensure no cancellation of ¢' and
9" with the local factors in the right side of (36) . For example, this result is
~obtained for the curve Y by precisely the same reasoning as in Corollary 6. 7.

| *
i '-.5* 14. Corollary . Let Qc KyC---CK C... be aI"-extension corres ponding
mmu .! T 2N. Then either the rank of Y(K ) increases without bound, or else the
i #f 11118% ® Kn]] is divisible by (q"')[xﬂ :Q)-const as n - oo,

l '_ q %"f-“liﬂ £.ix

o
¥

— =

) F

-

(The constant in the exponent of g appears because the group X(K ) can _
R S - . g™ RIOW |
the firse few steps of the | extension, and also the contribution of the local factors "

(36) ‘ does

not manage to stablize to 1.)

This res - i P, :
result can be compared with Proposition 9.1 in Mazur's article [[U]_

[,. l:?._, I" - ¥ 1 ¥ s a T =
Exiamples and remarks. a) The existence of admissible isogenies is a rathe

excepuonal phenomenon. (The muluplication X 2. X is not admissible for n > 1) If
. admissi !

the kernel of x : N+ Y is cyclic and is gencrated by a rational point x of order q

then for (g, N) = 1 admissibility “ e ' :
sthity follows from Lutz's theorem that the ‘coordinates of

- . Tk i a L ) ) i s
Yoare antegers, e, the reduction of the kernel of X does not become trivial. Howeve

the case of common divisors of ¢ and A requires special investigation

]‘IL rL l" [i Li Ull I-. I - ' l - L a ‘} !: ll !;
§ L] i 1 mf. Uf Eur' 5 l'\

*

one; ¢ = 1, so that we only pive ¢

Nt l-‘i_l.': 17 19 20 21 27 49

I ™ -
# 4 ) F o i ,
ol g a4 g 2 4 3 9

@ ¥ i
Corollary 6. 14  for the curve 11 Wwas proved by Mazur [10] for / = S: in this

case the rank of T(K”) cquals zero for all n.
b) Assertion (49) relate he be : ! ¥
elates to the behavior of the functions x, constructed for the

tmage Y of an admissible isogeny. However, observing lengthy tables of the function

L

&
‘r‘- L] - P = H :
for the curve X |, compelled us also to suggest some regularity in the behavior

mod ¢~ of the functions x;. constructed for the domain X of the admissible 1sogeny.
/~ More precisely, the following assertion is fulfilled in the tables (X = Xy g" =5

the residue class .l.; (—?—) mod 5 depends only on a (47)

Jlﬁll '
;b._ji‘?f.tnléi':!r a

(forall a #0 mod 11 and (b, a) =1).
The analogous property is observed for N = 17, 19, 27: see $8.

Although this assertion seems to have the same nature as property (45), I have no
T —

I:_a_::n able to prove it. The assertion is rather striking, since in the computation of

i §
not modulo 9.

(b/a) the denominators of the convergents to b/a are operated on modulo 11, and

L

A natural generalization of the conjecture (47) is the conjecture that the residue
classes xij (@/b) mod ¢ * are constant with respect to b.(1) We note that the con-
gruence (40) would also follow from this assertion, which is weaker than (45), becaus
E.& x(&) =0 for any nonprincipal character .

Evidence for (47) is noted in the commentary on the tables in 8.

$7. Noncommutative reciprocity law

¥i
e

As the basic result of this section, in 7.3 we formulate a special case nf'rhm :1'??

kY Added in proof. Drinfei'd has proved an assertion of this type with another
interpretation of the numbers ¢ =, Swinnerton-Dyer has obtained an analogous face.

; b = .-'|'.
s <o .:.-.-.Eﬂ':"ﬂh
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0 on the coefficients of parabolic forms, which can be derived from (ormula (20). The

atures of a noncommutauve reciprocity law emerge in this special case.
We begin by formulating the necessary concepts.
A solution of the equation

7. 1. Admissible solutions. Let d > 1 be an integer.

