2.5 Visibility of Shafarevich-Tate Groups

Let K be a number field. Suppose

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

is an exact sequence of abelian varieties over K. (Thus each of A, B, and C is a complete group variety over K, whose group is automatically abelian.) Then there is a corresponding long exact sequence of cohomology for the group $\operatorname{Gal}(\overline{\mathbf{Q}} / K)$:

$$
0 \rightarrow A(K) \rightarrow B(K) \rightarrow C(K) \xrightarrow{\delta} \mathrm{H}^{1}(K, A) \rightarrow \mathrm{H}^{1}(K, B) \rightarrow \mathrm{H}^{1}(K, C) \rightarrow \cdots
$$

The study of the Mordell-Weil group $C(K)=\mathrm{H}^{0}(K, C)$ is popular in arithmetic geometry. For example, the Birch and Swinnerton-Dyer conjecture (BSD conjecture), which is one of the million dollar Clay Math Problems, asserts that the dimension of $C(K) \otimes \mathbf{Q}$ equals the ordering vanishing of $L(C, s)$ at $s=1$.

The group $\mathrm{H}^{1}(K, A)$ is also of interest in connection with the BSD conjecture, because it contains the Shafarevich-Tate group

$$
\amalg(A)=\amalg(A / K)=\operatorname{Ker}\left(\mathrm{H}^{1}(K, A) \rightarrow \bigoplus_{v} \mathrm{H}^{1}\left(K_{v}, A\right)\right) \subset \mathrm{H}^{1}(K, A),
$$

where the sum is over all places v of K (e.g., when $K=\mathbf{Q}$, the fields K_{v} are \mathbf{Q}_{p} for all prime numbers p and $\mathbf{Q}_{\infty}=\mathbf{R}$).

The group $A(K)$ is fundamentally different than $\mathrm{H}^{1}(K, C)$. The Mordell-Weil group $A(K)$ is finitely generated, whereas the first Galois cohomology $\mathrm{H}^{1}(K, C)$ is far from being finitely generated-in fact, every element has finite order and there are infinitely many elements of any given order.

This talk is about "dimension shifting", i.e., relating information about $\mathrm{H}^{0}(K, C)$ to information about $\mathrm{H}^{1}(K, A)$.

2.5.1 Definitions

Elements of $\mathrm{H}^{0}(K, C)$ are simply points, i.e., elements of $C(K)$, so they are relatively easy to "visualize". In contrast, elements of $\mathrm{H}^{1}(K, A)$ are Galois cohomology classes, i.e., equivalence classes of set-theoretic (continuous) maps $f: \operatorname{Gal}(\overline{\mathbf{Q}} / K) \rightarrow$ $A(\overline{\mathbf{Q}})$ such that $f(\sigma \tau)=f(\sigma)+\sigma f(\tau)$. Two maps are equivalent if their difference is a map of the form $\sigma \mapsto \sigma(P)-P$ for some fixed $P \in A(\overline{\mathbf{Q}})$. From this point of view H^{1} is more mysterious than H^{0}.

There is an alternative way to view elements of $\mathrm{H}^{1}(K, A)$. The WC group of A is the group of isomorphism classes of principal homogeneous spaces for A, where a principal homogeneous space is a variety X and a map $A \times X \rightarrow X$ that satisfies the same axioms as those for a simply transitive group action. Thus X is a twist as variety of A, but $X(K)=\emptyset$, unless $X \approx A$. Also, the nontrivial elements of $\amalg(A)$ correspond to the classes in WC that have a K_{v}-rational point for all places v, but no K-rational point.

Mazur introduced the following definition in order to help unify diverse constructions of principal homogeneous spaces:

Definition 2.5.1 (Visible). The visible subgroup of $\mathrm{H}^{1}(K, A)$ in B is

$$
\begin{aligned}
\operatorname{Vis}_{B} \mathrm{H}^{1}(K, A) & =\operatorname{Ker}\left(\mathrm{H}^{1}(K, A) \rightarrow \mathrm{H}^{1}(K, B)\right) \\
& =\operatorname{Coker}(B(K) \rightarrow C(K)) .
\end{aligned}
$$

Remark 2.5.2. Note that $\operatorname{Vis}_{B} \mathrm{H}^{1}(K, A)$ does depend on the embedding of A into B. For example, suppose $B=B_{1} \times A$. Then there could be nonzero visible elements if A is embedding into the first factor, but there will be no nonzero visible elements if A is embedded into the second factor. Here we are using that $\mathrm{H}^{1}\left(K, B_{1} \times A\right)=$ $\mathrm{H}^{1}\left(K, B_{1}\right) \oplus \mathrm{H}^{1}(K, A)$.

