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2.5 Visibility of Shafarevich-Tate Groups

Let K be a number field. Suppose

0→ A→ B → C → 0

is an exact sequence of abelian varieties over K. (Thus each of A, B, and C is a
complete group variety over K, whose group is automatically abelian.) Then there
is a corresponding long exact sequence of cohomology for the group Gal(Q/K):

0→ A(K)→ B(K)→ C(K)
δ−→ H1(K,A)→ H1(K,B)→ H1(K,C)→ · · ·

The study of the Mordell-Weil group C(K) = H0(K,C) is popular in arithmetic
geometry. For example, the Birch and Swinnerton-Dyer conjecture (BSD conjec-
ture), which is one of the million dollar Clay Math Problems, asserts that the
dimension of C(K)⊗Q equals the ordering vanishing of L(C, s) at s = 1.

The group H1(K,A) is also of interest in connection with the BSD conjecture,
because it contains the Shafarevich-Tate group

X(A) = X(A/K) = Ker

(
H1(K,A)→

⊕

v

H1(Kv, A)

)
⊂ H1(K,A),

where the sum is over all places v of K (e.g., when K = Q, the fields Kv are Qp

for all prime numbers p and Q∞ = R).
The group A(K) is fundamentally different than H1(K,C). The Mordell-Weil

group A(K) is finitely generated, whereas the first Galois cohomology H1(K,C) is
far from being finitely generated—in fact, every element has finite order and there
are infinitely many elements of any given order.

This talk is about “dimension shifting”, i.e., relating information about H0(K,C)
to information about H1(K,A).

2.5.1 Definitions

Elements of H0(K,C) are simply points, i.e., elements of C(K), so they are rela-
tively easy to “visualize”. In contrast, elements of H1(K,A) are Galois cohomology
classes, i.e., equivalence classes of set-theoretic (continuous) maps f : Gal(Q/K)→
A(Q) such that f(στ) = f(σ)+σf(τ). Two maps are equivalent if their difference
is a map of the form σ 7→ σ(P )− P for some fixed P ∈ A(Q). From this point of
view H1 is more mysterious than H0.

There is an alternative way to view elements of H1(K,A). The WC group of A
is the group of isomorphism classes of principal homogeneous spaces for A, where
a principal homogeneous space is a variety X and a map A×X → X that satisfies
the same axioms as those for a simply transitive group action. Thus X is a twist as
variety of A, but X(K) = ∅, unless X ≈ A. Also, the nontrivial elements of X(A)
correspond to the classes in WC that have a Kv-rational point for all places v, but
no K-rational point.

Mazur introduced the following definition in order to help unify diverse con-
structions of principal homogeneous spaces:
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Definition 2.5.1 (Visible). The visible subgroup of H1(K,A) in B is

VisB H1(K,A) = Ker(H1(K,A)→ H1(K,B))

= Coker(B(K)→ C(K)).

Remark 2.5.2. Note that VisB H1(K,A) does depend on the embedding of A into B.
For example, suppose B = B1 × A. Then there could be nonzero visible elements
if A is embedding into the first factor, but there will be no nonzero visible elements
if A is embedded into the second factor. Here we are using that H1(K,B1 ×A) =
H1(K,B1)⊕H1(K,A).

The connection with the WC group of A is as follows. Suppose

0→ A
f−→ B

g−→ C → 0

is an exact sequence of abelian varieties and that c ∈ H1(K,A) is visible in B.
Thus there exists x ∈ C(K) such that δ(x) = c, where δ : C(K) → H1(K,A) is
the connecting homomorphism. Then X = π−1(x) ⊂ B is a translate of A in B, so
the group law on B gives X the structure of principal homogeneous space for A,
and one can show that the class of X in the WC group of A corresponds to c.

Lemma 2.5.3. The group VisB H1(K,A) is finite.

Proof. Since VisB H1(K,A) is a homomorphic image of the finitely generated group
C(K), it is also finitely generated. On the other hand, it is a subgroup of H1(K,A),
so it is a torsion group. The lemma follows since a finitely generated torsion abelian
group is finite.