)
_ AA’ + 88" is an ordered quadruple of numbers (A, A sad e
admissible if it consists of integers satisfying the addition

.6, 8') satisfying this equa-

sn. A solution is called

nditions (A, §) = (A", 8') =1, A>8>0, (i8)
id also
cither A" 8 >0, (49)
. |
or else &' =0, A = d, A" =1 0 < oK ?‘ (50)

e call the solutions (50) boundary solutions.
The set of admissible solutions of the equation
‘mily of pairs (A, 8) which appear in these solutions. We shall later need to sum func-

AN « 86" determines a finite

ons of pairs of integers over the terms of this family. Hence for practical purposes it
offices to think of this family of pairs (A, 8) as the set of different pairs, each equip-
ed with a multiplicity.
We shall also call such pairs (A, 8) d-admissible.
7.2. Let X be an elliptic curve over () with conductor N which has a Weil uni-
xmization in the strong sense. Let L(X, s) be its canonical Dirichlet series, and let
be the nth coefficient. N
If A is an integer, we set A=AmodN. If (A, &) =1, then A
f the projective line PYZ/(N)), as in 2. 3.
With this notation we have the following

L

O denotes a point

7.3. Fundamental Theorem. Suppose that L(X, 1) # 0. Then there exists a [unc-

ion vy : PYZ/(N)) - Q depending only on X such that the [ollowing holds for any
rime | 1 2N:

|l —a+1= 2 y(A:9), (51)
l=AA 400

shere the summation on the right is over the famtly of all l-admissible pairs (A, ).

Remarks. a) The function y can be expressed explicitly in terms of the function
-* for the curve X (see formula (74) in 7. 10).

) The left side of (51) is the number of Z/(/)-points on the reduction of X mod /,
ind the right side is some sum over the solutions of the equation [ = AA" + 88" taken
nod N. The general form of this symmetry:

Eﬁh 4 (an equation dependirig on N, taken mod /)

(an equation depending on /, taken mod N)

PARADULIC PUINTS ANU /2L LA UNC LIUNRS

_ It relates explicitly to loncommutative extensions
since @, in (51) 1s the trace of the Frobenius automor

brings to mind a reciprocity law,

o | o phism of the fields obtained by
adjoining to ) the points of finite order on the curve X (see Shimura [14])

Another point of view regarding equation (51) is that it gives information on the

representations of [ by the indefinite quadratic form AA' + 58’ Eichler [5] gav
. E e a

peneral technique for obtaining such formulas for representations by positive forms

(using theta-functions). It seems that our result has another nature
b|r L ] o - L |
/.4. The plan of proof for Theorem 7.3 and its generalization is as follows

Formula (20) gives an expression for 1 - «

; + 1 interms of integrals over the homology
classes |0, I:f:’lN,Di b<!~1. Formula (16

e ) allows us to represent each class
0, b IH as a sum of distinguished classes E(c :d) whose arguments are (up to sign)
the ratos of the denominators mod N of the successjve convergents of b/l. Finally
a lemma of Heilbronn (6] allows us to £o from continued fractions to solutions of the

cquation.
We begin the proof by giving Heilbronn's lemma.

(. 5. lrormal continued fractions. Following Heilbronn [6], we introduce the poly-
nomials Q:E /,[Tl Lo Tﬂ, i i) i > — 1, by the inductive formulas

Q_—l —_ U', Qﬂ = ], Q” - T,+|,O;1,_1 - Qi-—E fﬂf -"1_:;l I.

Obviously, Q, € L[Tl N TH]. so that we may write ) (and its particular values)
as a polynomial in n arguments for n > 1. We shall also apply this same notation for
n =0, -1, but then we do not pay attention to any arguments.

[t 1s easy to verify that

Qﬂ(Th sy Tﬂ)=Qﬂ(Tﬂr vy Tl) (52)
The following formula gives the connection with continued fractions:

Qe (Tar - -, Ty) i

Q(Ty, .. ., T) T { ' (53)
| 1

Tﬂ"!"'...T

n
[t remains valid for n = 0 if we take the right side equal to zero in this case.
The successive convergents to (53) are defined by the formulas

Qﬂ-—l [Tli * v ) Tﬂ) Qm-—.l {Tg. sy Tm_) .Q.! .-.Q:..l
Qn(Th'*'lTn) reeEy Qm(Tll*"ITm) .'“‘,QI. Qﬂ

0
= —, 54
; (54)

The index of a convergent is the index of its denominator. We have

Qon—1(Tsy oovy Ton) Qo Ty + o3 Tenmi)
—~Qu (T3 co0y Te) Qs (Tsy <ovy Tud) =(=1"%

The connection with the equation 4 = AA" + 88" will be established in 7.7 usi .' 3
fundamental formula iy




’ Tm]Qn-—m(Tm+h very Tn)

s Qo KT as; sioi
T, = Qm (1 Y

W ¢ I
Q l 1 ¢ ) Tm-l)Qn-‘m-—l (T-"ﬂ-’r?r S

4+ Qm—r Ty, -

(56)