The connection with the WC group of A is as follows. Suppose

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

is an exact sequence of abelian varieties and that $c \in \mathrm{H}^{1}(K, A)$ is visible in B. Thus there exists $x \in C(K)$ such that $\delta(x)=c$, where $\delta: C(K) \rightarrow \mathrm{H}^{1}(K, A)$ is the connecting homomorphism. Then $X=\pi^{-1}(x) \subset B$ is a translate of A in B, so the group law on B gives X the structure of principal homogeneous space for A, and one can show that the class of X in the WC group of A corresponds to c.

Lemma 2.5.3. The group $\operatorname{Vis}_{B} \mathrm{H}^{1}(K, A)$ is finite.
Proof. Since $\operatorname{Vis}_{B} \mathrm{H}^{1}(K, A)$ is a homomorphic image of the finitely generated group $C(K)$, it is also finitely generated. On the other hand, it is a subgroup of $\mathrm{H}^{1}(K, A)$, so it is a torsion group. The lemma follows since a finitely generated torsion abelian group is finite.

2.5.2 Every Element of $\mathrm{H}^{1}(K, A)$ is Visible Somewhere

Proposition 2.5.4. Let $c \in \mathrm{H}^{1}(K, A)$. Then there exists an abelian variety $B=$ B_{c} and an embedding $A \hookrightarrow B$ such that c is visible in B.

Proof. By definition of Galois cohomology, there is a finite extension L of K such that $\operatorname{res}_{L}(c)=0$. Thus c maps to 0 in $\mathrm{H}^{1}\left(L, A_{L}\right)$. By a slight generalization of the Shapiro Lemma from group cohomology (which can be proved by dimension shifting; see, e.g., Atiyah-Wall in Cassels-Frohlich), there is a canonical isomorphism

$$
\mathrm{H}^{1}\left(L, A_{L}\right) \cong \mathrm{H}^{1}\left(K, \operatorname{Res}_{L / K}\left(A_{L}\right)\right)=\mathrm{H}^{1}(K, B)
$$

where $B=\operatorname{Res}_{L / K}\left(A_{L}\right)$ is the Weil restriction of scalars of A_{L} back down to K. The restriction of scalars B is an abelian variety of dimension $[L: K] \cdot \operatorname{dim} A$ that is characterized by the existence of functorial isomorphisms

$$
\operatorname{Mor}_{K}(S, B) \cong \operatorname{Mor}_{L}\left(S_{L}, A_{L}\right)
$$

for any K-scheme S, i.e., $B(S)=A_{L}\left(S_{L}\right)$. In particular, setting $S=A$ we find that the identity map $A_{L} \rightarrow A_{L}$ corresponds to an injection $A \hookrightarrow B$. Moreover, $c \mapsto \operatorname{res}_{L}(c)=0 \in \mathrm{H}^{1}(K, B)$.

Remark 2.5.5. The abelian variety B in Proposition 2.5.4 is a twist of a power of A.

2.5.3 Visibility in the Context of Modularity

Usually we focus on visibility of elements in $\amalg(A)$. There are a number of other results about visibility in various special cases, and large tables of examples in the context of elliptic curves and modular abelian varieties. There are also interesting modularity questions and conjectures in this context.

Motivated by the desire to understand the Birch and Swinnerton-Dyer conjecture more explicitly, I developed (with significant input from Agashe, Cremona, Mazur, and Merel) computational techniques for unconditionally constructing ShafarevichTate groups of modular abelian varieties $A \subset J_{0}(N)$ (or $J_{1}(N)$). For example, if $A \subset J_{0}(389)$ is the 20-dimensional simple factor, then

$$
\mathbf{Z} / 5 \mathbf{Z} \times \mathbf{Z} / 5 \mathbf{Z} \subset \amalg(A)
$$

as predicted by the Birch and Swinnerton-Dyer conjecture. See [CM00] for examples when $\operatorname{dim} A=1$. We will spend the rest of this section discussing the examples of [ASb, AS02] in more detail.

Tables 2.5.1-2.5.4 illustrate the main computational results of [ASb]. These tables were made by gathering data about certain arithmetic invariants of the 19608 abelian varieties A_{f} of level ≤ 2333. Of these, exactly 10360 have satisfy $L\left(A_{f}, 1\right) \neq 0$, and for these with $L\left(A_{f}, 1\right) \neq 0$, we compute a divisor and multiple of the conjectural order of $\amalg\left(A_{f}\right)$. We find that there are at least 168 such that the Birch and Swinnerton-Dyer Conjecture implies that $\amalg\left(A_{f}\right)$ is divisible by an odd prime, and we prove for 37 of these that the odd part of the conjectural order of $\amalg\left(A_{f}\right)$ really divides $\# \amalg\left(A_{f}\right)$ by constructing nontrivial elements of $\amalg\left(A_{f}\right)$ using visibility.

