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2
The Birch and Swinnerton-Dyer
Conjecture

This chapter is about the conjecture of Birch and Swinnerton-Dyer on the arith-
metic of abelian varieties. We focus primarily on abelian varieties attached to
modular forms.

In the 1960s, Sir Peter Swinnerton-Dyer worked with the EDSAC computer lab
at Cambridge University, and developed an operating system that ran on that
computer (so he told me once). He and Bryan Birch programmed EDSAC to
compute various quantities associated to elliptic curves. They then formulated the
conjectures in this chapter in the case of dimension 1 (see [Bir65, Bir71, SD67]).
Tate formulated the conjectures in a functorial way for abelian varieties of arbitrary
dimension over global fields in [Tat66], and proved that if the conjecture is true for
an abelian variety A, then it is also true for each abelian variety isogenous to A.

Suitably interpreted, the conjectures may by viewed as generalizing the ana-
lytic class number formula, and Bloch and Kato generalized the conjectures to
Grothendieck motives in [BK90].

2.1 The Rank Conjecture

Let A be an abelian variety over a number field K.

Definition 2.1.1 (Mordell-Weil Group). The Mordell-Weil group of A is the
abelian group AK) of all K-rational points on A.

Theorem 2.1.2 (Mordell-Weil). The Mordell-Weil group A(K) of A is finitely

generated.

The proof is nontrivial and combines two ideas. First, one proves the “weak
Mordell-Weil theorem”: for any integer m the quotient A(K)/mA(K) is finite.
This is proved by combining Galois cohomology techniques with standard finiteness
theorems from algebraic number theory. The second idea is to introduce the Néron-
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Tate canonical height h : A(K) → R≥0 and use properties of h to deduce, from
finiteness of A(K)/mA(K), that A(K) itself is finitely generated.

Definition 2.1.3 (Rank). By the structure theorem A(K) ∼= Zr ⊕Gtor, where r
is a nonnegative integer and Gtor is the torsion subgroup of G. The rank of A is r.

Let f ∈ S2(Γ1(N)) be a newform of level N , and let A = Af ⊂ J1(N) be
the corresponding abelian variety. Let f1, . . . , fd denote the Gal(Q/Q)-conjugates
of f , so if f =

∑

anqn, then fi =
∑

σ(an)qn, for some σ ∈ Gal(Q/Q).

Definition 2.1.4 (L-function of A). We define the L-function of A = Af (or
any abelian variety isogenous to A) to be

L(A, s) =
d
∏

i=1

L(fi, s).

By Theorem 1.1.4, each L(fi, s) is an entire function on C, so L(A, s) is entire. In
Section ?? we will discuss an intrinsic way to define L(A, s) that does not require
that A be attached to a modular form. However, in general we do not know that
L(A, s) is entire.

Conjecture 2.1.5 (Birch and Swinnerton-Dyer). The rank of A(Q) is equal

to ords=1 L(A, s).

One motivation for Conjecture 2.1.5 is the following formal observation. As-
sume for simplicity of notation that dim A = 1. By Theorem 1.1.6, the L-function
L(A, s) = L(f, s) has an Euler product representation

L(A, s) =
∏

p|N

1

1 − app−s
·
∏

p-N

1

1 − app−s + p · p−2s
,

which is valid for Re(s) sufficiently large. (Note that ε = 1, since A is a modular el-
liptic curve, hence a quotient of X0(N).) There is no loss in considering the product
L∗(A, s) over only the good primes p - N , since ords=1 L(A, s) = ords=1 L∗(A, s)
(because

∏

p|N
1

1−app−s is nonzero at s = 1). We then have formally that

L∗(A, 1) =
∏

p-N

1

1 − app−1 + p−1

=
∏

p-N

p

p − ap + 1

=
∏

p-N

p

#A(Fp)

The intuition is that if the rank of A is large, i.e., A(Q) is large, then each group
A(Fp) will also be large since it has many points coming from reducing the ele-
ments of A(Q) modulo p. It seems likely that if the groups #A(Fp) are unusually
large, then L∗(A, 1) = 0, and computational evidence suggests the more precise
Conjecture 2.1.5.