' < m < 15 .d by induction, de-
hich makes sense and cemains valid for all 0<m<n. ltis proved by ,
which ma =
m the obvious cases m =1 and m =n : s
in continued fractions. Let 0<a<h

n(a) > 1 and positive integers

creasing m fro
7.6. Expansion of rational numbers

It uniquely determines an INteger n =

2 > 2 and
such that ¢, 2 ¢, ¢, 2

rational number.

o it L

Q-l"'.p-—l {E:' v Eﬂl] 1 1_ ' (5?}
a =
Qﬂ (Ell IR I | cn} fl _F__ . _f_ T
n
Th ber n is called the length of the (continued fraction) expansion of a, and the
um - _
N ients of @. Substituting €, * =y

artial quotl
numbers ¢, ,-++, €, are called the p q

! ' 1in the successive conver
for TI . wem g b AN (54), we obt

numerators and denominators.

gents of a, and also their

= 7 Heilbronn's Lemma. Let d > 2 be an integer. The following two families of
-y
ordered pairs of integers coincide:

a) The pairs of neighboring denominators (
rational numbers of the [orm b/d. (b,d)=1,1<b< d/?2.

I}Lr:‘iff'cln

jfrom larger to smaller) in the sequence

of convergents of all possible .
b) The pairs (A, 8) taken for all possible admissible solutions of the e

d=AA" + 88'.
(Coincidence of families means coincidence of sets and muluplicities:
" Proof. The first family of pairs is indexed by the set consisting of elements of

the form

[t!'n! fraction @ = i((b, d=1and ]l < b< %), the integer | <m < n (U.”)] (58)
d

see 7.1.)

This element corresponds to the pair [mth denominator, (m — 1)th denominator of the

convergents of @] in the family a).
The second family of pairs is indexed by the set

I

admissible solutions of the equation d = AA" + 88, (59)

We shall construct mutually inverse maps of the sets (58) «— (59) which preserve the

pairs in the families a) and b).
The map (58) = (59). Let (¢,,--+,c ) be the partial quotients for a, and let

i 1<m<n=nla) We set
B Qalcs, o0y Co),
A’ =Qﬂ—lﬂ(c.l!l+h ‘o l:n),

e cﬂ'l-—l):
) Cﬂ)'

6 = Qﬂl'ltch .

0" =Qs—m—1{Cmt1s - - (60)

[t 1s clear from (53), (56) and (57) that d = AA’ + 88" Since the c it
' . . dare ! 1
| follows from the recursion relations for @ that A>6>0 and ﬁ'l o' o T -
| ‘ urs! - . >0 an >0 > 0. From~
we have (A, 8)= (A", 8") = 1. It remains to verify that the admissible boundary solut;
arc obtained for 6" = 0. But if '= 0, then m =n, since A =d and A’ = 1; finally

| <86 Ad/2, because ¢, z 2 (apply the recursion relation A=c &+ Q . 2)
Fpe ’ ~ ! = o
Ibe map (59) - (58). Let (A, A", 5. 8') be an admissible solution. If it is a

boundary solution, we set

m = n - the length of the expansion of 6/A = 8/d:
we define the numbers Cyy+++,C by the formula
'l L
| § 1 : -
*, s C P - L
\ y | | { ) n ‘;:. ' E1 o e (6
I
€
‘\ui the number @ by the formula
| o :
I| = ’ {6
][ Ly =+ ... . -1-— g
| .

"he denominator of a equals d; this follows from (61), (62) and 52). The numerator

1/ -~ :
A=c > 2 1f we use the recu:

jof & does not exceed d/2; this follows because 6/d <
I

f siton relations for Q  together with (53).
<nla). If (A, A", 8, 8") |

and m by the formulas

J! The nonboundary solutions give the pairs (58) with m

not a boundary solution, we define ¢ ¢ i
n

L

0
= = .
A 1 a4 (63

O i S

TP 1 Cﬂ}"’l

(64

and We Ser

%

T S

1
Cn

The denominator of @ obviously equals d; this follows from (63), (64) and (56j. In ad-

{ dition, 0 < a <% since c, 2 2.