The meaning of the tables is as follows. The first column lists a level N and an isogeny class, which uniquely specifies an abelian variety $A=A_{f} \subset J_{0}(N)$. The nth isogeny class is given by the nth letter of the alphabet. We will not discuss the ordering further, except to note that usually, the dimension of A, which is given in the second column, is enough to determine A. When $L(A, 1) \neq 0$, Conjecture 2.2.1 predicts that

$$
\# \amalg(A) \stackrel{?}{=} \frac{L(A, 1)}{\Omega_{A}} \cdot \frac{\# A(\mathbf{Q})_{\mathrm{tor}} \cdot \# A^{\vee}(\mathbf{Q})_{\mathrm{tor}}}{\prod_{p \mid N} c_{p}}
$$

We view the quotient $L(A, 1) / \Omega_{A}$, which is a rational number, as a single quantity. We can compute multiples and divisors of every quantity appearing in the right hand side of this equation, and this yields columns three and four, which are a divisor S_{ℓ} and a multiple S_{u} of the conjectural order of $\amalg(A)$ (when $S_{u}=S_{\ell}$, we put an equals sign in the S_{u} column). Column five, which is labeled odd $\operatorname{deg}\left(\varphi_{A}\right)$, contains the odd part of the degree of the polarization

$$
\begin{equation*}
\varphi_{A}:\left(A \hookrightarrow J_{0}(N) \cong J_{0}(N)^{\vee} \rightarrow A^{\vee}\right) \tag{2.5.1}
\end{equation*}
$$

The second set of columns, columns six and seven, contain an abelian variety $B=B_{g} \subset J_{0}(N)$ such that $\#(A \cap B)$ is divisible by an odd prime divisor of S_{ℓ} and $L(B, 1)=0$. When $\operatorname{dim}(B)=1$, we have verified that B is an elliptic curve of rank 2. The eighth column $A \cap B$ contains the group structure of $A \cap B$, where e.g., $\left[2^{2} 302^{2}\right]$ is shorthand notation for $(\mathbf{Z} / 2 \mathbf{Z})^{2} \oplus(\mathbf{Z} / 302 \mathbf{Z})^{2}$. The final column, labeled Vis, contains a divisor of the order of $\operatorname{Vis}_{A+B}(\amalg(A))$.

The following proposition explains the significance of the odd $\operatorname{deg}\left(\varphi_{A}\right)$ column.

Proposition 2.5.6. If $p \nmid \operatorname{deg}\left(\varphi_{A}\right)$, then $p \nmid \operatorname{Vis}_{J_{0}(N)}\left(\mathrm{H}^{1}(\mathbf{Q}, A)\right)$.
Proof. There exists a complementary morphism $\hat{\varphi}_{A}$, such that $\varphi_{A} \circ \hat{\varphi}_{A}=\hat{\varphi}_{A} \circ \varphi_{A}=$ [n], where n is the degree of φ_{A}. If $c \in \mathrm{H}^{1}(\mathbf{Q}, A)$ maps to 0 in $\mathrm{H}^{1}\left(\mathbf{Q}, J_{0}(N)\right)$, then it also maps to 0 under the following composition

$$
\mathrm{H}^{1}(\mathbf{Q}, A) \rightarrow \mathrm{H}^{1}\left(\mathbf{Q}, J_{0}(N)\right) \rightarrow \mathrm{H}^{1}\left(\mathbf{Q}, A^{\vee}\right) \xrightarrow{\hat{\varphi}_{A}} \mathrm{H}^{1}(\mathbf{Q}, A) .
$$

Since this composition is $[n]$, it follows that $c \in \mathrm{H}^{1}(\mathbf{Q}, A)[n]$, which proves the proposition.

Remark 2.5.7. Since the degree of φ_{A} does not change if we extend scalars to a number field K, the subgroup of $\mathrm{H}^{1}(K, A)$ visible in $J_{0}(N)_{K}$, still has order divisible only by primes that divide $\operatorname{deg}\left(\varphi_{A}\right)$.
The following theorem explains the significance of the B column, and how it was used to deduce the Vis column.

