2.5 Visibility of Shafarevich-Tate Groups

Let K be a number field. Suppose

$$0 \to A \to B \to C \to 0$$

is an exact sequence of abelian varieties over K. (Thus each of A, B, and C is a complete group variety over K, whose group is automatically abelian.) Then there is a corresponding long exact sequence of cohomology for the group $\operatorname{Gal}(\overline{\mathbf{Q}}/K)$:

$$0 \to A(K) \to B(K) \to C(K) \xrightarrow{\delta} H^{1}(K, A) \to H^{1}(K, B) \to H^{1}(K, C) \to \cdots$$

The study of the Mordell-Weil group $C(K) = H^0(K, C)$ is popular in arithmetic geometry. For example, the Birch and Swinnerton-Dyer conjecture (BSD conjecture), which is one of the million dollar Clay Math Problems, asserts that the dimension of $C(K) \otimes \mathbf{Q}$ equals the ordering vanishing of L(C, s) at s = 1.

The group $H^1(K, A)$ is also of interest in connection with the BSD conjecture, because it contains the Shafarevich-Tate group

$$\mathrm{III}(A) = \mathrm{III}(A/K) = \mathrm{Ker}\left(\mathrm{H}^{1}(K, A) \to \bigoplus_{v} \mathrm{H}^{1}(K_{v}, A)\right) \subset \mathrm{H}^{1}(K, A),$$

where the sum is over all places v of K (e.g., when $K = \mathbf{Q}$, the fields K_v are \mathbf{Q}_p for all prime numbers p and $\mathbf{Q}_{\infty} = \mathbf{R}$).

The group A(K) is fundamentally different than $H^1(K, C)$. The Mordell-Weil group A(K) is finitely generated, whereas the first Galois cohomology $H^1(K, C)$ is far from being finitely generated—in fact, every element has finite order and there are infinitely many elements of any given order.

This talk is about "dimension shifting", i.e., relating information about $H^0(K, C)$ to information about $H^1(K, A)$.

2.5.1 Definitions

Elements of $\mathrm{H}^{0}(K, C)$ are simply points, i.e., elements of C(K), so they are relatively easy to "visualize". In contrast, elements of $\mathrm{H}^{1}(K, A)$ are Galois cohomology classes, i.e., equivalence classes of set-theoretic (continuous) maps $f : \mathrm{Gal}(\overline{\mathbf{Q}}/K) \to A(\overline{\mathbf{Q}})$ such that $f(\sigma\tau) = f(\sigma) + \sigma f(\tau)$. Two maps are equivalent if their difference is a map of the form $\sigma \mapsto \sigma(P) - P$ for some fixed $P \in A(\overline{\mathbf{Q}})$. From this point of view H^{1} is more mysterious than H^{0} .

There is an alternative way to view elements of $\mathrm{H}^1(K, A)$. The WC group of A is the group of isomorphism classes of principal homogeneous spaces for A, where a principal homogeneous space is a variety X and a map $A \times X \to X$ that satisfies the same axioms as those for a simply transitive group action. Thus X is a twist as variety of A, but $X(K) = \emptyset$, unless $X \approx A$. Also, the nontrivial elements of $\mathrm{III}(A)$ correspond to the classes in WC that have a K_v -rational point for all places v, but no K-rational point.

Mazur introduced the following definition in order to help unify diverse constructions of principal homogeneous spaces: 20 2. The Birch and Swinnerton-Dyer Conjecture

Definition 2.5.1 (Visible). The visible subgroup of $H^1(K, A)$ in B is

$$\operatorname{Vis}_{B} \operatorname{H}^{1}(K, A) = \operatorname{Ker}(\operatorname{H}^{1}(K, A) \to \operatorname{H}^{1}(K, B))$$
$$= \operatorname{Coker}(B(K) \to C(K)).$$

Remark 2.5.2. Note that $\operatorname{Vis}_B \operatorname{H}^1(K, A)$ does depend on the embedding of A into B. For example, suppose $B = B_1 \times A$. Then there could be nonzero visible elements if A is embedding into the first factor, but there will be no nonzero visible elements if A is embedded into the second factor. Here we are using that $\operatorname{H}^1(K, B_1 \times A) = \operatorname{H}^1(K, B_1) \oplus \operatorname{H}^1(K, A)$.