2.5.2 Every Element of H1(K,A) is Visible Somewhere

Proposition 2.5.4. Let c ∈ H1(K,A). Then there exists an abelian variety B =
Bc and an embedding A ↪→ B such that c is visible in B.

Proof. By definition of Galois cohomology, there is a finite extension L of K such
that resL(c) = 0. Thus c maps to 0 in H1(L,AL). By a slight generalization of the
Shapiro Lemma from group cohomology (which can be proved by dimension shift-
ing; see, e.g., Atiyah-Wall in Cassels-Frohlich), there is a canonical isomorphism

H1(L,AL) ∼= H1(K,ResL/K(AL)) = H1(K,B),

where B = ResL/K(AL) is the Weil restriction of scalars of AL back down to K.
The restriction of scalars B is an abelian variety of dimension [L : K] · dim A that
is characterized by the existence of functorial isomorphisms

MorK(S,B) ∼= MorL(SL, AL),

for any K-scheme S, i.e., B(S) = AL(SL). In particular, setting S = A we find
that the identity map AL → AL corresponds to an injection A ↪→ B. Moreover,
c 7→ resL(c) = 0 ∈ H1(K,B).

Remark 2.5.5. The abelian variety B in Proposition 2.5.4 is a twist of a power
of A.
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2.5.3 Visibility in the Context of Modularity

Usually we focus on visibility of elements in X(A). There are a number of other
results about visibility in various special cases, and large tables of examples in the
context of elliptic curves and modular abelian varieties. There are also interesting
modularity questions and conjectures in this context.

Motivated by the desire to understand the Birch and Swinnerton-Dyer conjecture
more explicitly, I developed (with significant input from Agashe, Cremona, Mazur,
and Merel) computational techniques for unconditionally constructing Shafarevich-
Tate groups of modular abelian varieties A ⊂ J0(N) (or J1(N)). For example, if
A ⊂ J0(389) is the 20-dimensional simple factor, then

Z/5Z× Z/5Z ⊂X(A),

as predicted by the Birch and Swinnerton-Dyer conjecture. See [CM00] for exam-
ples when dim A = 1. We will spend the rest of this section discussing the examples
of [ASb, AS02] in more detail.

Tables 2.5.1–2.5.4 illustrate the main computational results of [ASb]. These
tables were made by gathering data about certain arithmetic invariants of the
19608 abelian varieties Af of level ≤ 2333. Of these, exactly 10360 have satisfy
L(Af , 1) 6= 0, and for these with L(Af , 1) 6= 0, we compute a divisor and multiple
of the conjectural order of X(Af ). We find that there are at least 168 such that
the Birch and Swinnerton-Dyer Conjecture implies that X(Af ) is divisible by an
odd prime, and we prove for 37 of these that the odd part of the conjectural order
of X(Af ) really divides #X(Af ) by constructing nontrivial elements of X(Af )
using visibility.

The meaning of the tables is as follows. The first column lists a level N and an
isogeny class, which uniquely specifies an abelian variety A = Af ⊂ J0(N). The
nth isogeny class is given by the nth letter of the alphabet. We will not discuss the
ordering further, except to note that usually, the dimension of A, which is given in
the second column, is enough to determine A. When L(A, 1) 6= 0, Conjecture 2.2.1
predicts that

#X(A)
?
=

L(A, 1)

ΩA
· #A(Q)tor ·#A∨(Q)tor∏

p|N cp
.

We view the quotient L(A, 1)/ΩA, which is a rational number, as a single quan-
tity. We can compute multiples and divisors of every quantity appearing in the
right hand side of this equation, and this yields columns three and four, which are
a divisor S` and a multiple Su of the conjectural order of X(A) (when Su = S`, we
put an equals sign in the Su column). Column five, which is labeled odd deg(ϕA),
contains the odd part of the degree of the polarization

ϕA : (A ↪→ J0(N) ∼= J0(N)∨ → A∨). (2.5.1)

The second set of columns, columns six and seven, contain an abelian variety
B = Bg ⊂ J0(N) such that #(A ∩ B) is divisible by an odd prime divisor of S`

and L(B, 1) = 0. When dim(B) = 1, we have verified that B is an elliptic curve
of rank 2. The eighth column A∩B contains the group structure of A∩B, where
e.g., [223022] is shorthand notation for (Z/2Z)2 ⊕ (Z/302Z)2. The final column,
labeled Vis, contains a divisor of the order of VisA+B(X(A)).