Theorem 2.5.8. Suppose A and B are abelian subvarieties of an abelian variety C over \mathbf{Q} and that $A(\overline{\mathbf{Q}}) \cap B(\overline{\mathbf{Q}})$ is finite. Assume also that $A(\mathbf{Q})$ is finite. Let N be an integer divisible by the residue characteristics of primes of bad reduction for C (e.g., N could be the conductor of C). Suppose p is a prime such that

$$
p \nmid 2 \cdot N \cdot \#((A+B) / B)(\mathbf{Q})_{\text {tor }} \cdot \# B(\mathbf{Q})_{\text {tor }} \cdot \prod_{\ell} c_{A, \ell} \cdot c_{B, \ell},
$$

where $c_{A, \ell}=\# \Phi_{A, \ell}\left(\mathbf{F}_{\ell}\right)$ is the Tamagawa number of A at ℓ (and similarly for B). Suppose furthermore that $B(\overline{\mathbf{Q}})[p] \subset A(\overline{\mathbf{Q}})$ as subgroups of $C(\overline{\mathbf{Q}})$. Then there is a natural injection

$$
B(\mathbf{Q}) / p B(\mathbf{Q}) \hookrightarrow \operatorname{Vis}_{C}(\amalg(A)) .
$$

A complete proof of a generalization of this theorem can be found in [AS02].
Sketch of Proof. Without loss of generality, we may assume $C=A+B$. Our hypotheses yield a diagram

where $B^{\prime}=C / A$. Taking $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$-cohomology, we obtain the following diagram:

The snake lemma and our hypothesis that $p \nmid \#(C / B)(\mathbf{Q})_{\text {tor }}$ imply that the rightmost vertical map is an injection

$$
\begin{equation*}
i: B(\mathbf{Q}) / p B(\mathbf{Q}) \hookrightarrow \operatorname{Vis}_{C}\left(\mathrm{H}^{1}(\mathbf{Q}, A)\right) \tag{2.5.2}
\end{equation*}
$$

since $C(A) /(A(\mathbf{Q})+B(\mathbf{Q}))$ is a sub-quotient of $\left(C^{\prime} / B\right)(\mathbf{Q})$.
We show that the image of (2.5.2) lies in $\amalg(A)$ using a local analysis at each prime, which we now sketch. At the archimedian prime, no work is needed since $p \neq 2$. At non-archimedian primes ℓ, one uses facts about Néron models (when $\ell=$ p) and our hypothesis that p does not divide the Tamagawa numbers of B (when $\ell \neq p)$ to show that if $x \in B(\mathbf{Q}) / p B(\mathbf{Q})$, then the corresponding cohomology class $\operatorname{res}_{\ell}(i(x)) \in \mathrm{H}^{1}\left(\mathbf{Q}_{\ell}, A\right)$ splits over the maximal unramified extension. However,

$$
\mathrm{H}^{1}\left(\mathbf{Q}_{\ell}^{\mathrm{ur}} / \mathbf{Q}_{\ell}, A\right) \cong \mathrm{H}^{1}\left(\overline{\mathbf{F}}_{\ell} / \mathbf{F}_{\ell}, \Phi_{A, \ell}\left(\overline{\mathbf{F}}_{\ell}\right)\right),
$$

and the right hand cohomology group has order $c_{A, \ell}$, which is coprime to p. Thus res $_{\ell}(i(x))=0$, which completes the sketch of the proof.

2.5.4 Future Directions

The data in Tables 2.5.1-2.5.4 could be investigated further.
It should be possible to replace the hypothesis that $B[p] \subset A$, with the weaker hypothesis that $B[\mathfrak{m}] \subset A$, where \mathfrak{m} is a maximal ideal of the Hecke algebra \mathbf{T}. For example, this improvement would help one to show that 5^{2} divides the order of the Shafarevich-Tate group of 1041E. Note that for this example, we only know that $L(B, 1)=0$, not that $B(\mathbf{Q})$ has positive rank (as predicted by Conjecture 2.1.5), which is another obstruction.

One can consider visibility at a higher level. For example, there are elements of order 3 in the Shafarevich-Tate group of $\mathbf{5 5 1 H}$ that are not visible in $J_{0}(551)$, but these elements are visible in $J_{0}(2 \cdot 551)$, according to the computations in [Ste03] (Studying the Birch and Swinnerton-Dyer Conjecture for Modular Abelian Varieties Using MAGMA).

Conjecture 2.5.9 (Stein). Suppose $c \in \amalg\left(A_{f}\right)$, where $A_{f} \subset J_{0}(N)$. Then there exists M such that c is visible in $J_{0}(N M)$. In other words, every element of $\amalg\left(A_{f}\right)$ is "modular".