The connection with the WC group of A is as follows. Suppose

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

is an exact sequence of abelian varieties and that $c \in H^1(K, A)$ is visible in B. Thus there exists $x \in C(K)$ such that $\delta(x) = c$, where $\delta : C(K) \to H^1(K, A)$ is the connecting homomorphism. Then $X = \pi^{-1}(x) \subset B$ is a translate of A in B, so the group law on B gives X the structure of principal homogeneous space for A, and one can show that the class of X in the WC group of A corresponds to c.

Lemma 2.5.3. The group $\operatorname{Vis}_B \operatorname{H}^1(K, A)$ is finite.

Proof. Since $\operatorname{Vis}_B \operatorname{H}^1(K, A)$ is a homomorphic image of the finitely generated group C(K), it is also finitely generated. On the other hand, it is a subgroup of $\operatorname{H}^1(K, A)$, so it is a torsion group. The lemma follows since a finitely generated torsion abelian group is finite.

2.5.2 Every Element of $H^1(K, A)$ is Visible Somewhere

Proposition 2.5.4. Let $c \in H^1(K, A)$. Then there exists an abelian variety $B = B_c$ and an embedding $A \hookrightarrow B$ such that c is visible in B.

Proof. By definition of Galois cohomology, there is a finite extension L of K such that $\operatorname{res}_L(c) = 0$. Thus c maps to 0 in $\operatorname{H}^1(L, A_L)$. By a slight generalization of the Shapiro Lemma from group cohomology (which can be proved by dimension shifting; see, e.g., Atiyah-Wall in Cassels-Frohlich), there is a canonical isomorphism

$$\mathrm{H}^{1}(L, A_{L}) \cong \mathrm{H}^{1}(K, \mathrm{Res}_{L/K}(A_{L})) = \mathrm{H}^{1}(K, B),$$

where $B = \operatorname{Res}_{L/K}(A_L)$ is the Weil restriction of scalars of A_L back down to K. The restriction of scalars B is an abelian variety of dimension $[L:K] \cdot \dim A$ that is characterized by the existence of functorial isomorphisms

$$\operatorname{Mor}_{K}(S, B) \cong \operatorname{Mor}_{L}(S_{L}, A_{L}),$$

for any K-scheme S, i.e., $B(S) = A_L(S_L)$. In particular, setting S = A we find that the identity map $A_L \to A_L$ corresponds to an injection $A \hookrightarrow B$. Moreover, $c \mapsto \operatorname{res}_L(c) = 0 \in \operatorname{H}^1(K, B)$.

Remark 2.5.5. The abelian variety B in Proposition 2.5.4 is a twist of a power of A.

2.5.3 Visibility in the Context of Modularity

Usually we focus on visibility of elements in III(A). There are a number of other results about visibility in various special cases, and large tables of examples in the context of elliptic curves and modular abelian varieties. There are also interesting modularity questions and conjectures in this context.

Motivated by the desire to understand the Birch and Swinnerton-Dyer conjecture more explicitly, I developed (with significant input from Agashe, Cremona, Mazur, and Merel) computational techniques for unconditionally constructing Shafarevich-Tate groups of modular abelian varieties $A \subset J_0(N)$ (or $J_1(N)$). For example, if $A \subset J_0(389)$ is the 20-dimensional simple factor, then

$$\mathbf{Z}/5\mathbf{Z} \times \mathbf{Z}/5\mathbf{Z} \subset \mathrm{III}(A),$$

as predicted by the Birch and Swinnerton-Dyer conjecture. See [CM00] for examples when dim A = 1. We will spend the rest of this section discussing the examples of [ASb, AS02] in more detail.

Tables 2.5.1–2.5.4 illustrate the main computational results of [ASb]. These tables were made by gathering data about certain arithmetic invariants of the 19608 abelian varieties A_f of level ≤ 2333 . Of these, exactly 10360 have satisfy $L(A_f, 1) \neq 0$, and for these with $L(A_f, 1) \neq 0$, we compute a divisor and multiple of the conjectural order of $III(A_f)$. We find that there are at least 168 such that the Birch and Swinnerton-Dyer Conjecture implies that $III(A_f)$ is divisible by an odd prime, and we prove for 37 of these that the odd part of the conjectural order of $III(A_f)$ really divides $\#III(A_f)$ by constructing nontrivial elements of $III(A_f)$ using visibility.