The following proposition explains the significance of the odd deg(ϕA) column.
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Proposition 2.5.6. If p - deg(ϕA), then p - VisJ0(N)(H
1(Q, A)).

Proof. There exists a complementary morphism ϕ̂A, such that ϕA◦ϕ̂A = ϕ̂A◦ϕA =
[n], where n is the degree of ϕA. If c ∈ H1(Q, A) maps to 0 in H1(Q, J0(N)), then
it also maps to 0 under the following composition

H1(Q, A)→ H1(Q, J0(N))→ H1(Q, A∨)
ϕ̂A−−→ H1(Q, A).

Since this composition is [n], it follows that c ∈ H1(Q, A)[n], which proves the
proposition.

Remark 2.5.7. Since the degree of ϕA does not change if we extend scalars to
a number field K, the subgroup of H1(K,A) visible in J0(N)K , still has order
divisible only by primes that divide deg(ϕA).

The following theorem explains the significance of the B column, and how it was
used to deduce the Vis column.

Theorem 2.5.8. Suppose A and B are abelian subvarieties of an abelian variety C
over Q and that A(Q)∩B(Q) is finite. Assume also that A(Q) is finite. Let N be
an integer divisible by the residue characteristics of primes of bad reduction for C
(e.g., N could be the conductor of C). Suppose p is a prime such that

p - 2 ·N ·#((A + B)/B)(Q)tor ·#B(Q)tor ·
∏

`

cA,` · cB,`,

where cA,` = #ΦA,`(F`) is the Tamagawa number of A at ` (and similarly for B).
Suppose furthermore that B(Q)[p] ⊂ A(Q) as subgroups of C(Q). Then there is a
natural injection

B(Q)/pB(Q) ↪→ VisC(X(A)).

A complete proof of a generalization of this theorem can be found in [AS02].

Sketch of Proof. Without loss of generality, we may assume C = A + B. Our
hypotheses yield a diagram

0 // B[p] //

²²

B
p

//

²²

B //

²²

0

0 // A // C // B′ // 0,

where B′ = C/A. Taking Gal(Q/Q)-cohomology, we obtain the following diagram:

0 // B(Q)
p

//

²²

B(Q) //

²²

B(Q)/pB(Q) //

²²

0

0 // C(Q)/A(Q) // B′(Q) // VisC(H1(Q, A)) // 0.

The snake lemma and our hypothesis that p - #(C/B)(Q)tor imply that the right-
most vertical map is an injection

i : B(Q)/pB(Q) ↪→ VisC(H1(Q, A)), (2.5.2)
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since C(A)/(A(Q) + B(Q)) is a sub-quotient of (C ′/B)(Q).
We show that the image of (2.5.2) lies in X(A) using a local analysis at each

prime, which we now sketch. At the archimedian prime, no work is needed since
p 6= 2. At non-archimedian primes `, one uses facts about Néron models (when ` =
p) and our hypothesis that p does not divide the Tamagawa numbers of B (when
` 6= p) to show that if x ∈ B(Q)/pB(Q), then the corresponding cohomology class
res`(i(x)) ∈ H1(Q`, A) splits over the maximal unramified extension. However,

H1(Qur
` /Q`, A) ∼= H1(F`/F`,ΦA,`(F`)),

and the right hand cohomology group has order cA,`, which is coprime to p.
Thus res`(i(x)) = 0, which completes the sketch of the proof.