[t is automatically verified that these set maps are mutually inverse and preserve

\th: pairs which interest us, The lemma is proved.
Remark. It is clear from the proof that if the pair (A, 8) corresponds to the pair

[meh denominator, (m = 1)th denominator ]. then

m = the length of the expansion of 8/A = n(8/4)

(see (63)).
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| yoo 2minz o a [T (N)-parabolic form which 1s an eigen-
case. Let ¥(z)=2" ,a € 0

tion relative to all Hecke operators e

;'HT =a O forall m, (m, N)=1.
t, for ine ¢:d €PY/(WN) set

Furcher, for any point C : L

with (m, N) = 1. We suppose that a, = 1;

< ~ o~ 6
n(c:d)=%t(c:d)—E(d:¢), (66)

:E t E - I .'.| L] i i

#U_{'_‘I'jlt
U | J

(1) —f:- U,

' ! " (C) corresponding to P, then we define
e @ is the differential of the first kind on X, (C) corresponding
tunction y : PY(Z/(N)) - C by the formula

y@d= | of | o
g 78 NN

ne d)

(67)

E ]i i — Ji o) I ; I % | f_ I'lJI , Unf[tﬂﬂ+
. e ) SL-;c I-E JI. GI ﬂii f

m, 2N) = 1, we have

Sd—an= 31 (E) > y(A:d), (68)
dien dim N4/ g=nirigy
d>>1

L o fa rough
¢ v(m) is the number of divisors of m, and the (A, 8) in the inner sum run throug

l-admissible pairs.

lgr:uf. According to formula (20) of Theorem 3. 3,

(deﬂm) \ mzz Z' \ W.

v d/m {n,':':n} d'm bmodd [ﬂ' fdi_]

1 irreducible fraction b/d on the right obviously appears 7(m/d) times in the form
{C for all possible 8/(m/d). The contribution from the sum with & = 1 equals zero,
e 10,61=0 for b€ Z. Consequently

(Zd""‘am) j ® = ), t(ﬂ) % 1 |m.

. d .
d bmodd b
dim {u..lun} dgnl ot I“'

(69)

d

nner sum on the right is the integral of w over the class E(b.d):l {0, b/d}. Using
that

—ﬁ
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>3
. Werepresent this class in the form
‘1
b b
2, (13, -3}
' d "df, (70)
1£:h-c:;i d §
(b,d)=1

Let d = .':'f”

gt ffﬂ be the successive denominators of
ing to formula (16) of Theorem 2. 7,

|/ (0.2} = 3 s—1": 4.

d e

fe=)

the convergents of b/d. Accord-

TT

(71)

. Since the class 10, b/d} s complex conjugate 1o 10, - b/d1, it follows from (12) that

b . —13 -
{0, === — S r—1*3 4y (72)
R=1
72) and (606), we find, after summing over b, | <b6<df2, (b, d)=
:' L, and applying Heilbronn's lemma, that

r'l Cl —El} s
! {b.§=1 { d

; 15 0Cd

Combining (70), (71), (

2 n(@:3),

d=AA'+-804"

(73)

where the sum on the right is taken over admissible solutions.

The sign (- 1)*~! ;4
(72) disappears because 1 1S even.

[t is now clear that, combining (69) and
divide through both sides of (69) by jj
tion y. The theorem js proved.

10, Remark s, a) Under the conditions of Theorem
; 2 +
the function y in terms of

(73), we obtain formula (68): we need only

0,i o} @ and recall the definition (67) of the func-

7.3, it is not hard to express
. Namely, if ad - bc = 1, then

y@:d) = 2 a (%) hﬂ(f)_

X* (I oc)

(74)

In facrt, then

8

6= {2, 2) - (2.0} - (2.0}

Using the definition of x", we find

Since, in addition, 10, jee}= - %x " (i) y*, it hence follows that (74) holds.
b) city laws in the form 5, = 1, where ¢

It is natural to write abelian recipro wher e
| are certain symbols and ! runs through the prime numbers and ~, We can ‘ormally

(



’ = 1 [, are th
derive an analogous relation from (51). Let L(X, s) = HIL!{A, s), where L, are the

local factors of the L- .series. We suppose that ﬂ {X = L(X, ) in the sense of

some type of (nonabsolure) convergence. For f‘i’r‘” we h'w:: 7 (\ = (1 —a, 1)/1

Hence from (51) we find

Muxnll(+ 2 y@:8) ) LX, D7 =1 5

112N {4 2N I sy 400

-1 rs g Ragiio 3 y fie
Here it is natural to associate the factor L(X. 1)™! to the point at infinity in the field

« la (51) with the Sato-Tate conjecture on the

¢) It 1s interesting to connect formu
The right side of (51) could

distribution of (a;) as | « ~ (see, for example, Serre [13]).

be trrat:d by an independent statistical investigation.
where {d ) are the successive denominators of