The meaning of the tables is as follows. The first column lists a level N and an isogeny class, which uniquely specifies an abelian variety $A = A_f \subset J_0(N)$. The *n*th isogeny class is given by the *n*th letter of the alphabet. We will not discuss the ordering further, except to note that usually, the dimension of A, which is given in the second column, is enough to determine A. When $L(A, 1) \neq 0$, Conjecture 2.2.1 predicts that

$$\#\mathrm{III}(A) \stackrel{?}{=} \frac{L(A,1)}{\Omega_A} \cdot \frac{\#A(\mathbf{Q})_{\mathrm{tor}} \cdot \#A^{\vee}(\mathbf{Q})_{\mathrm{tor}}}{\prod_{p \mid N} c_p}.$$

We view the quotient $L(A, 1)/\Omega_A$, which is a rational number, as a single quantity. We can compute multiples and divisors of every quantity appearing in the right hand side of this equation, and this yields columns three and four, which are a divisor S_{ℓ} and a multiple S_u of the conjectural order of III(A) (when $S_u = S_{\ell}$, we put an equals sign in the S_u column). Column five, which is labeled odd deg(φ_A), contains the odd part of the degree of the polarization

$$\varphi_A : (A \hookrightarrow J_0(N) \cong J_0(N)^{\vee} \to A^{\vee}). \tag{2.5.1}$$

The second set of columns, columns six and seven, contain an abelian variety $B = B_g \subset J_0(N)$ such that $\#(A \cap B)$ is divisible by an odd prime divisor of S_ℓ and L(B, 1) = 0. When dim(B) = 1, we have verified that B is an elliptic curve of rank 2. The eighth column $A \cap B$ contains the group structure of $A \cap B$, where e.g., $[2^2302^2]$ is shorthand notation for $(\mathbb{Z}/2\mathbb{Z})^2 \oplus (\mathbb{Z}/302\mathbb{Z})^2$. The final column, labeled Vis, contains a divisor of the order of Vis_{A+B}(III(A)).

The following proposition explains the significance of the odd $\deg(\varphi_A)$ column.

22 2. The Birch and Swinnerton-Dyer Conjecture

Proposition 2.5.6. If $p \nmid \deg(\varphi_A)$, then $p \nmid \operatorname{Vis}_{J_0(N)}(\operatorname{H}^1(\mathbf{Q}, A))$.

Proof. There exists a complementary morphism $\hat{\varphi}_A$, such that $\varphi_A \circ \hat{\varphi}_A = \hat{\varphi}_A \circ \varphi_A = [n]$, where n is the degree of φ_A . If $c \in \mathrm{H}^1(\mathbf{Q}, A)$ maps to 0 in $\mathrm{H}^1(\mathbf{Q}, J_0(N))$, then it also maps to 0 under the following composition

$$\mathrm{H}^{1}(\mathbf{Q}, A) \to \mathrm{H}^{1}(\mathbf{Q}, J_{0}(N)) \to \mathrm{H}^{1}(\mathbf{Q}, A^{\vee}) \xrightarrow{\varphi_{A}} \mathrm{H}^{1}(\mathbf{Q}, A).$$

Since this composition is [n], it follows that $c \in H^1(\mathbf{Q}, A)[n]$, which proves the proposition.

Remark 2.5.7. Since the degree of φ_A does not change if we extend scalars to a number field K, the subgroup of $\mathrm{H}^1(K, A)$ visible in $J_0(N)_K$, still has order divisible only by primes that divide $\mathrm{deg}(\varphi_A)$.

The following theorem explains the significance of the B column, and how it was used to deduce the Vis column.

Theorem 2.5.8. Suppose A and B are abelian subvarieties of an abelian variety C over \mathbf{Q} and that $A(\overline{\mathbf{Q}}) \cap B(\overline{\mathbf{Q}})$ is finite. Assume also that $A(\mathbf{Q})$ is finite. Let N be an integer divisible by the residue characteristics of primes of bad reduction for C (e.g., N could be the conductor of C). Suppose p is a prime such that

$$p \nmid 2 \cdot N \cdot \#((A+B)/B)(\mathbf{Q})_{\mathrm{tor}} \cdot \#B(\mathbf{Q})_{\mathrm{tor}} \cdot \prod_{\ell} c_{A,\ell} \cdot c_{B,\ell},$$

where $c_{A,\ell} = \#\Phi_{A,\ell}(\mathbf{F}_{\ell})$ is the Tamagawa number of A at ℓ (and similarly for B). Suppose furthermore that $B(\overline{\mathbf{Q}})[p] \subset A(\overline{\mathbf{Q}})$ as subgroups of $C(\overline{\mathbf{Q}})$. Then there is a natural injection

$$B(\mathbf{Q})/pB(\mathbf{Q}) \hookrightarrow \operatorname{Vis}_C(\operatorname{III}(A)).$$

A complete proof of a generalization of this theorem can be found in [AS02].