2.5.4 Future Directions

The data in Tables 2.5.1-2.5.4 could be investigated further.
It should be possible to replace the hypothesis that B[p] ⊂ A, with the weaker

hypothesis that B[m] ⊂ A, where m is a maximal ideal of the Hecke algebra T. For
example, this improvement would help one to show that 52 divides the order of the
Shafarevich-Tate group of 1041E. Note that for this example, we only know that
L(B, 1) = 0, not that B(Q) has positive rank (as predicted by Conjecture 2.1.5),
which is another obstruction.

One can consider visibility at a higher level. For example, there are elements
of order 3 in the Shafarevich-Tate group of 551H that are not visible in J0(551),
but these elements are visible in J0(2 · 551), according to the computations in
[Ste03] (Studying the Birch and Swinnerton-Dyer Conjecture for Modular Abelian
Varieties Using MAGMA).

Conjecture 2.5.9 (Stein). Suppose c ∈X(Af ), where Af ⊂ J0(N). Then there
exists M such that c is visible in J0(NM). In other words, every element of X(Af )
is “modular”.
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TABLE 2.5.1. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su odd deg(ϕA) B dim A ∩B Vis

389E∗ 20 52 = 5 389A 1 [202] 52

433D∗ 16 72 = 7·111 433A 1 [142] 72

446F∗ 8 112 = 11·359353 446B 1 [112] 112

551H 18 32 = 169 NONE
563E∗ 31 132 = 13 563A 1 [262] 132

571D∗ 2 32 = 32 ·127 571B 1 [32] 32

655D∗ 13 34 = 32 ·9799079 655A 1 [362] 34

681B 1 32 = 3·125 681C 1 [32] −
707G∗ 15 132 = 13·800077 707A 1 [132] 132

709C∗ 30 112 = 11 709A 1 [222] 112

718F∗ 7 72 = 7·5371523 718B 1 [72] 72

767F 23 32 = 1 NONE

794G 12 112 = 11·34986189 794A 1 [112] −
817E 15 72 = 7·79 817A 1 [72] −
959D 24 32 = 583673 NONE
997H∗ 42 34 = 32 997B 1 [122] 32

997C 1 [242] 32

1001F 3 32 = 32 ·1269 1001C 1 [32] −
91A 1 [32] −

1001L 7 72 = 7·2029789 1001C 1 [72] −
1041E 4 52 = 52 ·13589 1041B 2 [52] −
1041J 13 54 = 53 ·21120929983 1041B 2 [54] −
1058D 1 52 = 5·483 1058C 1 [52] −
1061D 46 1512 = 151·10919 1061B 2 [223022] −
1070M 7 3·52 32 ·52 3·5·1720261 1070A 1 [152] −
1077J 15 34 = 32 ·1227767047943 1077A 1 [92] −
1091C 62 72 = 1 NONE
1094F∗ 13 112 = 112 ·172446773 1094A 1 [112] 112

1102K 4 32 = 32 ·31009 1102A 1 [32] −
1126F∗ 11 112 = 11·13990352759 1126A 1 [112] 112

1137C 14 34 = 32 ·64082807 1137A 1 [92] −
1141I 22 72 = 7·528921 1141A 1 [142] −
1147H 23 52 = 5·729 1147A 1 [102] −
1171D∗ 53 112 = 11·81 1171A 1 [442] 112

1246B 1 52 = 5·81 1246C 1 [52] −
1247D 32 32 = 32 ·2399 43A 1 [362] −
1283C 62 52 = 5·2419 NONE
1337E 33 32 = 71 NONE
1339G 30 32 = 5776049 NONE
1355E 28 3 32 32 ·2224523985405 NONE
1363F 25 312 = 31·34889 1363B 2 [22622] −
1429B 64 52 = 1 NONE
1443G 5 72 = 72 ·18525 1443C 1 [71141] −
1446N 7 32 = 3·17459029 1446A 1 [122] −
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TABLE 2.5.2. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su odd deg(ϕA) B dim A ∩B Vis