TABLE 2.5.1. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A	dim	S_{l}	S_{u}	$\operatorname{odd} \operatorname{deg}\left(\varphi_{A}\right)$	B di	dim	$A \cap B$	Vis
389E*	20	5^{2}	$=$	5	389A	1	$\left[20^{2}\right]$	5^{2}
433D*	16	7^{2}	$=$	$7 \cdot 111$	433A	1	[14 ${ }^{2}$]	7^{2}
446F*	8	11^{2}	$=$	$11 \cdot 359353$	446B	1	$\left[11^{2}\right]$	11^{2}
551H	18	3^{2}	$=$	169	NONE			
563E*	31	13^{2}	=	13	563A	1	[26 ${ }^{2}$]	13^{2}
571D*	2	3^{2}	$=$	$3^{2} \cdot{ }_{127}$	571B	1	[32]	3^{2}
655D*	13	3^{4}	$=$	$3^{2} \cdot 9799079$	655A	1	[36 ${ }^{2}$]	3^{4}
681B	1	3^{2}	$=$	$3 \cdot 125$	681C	1	[32]	-
707G*	15	13^{2}	=	13•800077	707A	1	$\left[13^{2}\right]$	13^{2}
709C*	30	11^{2}	=	11	709A	1	$\left[22^{2}\right]$	11^{2}
718F*	7	7^{2}	=	7-5371523	718B	1	$\left[7^{2}\right]$	7^{2}
767F	23	3^{2}	$=$	1	NONE			
794G	12	11^{2}	=	11-34986189	794A	1	[11 ${ }^{2}$]	-
817E	15	7^{2}	=	$7 \cdot 79$	817A	1	$\left[7^{2}\right]$	-
959D	24	3^{2}	$=$	583673	NONE			
997H*	42	3^{4}	=	3^{2}	997B	1	$\left[12^{2}\right]$	3^{2}
					997C	1	[24 ${ }^{2}$]	3^{2}
1001F	3	3^{2}	$=$	$3^{2} \cdot{ }_{1269}$	1001C	1	$\left[3^{2}\right]$	-
					91A	1	[32]	-
1001L	7	7^{2}	$=$	$7 \cdot 2029789$	1001C	1	$\left[7^{2}\right]$	-
1041E	4	5^{2}	=	$5^{2} \cdot 13589$	1041B	2	[5 ${ }^{2}$]	-
1041J	13	5^{4}	$=$	$5^{3} \cdot 21120929983$	1041B	2	$\left[5^{4}\right]$	-
1058D	1	5^{2}	$=$	$5 \cdot 483$	1058C	1	[5 ${ }^{2}$]	-
1061D	46	$151{ }^{2}$	$=$	151.10919	1061B	2	[$2^{2} 302^{2}$]	-
1070M	7	$3 \cdot 5^{2}$	$3^{2} \cdot 5^{2}$	$3 \cdot 5 \cdot 1720261$	1070A	1	[15 ${ }^{2}$]	-
1077J	15	3^{4}		$3^{2} \cdot 1227767047943$	1077A	1	[9^{2}]	-
1091C	62	7^{2}	$=$	1	NONE			
1094F*	13	11^{2}	$=$	$11^{2} \cdot{ }_{172446773}$	1094A	1	[11 ${ }^{2}$]	11^{2}
1102K	4	3^{2}	=	$3^{2} \cdot 31009$	1102A	1	[3^{2}]	-
1126F*	11	11^{2}	=	$11 \cdot 13990352759$	1126A	1	[11 ${ }^{2}$]	11^{2}
1137C	14	3^{4}	=	$3^{2} \cdot 64082807$	1137A	1	[9^{2}]	-
1141I	22	7^{2}	=	$7 \cdot 528921$	1141A	1	[14 ${ }^{2}$]	-
1147H	23	5^{2}	=	$5 \cdot 729$	1147A		[10 ${ }^{2}$]	-
1171D*	53	11^{2}	$=$	$11 \cdot 81$	1171A	1	[44 ${ }^{2}$]	11^{2}
1246B	1	5^{2}	$=$	$5 \cdot 81$	1246C	1	[5 ${ }^{2}$]	-
1247D	32	3^{2}	$=$	$3^{2} \cdot 2399$	43A	1	[$36{ }^{2}$]	-
1283C	62	5^{2}	=	$5 \cdot 2419$	NONE			
1337E	33	3^{2}	=	71	NONE			
1339G	30	3^{2}	=	5776049	NONE			
1355E	28	3	3^{2}	$3^{2} \cdot 2224523985405$	NONE			
1363F	25	31^{2}	$=$	$31 \cdot 34889$	1363B		$\left[2^{2} 62^{2}\right]$	-
1429B	64	5^{2}	$=$	1	NONE			
1443G	5	7^{2}	$=$	$7^{2} \cdot 18525$	1443C		[$\left.7^{1} 14^{1}\right]$	-
1446N	7	3^{2}	=	$3 \cdot 17459029$	1446A	1	[12 ${ }^{2}$]	-