Sketch of Proof. Without loss of generality, we may assume C = A + B. Our hypotheses yield a diagram

where B' = C/A. Taking Gal($\overline{\mathbf{Q}}/\mathbf{Q}$)-cohomology, we obtain the following diagram:

The snake lemma and our hypothesis that $p \nmid \#(C/B)(\mathbf{Q})_{\text{tor}}$ imply that the rightmost vertical map is an injection

$$i: B(\mathbf{Q})/pB(\mathbf{Q}) \hookrightarrow \operatorname{Vis}_C(\operatorname{H}^1(\mathbf{Q}, A)),$$
 (2.5.2)

since $C(A)/(A(\mathbf{Q}) + B(\mathbf{Q}))$ is a sub-quotient of $(C'/B)(\mathbf{Q})$.

We show that the image of (2.5.2) lies in III(A) using a local analysis at each prime, which we now sketch. At the archimedian prime, no work is needed since $p \neq 2$. At non-archimedian primes ℓ , one uses facts about Néron models (when $\ell = p$) and our hypothesis that p does not divide the Tamagawa numbers of B (when $\ell \neq p$) to show that if $x \in B(\mathbf{Q})/pB(\mathbf{Q})$, then the corresponding cohomology class $\operatorname{res}_{\ell}(i(x)) \in \operatorname{H}^{1}(\mathbf{Q}_{\ell}, A)$ splits over the maximal unramified extension. However,

$$\mathrm{H}^{1}(\mathbf{Q}_{\ell}^{\mathrm{ur}}/\mathbf{Q}_{\ell}, A) \cong \mathrm{H}^{1}(\overline{\mathbf{F}}_{\ell}/\mathbf{F}_{\ell}, \Phi_{A,\ell}(\overline{\mathbf{F}}_{\ell})),$$

and the right hand cohomology group has order $c_{A,\ell}$, which is coprime to p. Thus $\operatorname{res}_{\ell}(i(x)) = 0$, which completes the sketch of the proof.

2.5.4 Future Directions

The data in Tables 2.5.1-2.5.4 could be investigated further.

It should be possible to replace the hypothesis that $B[p] \subset A$, with the weaker hypothesis that $B[\mathfrak{m}] \subset A$, where \mathfrak{m} is a maximal ideal of the Hecke algebra \mathbf{T} . For example, this improvement would help one to show that 5^2 divides the order of the Shafarevich-Tate group of **1041E**. Note that for this example, we only know that L(B, 1) = 0, not that $B(\mathbf{Q})$ has positive rank (as predicted by Conjecture 2.1.5), which is another obstruction.

One can consider visibility at a higher level. For example, there are elements of order 3 in the Shafarevich-Tate group of **551H** that are not visible in $J_0(551)$, but these elements are visible in $J_0(2 \cdot 551)$, according to the computations in [Ste03] (Studying the Birch and Swinnerton-Dyer Conjecture for Modular Abelian Varieties Using MAGMA).

Conjecture 2.5.9 (Stein). Suppose $c \in \text{III}(A_f)$, where $A_f \subset J_0(N)$. Then there exists M such that c is visible in $J_0(NM)$. In other words, every element of $\text{III}(A_f)$ is "modular".