Lf_w, s book [7] contain facts on the

possibly
In fact, the sums X, &(d,, ¢ 1,1 h

the convergents to @, have been studied before.

discribution @lmost everywhere of such sums, for irrational a as well
We are interested in the mean of

(some natural

conditions ensuring convergence are imposed on ).
such sums over all rational 2 with fixed denominator ! and in the distribution of this

mean when [ - o. It was to solve such a problem that Heilbronn [6] proved Lemma 7. 7:
he was interested in the function & =1, and he obtained the principal temm of Its

asymptotic behavior. In our case the principal term 1s known in advance: itis [ + 1,

and a, is a ''random error.”
A natural approach to studying the sums (51) is to expand the function y in terms

of some elementary functions. For example, for N prime it would suffice to study the

distribution of the sums over admissible solutions of the form

2 LA (),

=AM+ 00"

where x i1s any multuplicative character mod N.
d) We would like to note a similarity between the considerations of this section

and the constructions in Chapters V and VI of Venkov's book [3]. Comparing these re-

nﬂﬂ may lead to a better understanding of them.
' ¢) The condition j; ®(z)dz £ 0 is only used to go from continued fractions to the

ﬁm ! = AA' + 88" If we do not insist on this, Theorem 3.5 allows us to give
Tf m for the coefficients of any parabolic forms.

e *
i 'l rf-' =
L
|-_.I . L

& i

e ._'.:~;':.*=‘..;,'
: u ; m of this section is tables of the functions x*(a) for a € Q,
" . m Xy of genus 1 for N = 11, 17, 19 and 27. Before proceeding to
discussio medmd to compute these tables and the possibilities for using
-4 gt hm place and recall all the notation needed here, which
e » f o _‘_ﬂ_w acticle.

.r"-r_h' .'Ir' \
'{hJ T J"

§8. Tables, their computation and use

L
ﬁ'r..
_,r.r

8. 1. Nululinn and definitions. The integer N >0 is fixed, H is the cumplu.
X uppe

halfplane, H = H U QU (i) and X NC) =T {N) \H. For any 2, BEH the symb
o 38 y

la, B Iy € H,(X,(C), R) JLSILndtt“thc homnlogy class of the path on X N(C) wh;c;

the image of a puth on H from o to 3. Further, PHZ/(N)) = lclasses of pai dl
(s ¢

= ¢ mod N, a’=dmudN{r, d) = 1|. The f :
unction &, : PHZ/(N
is defined by the equation - Hl(XN{CL ;
En(C: Zf) =43 & for any  ad — po —
Lff C Ihr L= 1-

| .Nuw let the genus of X N C) equal 1. Then the subgroup of c]asses in H ("f v(C),
invariant (anti-invariant) :Llat:w. to conjugation 1is :nfm:tr: cyclic; let } (y) bc a
ny

generator of this group.

After choosing y’ 3 ! :
r choosing y and y | the functions xg 2 Q ) i) «Q are defined by the

equations

lf—[.l' D}‘-; = {{I‘ D}.'..' :I:([I'.)T:_

The fundamental functions to be tabulated, which we first introduce here. are
]

cf PYZ/(N)) - Q, which are defined by the formulas

Sv(c:d)F gy (dic) =ty (c: d)y=. (76)
If we have at our disposal a table of the functions fH (their domain of definition con-
sists of N HPIN (1 + 1/p) points, and their range is the rational numbers with rather

sma
Il numerators and denominators), it is not hard to compute an arbitrarily long table

of the functions x; by using the formula

- (b - 8 - -17 =
% (-—) = F glg (=1 ax: ap-y), 77

a

where a = i
4,a__1» » @y = 1 are the denominators of the successive convergents

of b/a (:quatmn (77) is derived from the definitions and formula (16)). We further re-
call that the x* have period 1 and that x* is even and x~ is odd, so that we may limit
ourselves to the arguments 0 <b/a <k.

If in addition & (0': 1) # 0 (chis holds for all N for which the genus of Xy m
one), then we can tabulate the function YN : PYZ/(N)) » Q, which is defined bytﬁe

formula

g (c: d)

yn(c:d) = 7;—?(6'1

(and so it is proportional to &} N+ Nevertheless, it is instructive tc

from & n» because it is used for different purposes).