TABLE 2.5.2. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

$A \quad \mathrm{dim}$	S_{l}	S_{u}	$\operatorname{odd} \operatorname{deg}\left(\varphi_{A}\right)$	B	dim	$A \cap B$	Vis
1466H*23	13^{2}	$=$	$13 \cdot 25631993723$	1466B	1	[26 ${ }^{2}$]	13^{2}
1477C* 24	13^{2}	$=$	$13 \cdot 57037637$	1477A	1	[132]	13^{2}
1481C 71	13^{2}	$=$	70825	NONE			
1483D* 67	$3^{2} \cdot 5^{2}$	$=$	$3 \cdot 5$	1483A	1	[60 ${ }^{2}$]	$3^{2} \cdot 5^{2}$
1513F 31	3	3^{4}	3-759709	NONE			
1529D 36	5^{2}	$=$	${ }_{535641763}$	NONE			
1531D 73	3	3^{2}	3	1531A	1	[48 ${ }^{2}$]	-
1534J	3	3^{2}	$3^{2} \cdot 635931$	1534B	1	[6^{2}]	-
1551G 13	3^{2}	=	$3 \cdot 110659885$	141A	1	[15 ${ }^{2}$	-
1559B 90	11^{2}	$=$	1	NONE			
1567D 69	$7^{2} \cdot 41^{2}$	$=$	$7 \cdot 41$	1567B	3	[$4^{4} 1148^{2}$]	-
1570J* 6	11^{2}	=	11-228651397	1570B	1	[112]	11^{2}
1577E 36	3	3^{2}	$3^{2} \cdot 15$	83A	1	[62]	-
1589D 35	3^{2}	$=$	${ }_{6005292627343}$	NONE			
1591F* 35	31^{2}	$=$	$31 \cdot 2401$	1591A	1	[31 ${ }^{2}$]	31^{2}
1594J 17	3^{2}	=	$3 \cdot 259338050025131$	1594A	1	$\left[12^{2}\right]$	-
1613D* 75	5^{2}	=	$5 \cdot 19$	1613A	1	[20 ${ }^{2}$	5^{2}
1615J 13	3^{4}	$=$	$3^{2} \cdot 13317421$	1615A	1	[$9^{1} 18^{1}$]	-
1621C* 70	17^{2}	=	17	1621A	1	[34 ${ }^{2}$]	17^{2}
1627C* 73	3^{4}	$=$	3^{2}	1627A	1	[36 ${ }^{2}$]	3^{4}
1631C 37	5^{2}	=	${ }_{6354841131}$	NONE			
1633D 27	$3^{6} \cdot 7^{2}$	=	$3^{5} \cdot 7 \cdot 31375$	1633A	3	$\left[6^{4} 42^{2}\right]$	-
1634K 12	3^{2}	=	3-3311565989	817A	1	[3^{2}]	-
1639G* 34	17^{2}	$=$	$17 \cdot 82355$	1639B	1	[34 ${ }^{2}$]	17^{2}
1641J* 24	23^{2}	=	23. 1491344147471	1641B	1	[23 ${ }^{2}$]	23^{2}
1642D* 14	7^{2}	$=$	$7 \cdot 123398360851$	1642A	1	[7^{2}]	7^{2}
1662K	11^{2}	=	11.1661097393	1662A	1	[11 ${ }^{2}$]	-
1664K	5^{2}	$=$	$5 \cdot 7$	1664N	1	[5^{2}]	-
1679C 45	11^{2}	=	6489	NONE			
1689E 28	3^{2}		$3 \cdot 172707180029157365$	563A	1	[32]	-
1693C 72	$1301{ }^{2}$	$=$	1301	1693A	3	[$2^{4} 2602^{2}$]	-
1717H*34	13^{2}	$=$	$13 \cdot 345$	1717B	1	[26 $\left.{ }^{2}\right]$	13^{2}
1727E 39	3^{2}	=	118242943	NONE			
1739F 43	$659{ }^{2}$	$=$	$659 \cdot 151291281$	1739C	2	[$\left.2^{2} 1318^{2}\right]$	-
1745K 33	5^{2}	$=$	5•1971380677489	1745D	1	[20 $\left.{ }^{2}\right]$	-
1751C 45	5^{2}	$=$	5-707	103A	2	[505²]	-
1781D 44	3^{2}	=	61541	NONE			
1793G* 36	23^{2}	$=$	23.8846589	1793B	1	[23 ${ }^{2}$]	23^{2}
1799D 44	5^{2}	$=$	201449	NONE			
1811D 98	31^{2}	$=$	1	NONE			
1829E 44	13^{2}	=	3595	NONE			
1843F 40	3^{2}	$=$	8389	NONE			
1847B 98	3^{6}	$=$	1	NONE			
1871C 98	19^{2}	=	14699	NONE			