A	dim	$\frac{15151110y}{S_l}$	S_u	$\overline{\operatorname{odd}\operatorname{deg}(\varphi_A)}$	B din		Vis
389E*	20	$\frac{\sim l}{5^2}$	=	5	389A 1	$[20^2]$	5^{2}
433D*	16^{-0}	7^2	=	$7 \cdot 111$	433A 1	$[14^2]$	7^2
446F*	8	11^{2}	=	11.359353	446B 1	$[11^2]$	11^{2}
551H	18	3^{2}	=	169	NONE		11
563E*	31	$\frac{0}{13^2}$	=	13	563A 1	$[26^2]$	13^{2}
571D*	2	3^{2}	=	$3^2 \cdot 127$	571B 1	$[3^2]$	$\frac{10}{3^2}$
655D*	$\frac{2}{13}$	$\frac{3}{3^4}$	=	$3^2 \cdot {}_{9799079}$	655A 1	$[36^2]$	3^{4}
681B	10	$\frac{3}{3^2}$	=	$3^{.9799079}$ $3_{.125}$	681C 1	$[3^{0}]$	-
707G*	15	$\frac{1}{13^2}$		$\frac{13 \cdot 300077}{13 \cdot 300077}$	707A 1	$[13^2]$	13^{2}
709C*	30^{10}	11^{10}	=	11	709A 1	[13] $[22^2]$	11^{10}
718F*	7	7^{2}	=	$7_{\cdot 5371523}$	718B 1	$[7^2]$	7^{2}
767F	23	3^{2}	=	1	NONE	[']	
794G	12	11^2	=	11.34986189	794A 1	$[11^2]$	
817E	$12 \\ 15$	7^{2}	=	7.79	817A 1	$[7^2]$	_
959D	24	3^{2}	=	583673	NONE	[•]	
997H*	$\frac{21}{42}$	3^{4}	=	3^{2}	997B 1	$[12^2]$	3^2
	_	-		-	997C 1	$[24^2]$	3^{2}
1001F	3	3^{2}	=	$3^2 \cdot {}_{1269}$	1001C 1	$[3^2]$	_
	Ŭ.	, in the second s			91A 1	$[3^2]$	_
1001L	7	7^{2}	=	$7 \cdot _{2029789}$	1001C 1	$[7^2]$	_
1041E	4	5^{2}	=	$5^2 \cdot 13589$	1041B 2	$[5^2]$	_
1041J	13	5^4	=	$5^3 \cdot 21120929983$	1041B 2	$[5^4]$	_
1058D	1	5^{2}	=	$5 \cdot {}_{483}$	1058C 1	$[5^2]$	_
1061D	46	151^{2}	=	151_{10919}	1061B 2	$[2^2 3 0 2^2]$	_
1070M	7	3.5^{2}	$3^2 \cdot 5^2$	$2 3 \cdot 5 \cdot {}_{1720261}$	1070A 1	$[15^2]$	_
1077J	15	3^4	=	$3^2 \cdot _{\scriptscriptstyle 1227767047943}$	1077A 1	$[9^2]$	_
1091C	62	7^{2}	=	1	NONE		
1094F*	13	11^{2}	=	$11^2 \cdot {}_{172446773}$	1094A 1	$[11^2]$	11^{2}
1102K	4	3^{2}	=	$3^2 \cdot 31009$	1102A 1	$[3^2]$	_
1126F*	11	11^{2}	=	11.13990352759	1126A 1	$[11^{2}]$	11^{2}
1137C	14	3^4	=	$3^2 \cdot {}_{64082807}$	1137A 1	$[9^2]$	_
1141I	22	7^{2}	=	$7_{.528921}$	1141A 1	$[14^2]$	_
1147H	23	5^{2}	=	5_{229}	1147A 1	$[10^2]$	—
1171D*		11^{2}	=	$11 \cdot 81$	1171A 1	$[44^2]$	11^{2}
1246B	1	5^{2}	=	$5 \cdot 81$	1246C 1	$[5^2]$	—
1247D	32	3^{2}	=	$3^2 \cdot {}_{2399}$	43A 1	$[36^2]$	_
1283C	62	5^{2}	=	5_{2419}	NONE		
1337E	33	3^{2}	=	71	NONE		
1339G	30	3^{2}	=	5776049	NONE		
1355E	28	3	3^{2}	3^2 ·2224523985405	NONE		
1363F	25	31^{2}	=	$31_{\cdot 34889}$	1363B 2	$[2^2 6 2^2]$	_
1429B	64	5^{2}	=	1	NONE		
1443G	5	7^{2}	=	$7^2 \cdot {}_{18525}$	1443C 1	$[7^{1}14^{1}]$	—
1446N	7	3^{2}	=	$3_{\cdot_{17459029}}$	1446A 1	$[12^2]$	_