8.2. Use of the tables. a) The fundamental function &3 @
for computing x * "

_=
P

- L]
-
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'8 -
* - o B - - 3 0 f](l) br:c" 1 &
e - i CIONs t!u:‘lL d - - - -
{;;] J“‘-. i) over lbtll 11 extrension l {f k N‘} -~ 1 .'IUI-::)rn.II::{.‘-I“}' cancel out in the aum, so Ih h 3
pressed in terms of }’* g , at the result is ex-

. . ;
y are used to compute (N N

b) The functions Xy |
: ( C (), and also to compute the individual f these components corresponding to
Using the B

.II‘I-I‘.II}. 'I‘hvnrfnlﬁ 7} 3] tlﬂti “.]_ '_J

om below for the rank of the group N(K) (which, of |
,f,) Using Theorems 3.3 and 3. 5, to compute g4, ;}.}

¢ d. Here fi | :
‘ S 10r the classes

actors of

irch—Swinnerton-Dyer conjecture, We €0 ¢) To compute several coefficients of L(X. ) whicl
: A, 5), which are necessary i
=adly I Qfdﬂ'[ [c

he different Dirichlet characrers.

hen make hypothetical estimates fr
be verified independently

). Thus, for example, we can collect cxperimental f o
or the missing values of

- L = h ‘.1 !r'}l | o '.E Illi'll l -I-* L . { LI-

che behavior of the rank for su . P
I'he coefficients of these classes ace conipiited
L%

ank ina | -extension tower; persingular [, etc.).
; ' e . . the coefficients L(N. s) in any quantity using ¢), and the classes in the r . -

tion y. is used to compute the coefficients of LN, f \ s in the right side of (20) and (2 . _

¢) The func YA P 3 f(20) and (22) are computed as in d).

The urve X

1sing formula (511
1

In addition, the tables can simply be look ~d over with the idea of trying to observe

Z )
<t (7 = 2007 4 561 - 44).

' ' l“quation: v
inything curious. ] n: )

8.3. Computation of

the tables. The Erc:-mpil.ttmn of the tables of the funcuons

f; is in the first place based on Theorem 2.7 (and formula (12), wl‘:icﬂh iiﬂﬂL‘EL‘HS;II‘};tU | j l | ! |

-hoose y' and ) ). This theorem Llone is sufficient to compute & (c ¢ d) for all ¢ | = \ 3 U} + {:' U} ;

and 4 which are not divisors of-zero in 7./(N). In particular, if N is prime, then we - -

»btain in this way all values of &= except for the values at the points 1 : 0 and 0: 1 PHZASITNY s 0 ) Ol l $ o] 1 2: ) \ 31 \ 41 | 5:1 ! 5-1‘.?_, \ 8 -1 1'3'-‘ oot

(here and later we shall omit the tilde over the numbers. since no ambiguity can arise Yy —2 2 () 10 3| —D ] —10 | —10 | =5 - |

¢ N is fixed). To compute the missing values of £ we must then use Theorems 3.5 and g 2 9 ol 5| 10} O

3.5 (if N is prime Theorem 3.3 suffices) for any prime value of m, m 1 N. For this ® 5 _E 0 -2 —1 { 2 . il —1 | —2 0
ose we must know in advance several coefficients of the canonical L-series. & 0 0 0 0 i i 0 ol —1] —q al &

purp

The general plan is as follows.

a) To compile a list of the points PHZ/(N)). L] Ll | o2
. - o4 - : . H 1 1 T A R N R I ) 2 | 4 |V j3)j1]S
b) To solve the system of equations (14) and (15), i.e. to find integral linear ex- 2 13 8 ) Sl ST TILTAFTIRITL D451 ‘m ol Tl TG
pressions for the symbols (¢ :d) interms of independent parameters. The general vr@) |21 ] —1] —2| 3l—2 | —1 1} 2 d ] 3 d 5lalals
: B = 5
number of parameters equals x“(a) | 0|1 i 0o 1| 0] —1f 1 0| —1] 1| O 1 0 0l1
2(genus of X,;) + (number of parabolic points on X ) — 1.
F = ( I I E 3 4 5 4] 2 e
The parameters must be chosen so that only 2(genus of X ) parameters appearin the : BlEl |5 l“"‘a = | :4 \ 134 | 154 i 115 | 2 l i 1 AR R
~ ~ = ~ o i . 15| 15| 6| 16f 16] 16] 17
expression for (c : d) with ¢ and d not divisors of zero, l.e. 2 parameters appear i i |5 |l I
S : A —3| =3 2| 2 2| | —4 ] —1] —1| —1| 4| —2—2| 3| 3|—2
the case genus X, =1, which is the case we shall work with. AT () | O (—1] 0] f o 1 ] —1 g -
For N not very large (less than a hundred), the system (14)=(15) can easily be N i1 0 0 L= 0
solved by hand if we successively examine the 3-equations of (15) and the 2-equations
of (14) which "link’’ these 3-equations. Each time, if we solve the next 3-equation in B 12? 13? il |28l L8723 | a|516]| 78
; _ _ . 17| |8 B9 T8 9] 9|8 9| TS
which at least one of the unknowns has already been found using the previous 2-equation, .
either we obtain a new free parameter or else we obtain a relation among the old param _ 111]6
x“(a) (=11 O 2 2] 1| 4| —] 4| 4 2| —4| 1 0f 911|110