Example 2.1.6. Let A0 be the elliptic curve y2 +y = x3−x2, which has rank 0 and
conductor 11, let A1 be the elliptic curve y2 + y = x3 − x, which has rank 1 and
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conductor 37, let A2 be the elliptic curve y2 + y = x3 + x2 − 2x, which has rank 2
and conductor 389, and finally let A3 be the elliptic curve y2 + y = x3 − 7x + 6,
which has rank 3 and conductor 5077. By an exhaustive search, these are known to
be the smallest-conductor elliptic curves of each rank. Conjecture 2.1.5 is known
to be true for them, the most difficult being A3, which relies on the results of [?].

The following diagram illustrates |#Ai(Fp)| for p < 100, for each of these curves.
The height of the red line (first) above the prime p is |#A0(Fp)|, the green line
(second) gives the value for A1, the blue line (third) for A2, and the black line
(fourth) for A3. The intuition described above suggests that the clumps should
look like triangles, with the first line shorter than the second, the second shorter
than the third, and the third shorter than the fourth—however, this is visibly not
the case. The large Mordell-Weil group over Q does not increase the size of every
E(Fp) as much as we might at first suspect. Nonetheless, the first line is no longer
than the last line for every p except p = 41, 79, 83, 97.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Remark 2.1.7. Suppose that L(A, 1) 6= 0. Then assuming the Riemann hypothesis
for L(A, s) (i.e., that L(A, s) 6= 0 for Re(s) > 1), Goldfeld [Gol82] proved that the
Euler product for L(A, s), formally evaluated at 1, converges but does not converge
to L(A, 1). Instead, it converges (very slowly) to L(A, 1)/

√
2. For further details

and insight into this strange behavior, see [Con03].

Remark 2.1.8. The Clay Math Institute has offered a one million dollar prize for
a proof of Conjecture 2.1.5 for elliptic curves over Q. See [Wil00].

Theorem 2.1.9 (Kolyvagin-Logachev). Suppose f ∈ S2(Γ0(N)) is a newform

such that ords=1 L(f, s) ≤ 1. Then Conjecture 2.1.5 is true for Af .



10 2. The Birch and Swinnerton-Dyer Conjecture

Theorem 2.1.10 (Kato). Suppose f ∈ S2(Γ1(N)) and L(f, 1) 6= 0. Then Con-

jecture 2.1.5 is true for Af .

2.2 Refined Rank Zero Conjecture

Let f ∈ S2(Γ1(N)) be a newform of level N , and let Af ⊂ J1(N) be the corre-
sponding abelian variety. We remark that the definitions, results, and proofs in
this section are all true exactly as stated with X1(N) replaced by X0(N).

The following conjecture refines Conjecture 2.1.5 in the case L(A, 1) 6= 0. We
recall some of the notation below, where we give a formula for L(A, 1)/ΩA, which
can be computed up to something called the Manin index.

Conjecture 2.2.1 (Birch and Swinnerton-Dyer). Suppose L(A, 1) 6= 0. Then

L(A, 1)

ΩA
=

#X(A) ·∏p|N cp

#A(Q)tor · #A∨(Q)tor
.

In order to give a formula for L(A, 1)/ΩA it will be easiest to work with the dual
A∨

f of Af , which we view naturally as a quotient of J1(N) as follows. Dualizing
the map Af ↪→ J1(N) we obtain a surjective map J1(N) → A∨

f , where A = A∨
f is

the dual of Af .
The map J1(N) → A induces a map J → A on Néron models. Pullback of

differentials defines a map

H0(A,Ω1

A/Z) → H0(J ,Ω1

J /Z). (2.2.1)

One can show that there is a q-expansion map

H0(J ,Ω1

J /Z) → Z[[q]] (2.2.2)

which agrees with the usual q-expansion map after tensoring with C. (For us X1(N)
is the curve that parameterizes pairs (E,µN ↪→ E), so that there is a q-expansion
map with values in Z[[q]].)