TABLE 2.5.1. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

$A \dim$	S_l	$\frac{S_u}{S_u}$	$\frac{\operatorname{odd} \operatorname{deg}(\varphi_A)}{\operatorname{odd} \operatorname{deg}(\varphi_A)}$		lim	$A \cap B$	Vis
1466H* 23	$\frac{321}{13^2}$	=	$13_{25631993723}$	1466B	1	$[26^2]$	13^2
1477C* 24	13^{2}	=	$13_{57037637}$	1477A	1	$[13^2]$	13^{2}
1481C 71	13^{13^2}	_		NONE	T		10
1481C 71 1483D* 67	$3^{2} \cdot 5^{2}$	_	$3 \cdot 5$	1483A	1	$[60^2]$	$3^2 \cdot 5^2$
1483D * 07 1513F 31	3	$\frac{-}{3^4}$	$\frac{3.3}{3.759709}$	NONE	1		3.0
	5^{2}						
1529D 36		$=$ 3^2	535641763	NONE	1	[402]	
1531D 73 1534J 6	3 3	3^{-} 3^{2}	${3\atop 3^2\cdot_{635931}}$	1531A 1534B	1	$[48^2]$ $[6^2]$	_
	$\frac{3}{3^2}$	3-			1		_
	$\frac{3^{-}}{11^{2}}$		$3_{\cdot_{110659885}}$	141A	1	$[15^2]$	_
1559B 90		=	1	NONE	0	[4411402]	
1567D 69	$7^2 \cdot 41^2$	=	7.41	1567B	3	$[4^41148^2]$	
1570J* 6	11^{2}	=	11.228651397	1570B	1	$[11^2]$	11^{2}
1577E 36	3	3^{2}	$3^2 \cdot 15}$	83A	1	$[6^2]$	—
1589D 35	3^{2}	=	6005292627343	NONE		- 01	0
1591F* 35	31^{2}	=	31_{2401}	1591A	1	$[31^2]$	31^{2}
1594J 17	3^{2}	=	$3 \cdot _{^{259338050025131}}$	1594A	1	$[12^2]$	_
1613D * 75	5^{2}	=	$5 \cdot {}_{19}$	1613A	1	$[20^2]$	5^{2}
1615J 13	3^{4}	=	$3^2 \cdot {}_{13317421}$	1615A	1	$[9^118^1]$	—
1621C * 70	17^{2}	=	17	1621A	1	$[34^2]$	17^{2}
1627C * 73	3^4	=	3^2	1627A	1	$[36^2]$	3^4
1631C 37	5^{2}	=	6354841131	NONE			
1633D 27	$3^6 \cdot 7^2$	=	$3^5 \!\cdot\! 7 \!\cdot_{\scriptscriptstyle 31375}$	1633A	3	$[6^4 4 2^2]$	—
1634K 12	3^2	=	$3 \cdot _{3311565989}$	817A	1	$[3^2]$	_
1639G * 34	17^{2}	=	$17 \cdot _{82355}$	1639B	1	$[34^2]$	17^{2}
1641J * 24	23^{2}	=	$23_{1491344147471}$	1641B	1	$[23^2]$	23^{2}
1642D * 14	7^{2}	=	$7 \cdot {}_{123398360851}$	1642A	1	$[7^2]$	7^{2}
1662K 7	11^{2}	=	$11_{16610917393}$	1662A	1	$[11^2]$	_
1664K 1	5^{2}	=	$5 \cdot _{7}$	1664N	1	$[5^2]$	_
1679C 45	11^{2}	=	6489	NONE			
1689E 28	3^2	=3	· 172707180029157365	563A	1	$[3^2]$	_
1693C 72	1301^{2}	=	1301	1693A	3	$[2^4 260 2^2]$	_
1717H*34	13^{2}	=	13_{2345}	1717B	1	$[26^2]$	13^{2}
1727E 39	3^{2}	=	118242943	NONE			
1739F 43	659^{2}	=	$659_{151291281}$	1739C	2	$[2^2 1 3 1 8^2]$	_
1745K 33	5^{2}	=	$5 \cdot {}_{1971380677489}$	1745D	1	$[20^2]$	_
1751C 45	5^{2}	=	$5 \cdot _{707}$	103A	2	$[505^2]$	_
1781D 44	3^{2}	=	61541	NONE			
1793G* 36	23^{2}	=	$23_{*8846589}$	1793B	1	$[23^2]$	23^{2}
1799D 44	5^{2}	=	201449	NONE			
1811D 98	31^{2}	=	1	NONE			
1829E 44	13^{2}	=	3595	NONE			
1843F 40	3^{2}	=	8389	NONE			
1847B 98	3^6	=	1	NONE			
1871C 98	19^{2}	=	14699	NONE			
			-				