1466H∗ 23 132 = 13·25631993723 1466B 1 [262] 132

1477C∗ 24 132 = 13·57037637 1477A 1 [132] 132

1481C 71 132 = 70825 NONE
1483D∗ 67 32 ·52 = 3·5 1483A 1 [602] 32 ·52

1513F 31 3 34 3·759709 NONE
1529D 36 52 = 535641763 NONE
1531D 73 3 32 3 1531A 1 [482] −
1534J 6 3 32 32 ·635931 1534B 1 [62] −
1551G 13 32 = 3·110659885 141A 1 [152] −
1559B 90 112 = 1 NONE
1567D 69 72 ·412 = 7·41 1567B 3 [4411482] −
1570J∗ 6 112 = 11·228651397 1570B 1 [112] 112

1577E 36 3 32 32 ·15 83A 1 [62] −
1589D 35 32 = 6005292627343 NONE
1591F∗ 35 312 = 31·2401 1591A 1 [312] 312

1594J 17 32 = 3·259338050025131 1594A 1 [122] −
1613D∗ 75 52 = 5·19 1613A 1 [202] 52

1615J 13 34 = 32 ·13317421 1615A 1 [91181] −
1621C∗ 70 172 = 17 1621A 1 [342] 172

1627C∗ 73 34 = 32 1627A 1 [362] 34

1631C 37 52 = 6354841131 NONE
1633D 27 36 ·72 = 35 ·7·31375 1633A 3 [64422] −
1634K 12 32 = 3·3311565989 817A 1 [32] −
1639G∗ 34 172 = 17·82355 1639B 1 [342] 172

1641J∗ 24 232 = 23·1491344147471 1641B 1 [232] 232

1642D∗ 14 72 = 7·123398360851 1642A 1 [72] 72

1662K 7 112 = 11·16610917393 1662A 1 [112] −
1664K 1 52 = 5·7 1664N 1 [52] −
1679C 45 112 = 6489 NONE
1689E 28 32 = 3·172707180029157365 563A 1 [32] −
1693C 72 13012 = 1301 1693A 3 [2426022] −
1717H∗ 34 132 = 13·345 1717B 1 [262] 132

1727E 39 32 = 118242943 NONE
1739F 43 6592 = 659·151291281 1739C 2 [2213182] −
1745K 33 52 = 5·1971380677489 1745D 1 [202] −
1751C 45 52 = 5·707 103A 2 [5052] −
1781D 44 32 = 61541 NONE
1793G∗ 36 232 = 23·8846589 1793B 1 [232] 232

1799D 44 52 = 201449 NONE
1811D 98 312 = 1 NONE
1829E 44 132 = 3595 NONE
1843F 40 32 = 8389 NONE
1847B 98 36 = 1 NONE
1871C 98 192 = 14699 NONE
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TABLE 2.5.3. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su odd deg(ϕA) B dim A ∩B Vis

1877B 86 72 = 1 NONE
1887J 12 52 = 5·10825598693 1887A 1 [202] −
1891H 40 74 = 72 ·44082137 1891C 2 [421962] −
1907D∗ 90 72 = 7·165 1907A 1 [562] 72

1909D∗ 38 34 = 32 ·9317 1909A 1 [182] 34

1913B∗ 1 32 = 3·103 1913A 1 [32] 32

1913E 84 54 ·612 = 52 ·61·103 1913A 1 [102] −
1913C 2 [226102] −

1919D 52 232 = 675 NONE
1927E 45 32 34

52667 NONE
1933C 83 32 ·7 32 ·72 3·7 1933A 1 [422] 32

1943E 46 132 = 62931125 NONE
1945E∗ 34 32 = 3·571255479184807 389A 1 [32] 32

1957E∗ 37 72 ·112 = 7·11·3481 1957A 1 [222] 112

1957B 1 [142] 72

1979C 104 192 = 55 NONE

1991C 49 72 = 1634403663 NONE
1994D 26 3 32 32 ·46197281414642501 997B 1 [32] −
1997C 93 172 = 1 NONE
2001L 11 32 = 32 ·44513447 NONE

