18 2. The Birch and Swinnerton-Dyer Conjecture

2.4 The Conjecture for Non-Modular Abelian Varieties

Conjecture 2.3.1 can be extended to general abelian varieties over global fields. Here we discuss only the case of a general abelian variety A over \mathbf{Q} . We follow the discussion in [Lan91, 95-94] (Lang, Number Theory III), which describes Gross's formulation of the conjecture for abelian varieties over number fields, and to which we refer the reader for more details.

For each prime number ℓ , the ℓ -adic *Tate module* associated to A is

$$\operatorname{Ta}_{\ell}(A) = \lim_{\stackrel{\longleftarrow}{n}} A(\overline{\mathbf{Q}})[\ell^n].$$

Since $A(\overline{\mathbf{Q}})[\ell^n] \cong (\mathbf{Z}/\ell^n \mathbf{Z})^{2\dim(A)}$, we see that $\operatorname{Ta}_{\ell}(A)$ is free of rank $2\dim(A)$ as a \mathbf{Z}_{ℓ} -module. Also, since the group structure on A is defined over \mathbf{Q} , $\operatorname{Ta}_{\ell}(A)$ comes equipped with an action of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$:

$$\rho_{A,\ell} : \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Aut}(\operatorname{Ta}_{\ell}(A)) \approx \operatorname{GL}_{2d}(\mathbf{Z}_{\ell}).$$

Suppose p is a prime and let $\ell \neq p$ be another prime. Fix any embedding $\overline{\mathbf{Q}} \hookrightarrow \overline{\mathbf{Q}}_p$, and notice that restriction defines a homorphism $r : \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p) \to \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. Let $G_p \subset \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ be the image of r. The inertia group $I_p \subset G_p$ is the kernel of the natural surjective reduction map, and we have an exact sequence

$$0 \to I_p \to \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p) \to \operatorname{Gal}(\overline{\mathbf{F}}_p/\mathbf{F}_p) \to 0.$$

The Galois group $\operatorname{Gal}(\overline{\mathbf{F}}_p/\mathbf{F}_p)$ is isomorphic to $\widehat{\mathbf{Z}}$ with canonical generator $x \mapsto x^p$. Lifting this generator, we obtain an element $\operatorname{Frob}_p \in \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$, which is welldefined up to an element of I_p . Viewed as an element of $G_p \subset \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, the element Frob_p is well-defined up I_p and our choice of embedding $\overline{\mathbf{Q}} \hookrightarrow \overline{\mathbf{Q}}_p$. One can show that this implies that $\operatorname{Frob}_p \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ is well-defined up to I_p and conjugation by an element of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$.

For a G_p -module M, let

Defini

$$M^{I_p} = \{ x \in M : \sigma(x) = x \text{ all } \sigma \in I_p \}.$$

Because I_p acts trivially on M^{I_p} , the action of the element $\operatorname{Frob}_p \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ on M^{I_p} is well-defined up to conjugation $(I_p \text{ acts trivially, so the "up to } I_p$ " obstruction vanishes). Thus the characteristic polynomial of Frob_p on M^{I_p} is welldefined, which is why $L_p(A, s)$ is well-defined. The *local L-factor* of L(A, s) at pis

$$L_p(A,s) = \frac{1}{\det \left(I - p^{-s} \operatorname{Frob}_p^{-1} | \operatorname{Hom}_{\mathbf{Z}_\ell}(\operatorname{Ta}_\ell(A), \mathbf{Z}_\ell)^{I_p}\right)}.$$

tion 2.4.1. $L(A,s) = \prod_{\text{all } p} L_p(A,s)$

For all but finitely many primes $\operatorname{Ta}_{\ell}(A)^{I_p} = \operatorname{Ta}_{\ell}(A)$. For example, if $A = A_f$ is attached to a newform $f = \sum a_n q^n$ of level N and $p \nmid \ell \cdot N$, then $\operatorname{Ta}_{\ell}(A)^{I_p} = \operatorname{Ta}_{\ell}(A)$. In this case, the Eichler-Shimura relation implies that $L_p(A, s)$ equals $\prod L_p(f_i, s)$, where the $f_i = \sum a_{n,i}q^n$ are the Galois conjugates of f and $L_p(f_i, s) = (1 - a_{p,i} \cdot p^{-s} + p^{1-2s})^{-1}$. The point is that Eichler-Shimura can be used to show that the characteristic polynomial of Frob_p is $\prod_{i=1}^{\dim(A)} (X^2 - a_{p,i}X + p^{1-2s})$.

Theorem 2.4.2. $L(A_f, s) = \prod_{i=1}^{d} L(f_i, s).$