TABLE 2.5.3. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

$A \quad \operatorname{dim}$	S_{l}	S_{u}	odd $\operatorname{deg}\left(\varphi_{A}\right)$	B di	$A \cap B$	Vis
1877B 86	7^{2}	$=$	1	NONE		
1887J 12	5^{2}	$=$	$5 \cdot 10825598693$	1887A	[20 ${ }^{2}$]	-
1891H 40	7^{4}	$=$	$7^{2} \cdot{ }_{44082137}$	1891C	[$4^{2} 196{ }^{2}$]	-
1907D* 90	7^{2}	$=$	7-165	1907A	[56 ${ }^{2}$]	7^{2}
1909D* 38	3^{4}	=	$3^{2 \cdot 9317}$	1909A	[182]	3^{4}
1913B* 1	3^{2}	$=$	$3 \cdot 103$	1913A	[3^{2}]	3^{2}
1913E 84	$5^{4} \cdot 61^{2}$	=	$5^{2} \cdot 61 \cdot{ }_{103}$	1913A	[10 ${ }^{2}$]	-
				1913C	[$2^{2} 610^{2}$]	-
1919D 52	23^{2}	$=$	675	NONE		
1927E 45	3^{2}	3^{4}	52667	NONE		
1933C 83	$3^{2} .7$	$3^{2} \cdot 7^{2}$	$3 \cdot 7$	1933A	[42 ${ }^{2}$]	3^{2}
1943E 46	13^{2}	$=$	${ }_{62931125}$	NONE		
1945E* 34	3^{2}	=	3-571255479184807	389A	[32]	3^{2}
1957E* 37	$7^{2} \cdot 11^{2}$	$=$	7-11-3481	1957A	[22 ${ }^{2}$]	11^{2}
				1957B	[14²]	7^{2}
1979C 104	19^{2}	$=$	55	NONE		
1991C 49	7^{2}	=	1634403663	NONE		
1994D 26		3^{2}	$3^{2} \cdot 46197281414642501$	997B	[3^{2}]	-
1997C 93	17^{2}	$=$	1	NONE		
2001L 11	3^{2}	$=$	$3^{2 \cdot 44513447}$	NONE		
2006E	3^{2}	$=$	3 -805	2006D	[32]	-
2014L 12	3^{2}	$=$	$3^{2} \cdot 126888129003$	106A	[92]	-
2021E 50	5^{6}	$=$	$5^{2} \cdot 729$	2021A	[100 ${ }^{2}$]	5^{4}
2027C* 94	29^{2}	$=$	29	2027A	[58 ${ }^{2}$]	29^{2}
2029C 90	$5^{2} \cdot 269^{2}$	=	5•269	2029A	[$2^{2} 2690^{2}$]	-
2031H*36	11^{2}	$=$	11.1014875952355	2031C	[44 ${ }^{2}$]	11^{2}
2035K 16	11^{2}	=	11-218702421	2035C	[$11^{1} 22^{1}$]	-
2038F 25	5	5^{2}	$5^{2} \cdot 921988766587$	2038A	[20^{2}]	-
				1019B	[5^{2}]	-
2039F 99	$3^{4} \cdot 5^{2}$	$=$	${ }^{13741381043009}$	NONE		
2041C 43	3^{4}	$=$	${ }_{61889617}$	NONE		
2045 I 39	3^{4}	$=$	$3^{3} \cdot 3123399893$	2045C	[18 ${ }^{2}$]	-
				409A	[9370199679 ${ }^{\text {² }}$]	-
2049D 31	3^{2}	$=$	29174705448000469937	NONE		
2051D 45	7^{2}	=	$7 \cdot 674652424406369$	2051A	[56 ${ }^{2}$]	-
2059E 45	$5 \cdot 7^{2}$	$5^{2} \cdot 7^{2}$	$5^{2} \cdot 7 \cdot 167359757$	2059A	[70²]	-
2063C 106	13^{2}	=	8479	NONE		
2071F 48	13^{2}	$=$	36348745	NONE		
2099B 106	3^{2}	=	1	NONE		
2101F 46	5^{2}	$=$	$5 \cdot 11521429$	191A	[155 ${ }^{2}$]	-
2103E 37	$3^{2} \cdot 11^{2}$	=	$3^{2} \cdot 11 \cdot 874412923071571792611$	2103B	[33 ${ }^{2}$]	11^{2}
2111B 112	211^{2}	$=$	1	NONE		
2113B 91	7^{2}	$=$	1	NONE		
2117E* 45	19^{2}	$=$	19-1078389	2117A	[38 ${ }^{2}$]	19^{2}