Let ϕA be the composition of (2.2.1) with (2.2.2).

Definition 2.2.2 (Manin Index). The Manin index cA of A is the index of
ϕA(H0(A,Ω1

A/Z)) in its saturation. I.e., it is the order of the quotient group

(

Z[[q]]

ϕA(H0(A,Ω1

A/Z))

)

tor

.

Manin made the following conjecture when dim A = 1:

Conjecture 2.2.3 (Agashe, Stein). cA = 1.

This conjecture is false if A is not required to be attached to a newform. For
example, Adam Joyce, a student of Kevin Buzzard, found an A ⊂ J1(431) (and
also A′ ⊂ J0(431)) whose Manin constant is 2. Here A is isogenous over Q to a
product of two elliptic curves.

Definition 2.2.4 (Real Components). Let c∞ be the number of connected
components of A(R).
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If A is an elliptic curve, then c∞ = 1 or 2, depending on whether the graph of
the affine part of A(R) in the plane R2 is connected. In general, there is a simple
formula for c∞ in terms of the action of complex conjugation on H1(A(R),Z),
which can be computed using modular symbols. The formula is

log2(c∞) = dimF2
A(R)[2] − dim(A).

Definition 2.2.5 (Real Volume). The real volume of A(R) is the volume of
A(R) with respect to a measure obtained by wedging together a basis for H0(A,Ω1).

Let
Φ : H1(X1(N),Z) → Hom(Cf1 + · · ·Cfd,C)

be the period mapping on homology induced by integrating homology classes on
X0(N) against the C-vector space spanned by the Gal(Q/Q)-conjugates fi of f ,
normalized so that Φ({0,∞})(f) = L(f, 1).

Theorem 2.2.6. We have the following equality of rational numbers:

L(A, 1)

ΩA
=

1

c∞ · cA
· [Φ(H1(X0(N),Z))+ : Φ(T{0,∞})].

For V and W lattices in a R-vector space M , the lattice index [V : W ] is by
definition the absolute value of the determinant of a change of basis taking a basis
for V to a basis for W , or 0 if W has rank smaller than the dimension of M .

Proof. Let Ω̃A the measure of A(R) with respect to a basis for S2(Γ1(N),Z)[If ],

where If is the annihilator in T of f . Note that Ω̃A · cA = ΩA, where cA is the
Manin index. Unwinding the definitions, we find that

Ω̃A = c∞ · [Hom(S2(Γ1(N),Z)[If ],Z) : Φ(H1(X0(N),Z))+].

For any ring R the pairing

TR × S2(Γ1(N), R) → R

given by 〈Tn, f〉 = a1(Tnf) is perfect, so (T/If )⊗R ∼= Hom(S2(Γ1(N), R)[If ], R).
Using this pairing, we may view Φ as a map

Φ : H1(X1(N),Q) → (T/If ) ⊗ C,

so that
Ω̃A = c∞ · [T/If : Φ(H1(X0(N),Z))+].

Note that (T/If ) ⊗ C is isomorphic as a ring to a product of copies of C, with
one copy corresponding to each Galois conjugate fi of f . Let πi ∈ (T/If ) ⊗ C be
the projector onto the subspace of (T/If ) ⊗ C corresponding to fi. Then

Φ({0,∞}) · πi = L(fi, 1) · πi.

Since the πi form a basis for the complex vector space (T/If ) ⊗ C, if we view
Φ({0,∞}) as the operator “left-multiplication by Φ({0,∞}), then

det(Φ({0,∞})) =
∏

i

L(fi, 1) = L(A, 1),
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Letting H = H1(X0(N),Z), we have

[Φ(H)+ : Φ(T{0,∞})] = [Φ(H)+ : (T/If ) · Φ({0,∞})]
= [Φ(H)+ : T/If ] · [T/If : T/If · Φ({0,∞})]
=

c∞

Ω̃A

· det(Φ({0,∞}))

=
c∞cA

ΩA
· L(A, 1),

which proves the theorem.
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