TABLE 2.5.2. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

26 2. The Birch and Swinnerton-Dyer Conjecture

A dim	S_l	S_u	$\operatorname{odd} \operatorname{deg}(\varphi_A)$	B dim	$A \cap B$	Vis
1877B 86	7^{2}	=	1	NONE		
1887J 12	5^{2}	=	$5_{10825598693}$	1887A 1	$[20^2]$	_
1891H 40	7^{4}	=	$7^2 \cdot {}_{44082137}$	1891C 2	$[4^{2}196^{2}]$	_
1907D * 90	7^{2}	=	7_{165}	1907A 1	$[56^2]$	7^{2}
1909D * 38	3^4	=	$3^2 \cdot {}_{9317}$	1909A 1	$[18^2]$	3^4
1913B * 1	3^{2}	=	3_{103}	1913A 1	$[3^2]$	3^2
1913E 84	$5^4 \cdot 61^2$	=	$5^2 \cdot 61 \cdot {}_{103}$	1913A 1	$[10^2]$	_
				1913C 2	$[2^{2}610^{2}]$	_
1919D 52	23^{2}	=	675	NONE		
1927E 45	3^{2}	3^{4}	52667	NONE		
1933C 83	$3^{2} \cdot 7$	$3^{2} \cdot 7^{2}$	$3 \cdot 7$	1933A 1	$[42^2]$	3^2
1943E 46	13^{2}	=	62931125	NONE		
1945E * 34	3^{2}	=	$3 \cdot {}_{571255479184807}$	389A 1	$[3^2]$	3^{2}
1957E * 37	$7^2 \cdot 11^2$	=	$7 \cdot 11 \cdot {}_{3481}$	1957A 1	$[22^{2}]$	11^{2}
				1957B 1	$[14^2]$	7^2
1979C 104	19^{2}	=	55	NONE		
1991C 49	7^{2}	=	1634403663	NONE		
1994D 26	3	3^{2}	$3^2 \cdot _{\scriptscriptstyle 46197281414642501}$	997B 1	$[3^2]$	_
1997C 93	17^{2}	=	1	NONE		
2001L 11	3^{2}	=	$3^2 \cdot {}_{44513447}$	NONE		
2006E 1	3^{2}	=	$3 \cdot _{805}$	2006D 1	$[3^2]$	_
2014L 12	3^{2}	=	$3^2 \cdot {}_{126381129003}$	106A 1	$[9^2]$	_
2021E 50	5^6	=	$5^2 \cdot _{729}$	2021A 1	$[100^2]$	5^4
2027C * 94	29^{2}	=	29	2027A 1	$[58^2]$	29^{2}
2029C 90	$5^2 \cdot 269^2$	=	5.269	2029A 2	$[2^2 2 6 9 0^2]$	_
2031H * 36	11^{2}	=	$11_{\cdot_{1014875952355}}$	2031C 1	$[44^2]$	11^{2}
2035K 16	11^{2}	=	$11_{\cdot 218702421}$	2035C 1	$[11^122^1]$	_
2038F 25	5	5^{2}	$5^2 \cdot {}_{92198576587}$	2038A 1	$[20^2]$	—
				1019B 1	$[5^2]$	_
2039F 99	$3^4 \cdot 5^2$	=	13741381043009	NONE		
2041C 43	3^{4}	=	61889617	NONE		
2045I 39	3^{4}	=	$3^3 \cdot _{_{3123399893}}$	2045C 1	$[18^2]$	_
	-			409A 13	$[9370199679^2]$	_
2049D 31	3^{2}	=	29174705448000469937	NONE	-	
2051D 45	7^{2}	=	$7_{-674652424406369}$	2051A 1	$[56^2]$	—
2059E 45	5.7^{2}	$5^2 \cdot 7^2$	$5^2 \!\cdot\! 7 \!\cdot_{ ext{167359757}}$	2059A 1	$[70^2]$	—
2063C 106	13^{2}	=	8479	NONE		
2071F 48	13^{2}	=	36348745	NONE		
2099B 106	3^{2}	=	1	NONE		
2101F 46	5^{2}	=	$5_{\cdot_{11521429}}$	191A 2	$[155^2]$	_
2103E 37	$3^2 \cdot 11^2$	$= 3^{2}$	$2 \cdot 11 \cdot _{874412923071571792611}$	2103B 1	$[33^2]$	11^{2}
2111B 112	211^{2}	=	1	NONE		
2113B 91	7^{2}	=	1	NONE	- 0-	c
2117E * 45	19^{2}	=	$19_{1078389}$	2117A 1	$[38^2]$	19^{2}