eters; if we use a reasonable procedure, the latter possibility rarely occurs.
+ - : L
¢) To choose y and ¥y from among the linear combinations of the symbols

(¢ : d) with ¢ and d not divisors of zero, and to compute & & 1 d) for these points a gl gy ] 8 l l ‘ 2| 4| 5] 8
g ;,-* 19( 21 20| 20| 20| 21| 2| 2| 2| A
. d) To compile a rather large table of the functions x*(b/a) for (a, N) = (b, N) =1, x: (@) | 1|23 2 2] 0| 0| 0 0
using formula (16). The “‘extra’’ parameters which may appear in the separate terms of the sum (@) =10 =1 21 0f 0| 0] O} 2 l 2

Moy

= w




LS T Y

S ; 7 H J N .
9 10| 11 | 2 A L . : .3 - 'Er 5% | 75 | 25 ' ! = S I . : | - .
"'23, 23, 3| 7l W | 7| W s es| 2| (25 6 %) 2 . i Al sl sl el w17l _:7 == "l'|i! ~ L3
Sr":{] 2 [—3[|—3] 2 | 1 i1 1j—4( 1171 (1 rr () 21 1 “!1 Pl —1f—1f ¢ 3 -
{ J—t]o [0 [—=t] t|jo|t|—t]—tf 0t |t 1 1 [ Tl el ag oo I L R T Y T2 ey
] " <3 £ 3 4 b I 5 I 2 48, 0] 0 0 | —1 i
~ s | 7| 9| | v | 2] 8|57 _'L’.!.[.' AL - VTR T T “T,‘——* — || L | S| 8T I T3 7%
%‘ST %J ":% % 7| 26 6 2| | 2| o 270 2| 2 = i 12 ) 3| 13| 3 13 [ 13| 14 14 _1%
| ) | =1 —1 —1] 3 -~
( |—1 (4 [—t]—=1]—1]4[|—=2]3 |=2|—2/-2(-2) 3] ST SErY BN B : 1] 1 0toflo]lolg]gq 1 1 4
—0 | 2] 2] | 1 —1 | 1 010
i 110 | —1 {0 0 1 2 U b 0121010 —1| 1 {
N AU T T O B ) L (K P G O . 2 2 i 7
% | 28| 28| W | 28| MW | 9] 2 20 ) 29[ 291 291 291 =29 ’ 3§ 15 15 15 Tz - - 2 LA
. | 15 16 16 16 16
ol g l—9l3 |3 |3 |—t]—=t|—t]—=t]—=1|—0]—=1|—1]A4 Xt (a) 2 | =2 | —2| 9 0 0 (
. ) | 3 | 4
ol ¢ | ol o |t |t |=t] tf s]=t| t]—=t| 1| {2 i | B el 51 2 i
| 0 2 2 (
)
|
In these (: s x b/
Wl ] ] B w1 2] u]| s ¢ tables x(b/a) mod 4 depends only on a.
. | ™| 2| T | T 30 30 30 30
. '-Ir-;}t'_" e X
@ |[—t] —1 | 4 4 4 (| —4 | G | .;, curve X
x” (z) 1 1| 2 0 0 | —I 2 | 1 U Equation: y° = 1(13 < 1612 4 ¢4r - 7¢).
Here we only publish the part of the tables compiled for FD“”' The values of (1 ;
x* were computed for all I1l-integral rational numbers with denominators < 83, and also L l__ ik U} + {—; : 0} ,
“A
with denominators 197 and 297 (19 and 29 are supersingular primes for X'} ).
In these tables x "(6/¢) mod > always depends only on «. In addition, in the tables mzal oo [ oy | Lpsb) 3o ) owey | g ‘ 6 e
- Rt : ' : 7 : :
|x*|59 and f:c]fj. { ] 1 | B:] 9:1 | 10:1
D) + - -
The curve X, t A 4 : ) 6
3 3 —2 | =2 | — 1 21 0 | o 2| 2
Equation: y* + xy = x° - 4x? + 4x - 15. & L 0] 0 U 0 1 {
0 0 0 0 0
. l 1
T“=={——- 0}-4_---—0‘
3’ 3"’
e e _ . PY(Z:419))
Pz am ool 0:1 {11 ?fl|3:1|4:l5:1|ﬁ:1‘7:1|u:|:9:1 01zl s sy
_ | F : | ' Y
T A —2|—=2|—Al—-4| —2| -2 2| 0 21 4 o g*
' | -
1745 9l 2 41 lt] 0 {<i]-2} 0 ” |
b O Of—~t|—t|—4] 0 |—1]| o o . . llrilyi. .
| } I 2|73 4 5
e e
.'I-'+(‘§’.j 2 2 1 =
Tlz) (0] 0 % 1 {

i
o -
-ﬁ"_—_p..ﬂ
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-*fi' 11 —l_;l Sl alas) sl 1afsite: WL I IR I T e o IS T O ol vl vl O vl Aol I
4 |—1|—1| 2
ol 31 o {]..-2-—214113_1 i f<il © @2ttt —tf2fl2lolofo|o|—t|—t1] 2] 2] 2|
ol 1] oflo] of oft |0 g 0pt gt tfojofofojolof 1] 1o ol ol o
o 5 | b ! —%- —I _5_ _T_ 2 J
AT 3 REEENEN RS 18 ( L (A . T (- Vi (. ) (s ) [ (O R 31 s 7] v ] 213
a : 1?5 IIE _Ifi_ﬁ w E el 17| mlar par L (7 (17 | las 118 1 BiIB|W¥W IR |TFT|Wlw|w]|ie |7 |16 u:. il vl e 1; 15? 1?
15
- P 9 2 2 ﬂ d‘ q
ﬁ(u)idi’—-iﬂ-iz-—iv-...-iﬁﬂﬂ o bag o] = x*(3) | 1 f | ! L =21t |1 |{—t)—t]2|2]0lolol|ololo
r{u}iﬂﬂiﬂiﬂiﬂi ‘ e bttt fo )t =1t tolofolololololo
- these tables x ‘(b/a) mod 3 depends only on )
|
oo XA 7 H ] 2 13 4 5 7 v 8 9 l 3 I
The curve X, " 7l v |wjie|lwo|{elw|wm || % | % 2—% % Eli'
5 s x multiplication). ' |
quation: }’: = 4x° + 1 (curve with comple P atfx) | 3 J OO0} 0 31010 3 3 | —1 | —1 2 2 {
_ 1 o) - 1 0}. (@11t fofolroloft1t]Of|o0] 1 { | —I it 0 0 | —t
e
- . - T:1|8:1 gfimzllli'l‘l'l:‘ R G R S 2 41 3 i 0 b Tl 8 9l |1
pr(z/(27y) |1:0 0t | L: 2:1 13.I\-¢.l ‘5.115 II i l l i 33 7 53 = = 5 5 = gl oy |lole :
s - ; -3 1—=3
| 3| 3|0 |[—=3]0 |—1}0 |9
g . =2 2 |0 | 6; 3 : i «(2) (| —2( 4 [ 1 | 4 | 4] =2]1—=2{ 14 1o}l t]lstael1]a
" 20 21 |—2|=t]|—t|-t|o | 1o} |0} 1 X~ (1) of ¢t |t |1 |—=t] of olt |t |tltl1l1l1]lo
3 3
i 1 : ) 2 0 ! .-
5. o] 00| 0] = iy 1335 Y| 3
e || 23| A e 2|8l tials)alseslu
| 25 | 25 | 25 25 | 93 25 |25 | o5 ”El?‘ % | 2% |2 |26 | ¥ | B
I v 2 | { y
| vl 2 =1l =t =1l —=t] 2 f2l2al2lolololol: 3
g 13:3 1 14:0 ] 15:1 J16:1 | 17:1 g1 | 19:1 |20z 2o 222l (*) ) | 310 |3
PLZIGIY) § 18 * ' X)) |0 1 1 { [ ojlojoflololol2lt]o0]1
y -8 |61 -8 |—-3]| 0 | —t 0o =3 1] 0 3 : |
1 | - = | -
t+ 2 2 1 { 0 -3— () { U —1 | ! In these tables x (b/a) mod 3 depends only on «.
i
1 ] : i —1 : ~T /7
£ 0 0 __._5 = 0 __i 0 —1 | — 3 Received 10/0CT/71
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