TABLE 2.5.4. Visibility of Nontrivial Odd Parts of Shafarevich-Tate Groups

A dim	S_{l}	S_{u}	$\operatorname{odd} \operatorname{deg}\left(\varphi_{A}\right)$	$B \quad \operatorname{dim}$	$A \cap B$	Vis
2119C 48	7^{2}	=	89746579	NONE		
2127D 34	3^{2}	$=$	$3 \cdot 18740561792121901$	709A 1	$\left[3^{2}\right]$	-
2129B 102	3^{2}	=	1	NONE		
2130Y 4	7^{2}	$=$	$7 \cdot 83927$	2130B 1	[14 ${ }^{2}$]	-
2131B 101	17^{2}	=	1	NONE		
2134J 11	3^{2}	=	1710248025389	NONE		
2146J 10	7^{2}	=	$7 \cdot 1672443$	2146A 1	$\left[7^{2}\right]$	-
2159E 57	13^{2}	=	31154538351	NONE		
2159D 56	3^{4}	$=$	233801	NONE		
2161C 98	23^{2}	=	1	NONE		
2162H 14	3	3^{2}	$3 \cdot 6578391763$	NONE		
2171E 54	13^{2}	$=$	271	NONE		
2173H 44	199^{2}	$=$	199.3581	2173D 2	[398 ${ }^{2}$]	-
2173F 43	19^{2}	$3^{2} \cdot 19^{2}$	$3^{2} \cdot 19 \cdot{ }_{29341}$	2173A 1	[38 ${ }^{2}$]	19^{2}
2174F 31	5^{2}	$=$	$5 \cdot 21555702093188316107$	NONE		
2181E 27	7^{2}	$=$	$7 \cdot 7217996450474835$	2181A 1	[282]	-
2193K 17	3^{2}	$=$	$3 \cdot 15096035814223$	129A 1	[21 ${ }^{2}$]	-
2199C 36	7^{2}	=	$7^{2} \cdot 13033437060276603$	NONE		
2213C 101	3^{4}	=	19	NONE		
2215F 46	13^{2}	$=$	$13 \cdot 1182141633$	2215A 1	[52 ${ }^{2}$]	-
2224R 11	79^{2}	=	79	2224G 2	[79 ${ }^{2}$]	-
2227E 51	11^{2}	=	259	NONE		
2231D 60	47^{2}	=	91109	NONE		
2239B 110	11^{4}	=	1	NONE		
2251E* 99	37^{2}	=	37	2251A 1	[74 ${ }^{2}$]	37^{2}
2253C* 27	13^{2}	$=$	$13 \cdot 14987929400988647$	2253A 1	[26 ${ }^{2}$]	13^{2}
2255J 23	7^{2}	$=$	15666366543129	NONE		
2257H 46	$3^{6} \cdot 29^{2}$	$=$	$3^{3} \cdot 29 \cdot 175$	2257A 1	[9^{2}]	-
				2257D 2	[$2^{2} 174^{2}$]	-
2264J 22	73^{2}	$=$	73	2264B 2	[1462 ${ }^{2}$	-
2265U 14	7^{2}	=	$7^{2} \cdot 73023816368925$	2265B 1	[7^{2}]	-
2271I* 43	23^{2}	$=$	$23 \cdot 392918345997771783$	2271C 1	[46 ${ }^{2}$]	23^{2}
2273C 105	7^{2}	=	7^{2}	NONE		
2279D 61	13^{2}	$=$	96991	NONE		
2279C 58	5^{2}	$=$	1777847	NONE		
2285E 45	151^{2}	$=$	$151 \cdot 138908751161$	2285A 2	$\left[2^{2} 302^{2}\right]$	-
2287B 109	71^{2}	=	1	NONE		
2291C 52	3^{2}	=	427943	NONE		
2293C 96	479^{2}	$=$	479	2293A 2	[$2^{2} 958^{2}$]	-
2294F 15	3^{2}	=	$3 \cdot 6289390462793$	1147A 1	[3^{2}]	-
2311B 110	5^{2}	=	1	NONE		
2315I 51	3^{2}	$=$	$3 \cdot 4475437589723$	463A 16	[13426312769169 ${ }^{2}$]	-
2333C 101	$83341{ }^{2}$	=	83341	2333A 4	$\left[2^{6} 166682^{2}\right]$	-