2006E 1 32 = 3·805 2006D 1 [32] −
2014L 12 32 = 32 ·126381129003 106A 1 [92] −
2021E 50 56 = 52 ·729 2021A 1 [1002] 54

2027C∗ 94 292 = 29 2027A 1 [582] 292

2029C 90 52 ·2692 = 5·269 2029A 2 [2226902] −
2031H∗ 36 112 = 11·1014875952355 2031C 1 [442] 112

2035K 16 112 = 11·218702421 2035C 1 [111221] −
2038F 25 5 52 52 ·92198576587 2038A 1 [202] −

1019B 1 [52] −
2039F 99 34 ·52 = 13741381043009 NONE
2041C 43 34 = 61889617 NONE
2045I 39 34 = 33 ·3123399893 2045C 1 [182] −

409A 13 [93701996792] −
2049D 31 32 = 29174705448000469937 NONE
2051D 45 72 = 7·674652424406369 2051A 1 [562] −
2059E 45 5·72 52 ·72 52 ·7·167359757 2059A 1 [702] −
2063C 106 132 = 8479 NONE
2071F 48 132 = 36348745 NONE
2099B 106 32 = 1 NONE
2101F 46 52 = 5·11521429 191A 2 [1552] −
2103E 37 32 ·112 = 32 ·11·874412923071571792611 2103B 1 [332] 112

2111B 112 2112 = 1 NONE
2113B 91 72 = 1 NONE
2117E∗ 45 192 = 19·1078389 2117A 1 [382] 192



2.5 Visibility of Shafarevich-Tate Groups 27

TABLE 2.5.4. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim Sl Su odd deg(ϕA) B dim A ∩B Vis
2119C 48 72 = 89746579 NONE
2127D 34 32 = 3·18740561792121901 709A 1 [32] −
2129B 102 32 = 1 NONE
2130Y 4 72 = 7·83927 2130B 1 [142] −
2131B 101 172 = 1 NONE
2134J 11 32 = 1710248025389 NONE
2146J 10 72 = 7·1672443 2146A 1 [72] −
2159E 57 132 = 31154538351 NONE

2159D 56 34 = 233801 NONE
2161C 98 232 = 1 NONE
2162H 14 3 32 3·6578391763 NONE
2171E 54 132 = 271 NONE
2173H 44 1992 = 199·3581 2173D 2 [3982] −
2173F 43 192 32 ·192 32 ·19·229341 2173A 1 [382] 192

2174F 31 52 = 5·21555702093188316107 NONE
2181E 27 72 = 7·7217996450474835 2181A 1 [282] −
2193K 17 32 = 3·15096035814223 129A 1 [212] −
2199C 36 72 = 72 ·13033437060276603 NONE
2213C 101 34 = 19 NONE
2215F 46 132 = 13·1182141633 2215A 1 [522] −
2224R 11 792 = 79 2224G 2 [792] −
2227E 51 112 = 259 NONE
2231D 60 472 = 91109 NONE
2239B 110 114 = 1 NONE

2251E∗ 99 372 = 37 2251A 1 [742] 372

2253C∗ 27 132 = 13·14987929400988647 2253A 1 [262] 132

2255J 23 72 = 15666366543129 NONE
2257H 46 36 ·292 = 33 ·29·175 2257A 1 [92] −

2257D 2 [221742] −
2264J 22 732 = 73 2264B 2 [1462] −
2265U 14 72 = 72 ·73023816368925 2265B 1 [72] −
2271I∗ 43 232 = 23·392918345997771783 2271C 1 [462] 232

2273C 105 72 = 72 NONE
2279D 61 132 = 96991 NONE
2279C 58 52 = 1777847 NONE
2285E 45 1512 = 151·138908751161 2285A 2 [223022] −
2287B 109 712 = 1 NONE
2291C 52 32 = 427943 NONE
2293C 96 4792 = 479 2293A 2 [229582] −
2294F 15 32 = 3·6289390462793 1147A 1 [32] −
2311B 110 52 = 1 NONE
2315I 51 32 = 3·4475437589723 463A 16 [134263127691692] −
2333C 101 833412 = 83341 2333A 4 [261666822] −