TABLE 2.5.3. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim	S_l	S_u	odd deg(φ_A)	B din	$A \cap B$	Vis
2119C 48	7^2	=	89746579	NONE		
2127D 34	3^{2}	=	$3 \cdot {}_{18740561792121901}$	709A 1	$[3^2]$	_
2129B 102	3^{2}	=	1	NONE	[~]	
2130Y 4	7^{2}	=	$7 \cdot _{83927}$	2130B 1	$[14^2]$	_
2131B 101	17^{2}	=	1	NONE		
2134J 11	3^{2}	=	1710248025389	NONE		
2146J 10	7^{2}	=	$7_{.1672443}$	2146A 1	$[7^2]$	_
2159E 57	13^{2}	=	31154538351	NONE		
2159D 56	3^{4}	=	233801	NONE		
2161C 98	23^{2}	=	1	NONE		
2162H 14	3	3^{2}	$3_{\cdot 6578391763}$	NONE		
2171E 54	13^{2}	=	271	NONE		
2173H 44	199^{2}	=	$199 \cdot _{3581}$	2173D 2	$[398^2]$	_
2173F 43	19^{2}	$3^2 \cdot 19^3$	2 $3^2 \cdot 19 \cdot {}_{229341}$	2173A 1	$[38^2]$	19^{2}
2174F 31	5^{2}	=	$5_{21555702093188316107}$	NONE		
2181E 27	7^{2}	=	$7_{\scriptstyle \cdot 7217996450474835}$	2181A 1	$[28^2]$	_
2193K 17	3^{2}	=	$3 \cdot {}_{15096035814223}$	129A 1	$[21^2]$	_
2199C 36	7^{2}	=	$7^2 \cdot {}_{13033437060276603}$	NONE		
2213C 101	3^{4}	=	19	NONE		
2215F 46	13^{2}	=	$13_{1182141633}$	2215A 1	$[52^2]$	_
2224R 11	79^{2}	=	79	2224G 2	$[79^2]$	_
2227E 51	11^{2}	=	259	NONE		
2231D 60	47^{2}	=	91109	NONE		
2239B 110	11^{4}	=	1	NONE		
2251E * 99	37^{2}	=	37	2251A 1	$[74^2]$	37^{2}
2253C * 27	13^{2}	=	$13_{\cdot_{14987929400988647}}$	2253A 1	$[26^2]$	13^{2}
2255J 23	7^{2}	=	15666366543129	NONE		
2257H 46	$3^{6} \cdot 29^{2}$	=	$3^3 \cdot 29 \cdot 175$	2257A 1	$[9^2]$	_
				2257D 2	$[2^2 174^2]$	—
2264J 22	73^{2}	=	73	2264B 2	$[146^2]$	-
2265U 14	7^{2}	=	$7^2 \cdot {}_{73023816368925}$	2265B 1	$[7^2]$	-
2271I * 43	23^{2}	=	23.392918345997771783	2271C 1	$[46^2]$	23^{2}
2273C 105	7^{2}	=	7^{2}	NONE		
2279D 61	13^{2}	=	96991	NONE		
2279C 58	5^{2}	=	1777847	NONE	[0.0 c c c c]	
2285E 45	151^2	=	$151 \cdot {}_{138908751161}$	2285A 2	$[2^2 3 0 2^2]$	_
2287B 109	71^2	=	1	NONE		
2291C 52	3^{2}	=	427943	NONE	[0,2,c,~,0]	
2293C 96	479^2	=	479	2293A 2	$[2^2958^2]$	—
2294F 15	$\frac{3^2}{2}$	=	$3 \cdot {}_{6289390462793}$	1147A 1	$[3^2]$	_
2311B 110	5^{2}	=	1	NONE	[
2315I 51	3^2	=	3.4475437589723	463A 16		—
2333C 101	83341^2	=	83341	2333A 4	$[2^6 166682^2]$	—

TABLE 2.5.4. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups