1

L-functions

1.1 L-functions Attached to Modular Forms

Let $f=\sum_{n \geq 1} a_{n} q^{n} \in S_{k}\left(\Gamma_{1}(N)\right)$ be a cusp form.
Definition 1.1.1 (L-series). The L-series of f is

$$
L(f, s)=\sum_{n \geq 1} \frac{a_{n}}{n^{s}}
$$

Definition 1.1.2 (Λ-function). The completed Λ function of f is

$$
\Lambda(f, s)=N^{s / 2}(2 \pi)^{-s} \Gamma(s) L(f, s)
$$

where

$$
\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s} \frac{d t}{t}
$$

is the Γ function (so $\Gamma(n)=(n-1)$! for positive integers n).
We can view $\Lambda(f, s)$ as a (Mellin) transform of f, in the following sense:
Proposition 1.1.3. We have

$$
\Lambda(f, s)=N^{s / 2} \int_{0}^{\infty} f(i y) y^{s} \frac{d y}{y}
$$

and this integral converges for $\operatorname{Re}(s)>\frac{k}{2}+1$.

Proof. We have

$$
\begin{aligned}
\int_{0}^{\infty} f(i y) y^{s} \frac{d y}{y} & =\int_{0}^{\infty} \sum_{n=1}^{\infty} a_{n} e^{-2 \pi n y} y^{s} \frac{d y}{y} \\
& =\sum_{n=1}^{\infty} a_{n} \int_{0}^{\infty} e^{-t}(2 \pi n)^{-s} t^{s} \frac{d t}{t} \quad(t=2 \pi n y) \\
& =(2 \pi)^{-s} \Gamma(s) \sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
\end{aligned}
$$

To go from the first line to the second line, we reverse the summation and integration and perform the change of variables $t=2 \pi n y$. (We omit discussion of convergence.)

1.1.1 Analytic Continuation and Functional Equation

We define the Atkin-Lehner operator W_{N} on $S_{k}\left(\Gamma_{1}(N)\right)$ as follows. If $w_{N}=$ $\left(\begin{array}{cc}0 & -1 \\ N & 0\end{array}\right)$, then $\left[w_{N}^{2}\right]_{k}$ acts as $(-N)^{k-2}$, so if

$$
\left.W_{N}(f)=N^{1-\frac{k}{2}} \cdot f \right\rvert\,\left[w_{N}\right]_{k}
$$

then $W_{N}^{2}=(-1)^{k}$. (Note that W_{N} is an involution when k is even.) It is easy to check directly that if $\gamma \in \Gamma_{1}(N)$, then $w_{N} \gamma w_{N}^{-1} \in \Gamma_{1}(N)$, so W_{N} preserves $S_{k}\left(\Gamma_{1}(N)\right)$. Note that in general W_{N} does not commute with the Hecke operators T_{p}, for $p \mid N$.

The following theorem is mainly due to Hecke (and maybe other people, at least in this generality). For a very general version of this theorem, see [Li75].
Theorem 1.1.4. Suppose $f \in S_{k}\left(\Gamma_{1}(N), \chi\right)$ is a cusp form with character χ. Then $\Lambda(f, s)$ extends to an entire (holomorphic on all of \mathbf{C}) function which satisfies the functional equation

$$
\Lambda(f, s)=i^{k} \Lambda\left(W_{N}(f), k-s\right)
$$

Since $N^{s / 2}(2 \pi)^{-s} \Gamma(s)$ is everywhere nonzero, Theorem 1.1.4 implies that $L(f, s)$ also extends to an entire function.

It follows from Definition 1.1.2 that $\Lambda(c f, s)=c \Lambda(f, s)$ for any $c \in \mathbf{C}$. Thus if f is a W_{N}-eigenform, so that $W_{N}(f)=w f$ for some $w \in \mathbf{C}$, then the functional equation becomes

$$
\Lambda(f, s)=i^{k} w \Lambda(f, k-s)
$$

If $k=2$, then W_{N} is an involution, so $w= \pm 1$, and the sign in the functional equation is $\varepsilon(f)=i^{k} w=-w$, which is the negative of the sign of the AtkinLehner involution W_{N} on f. It is straightforward to show that $\varepsilon(f)=1$ if and only if $\operatorname{ord}_{s=1} L(f, s)$ is even. Parity observations such as this are extremely useful when trying to understand the Birch and Swinnerton-Dyer conjecture.

Sketch of proof of Theorem 1.1.4 when $N=1$. We follow [Kna92, §VIII.5] closely.
Note that since $w_{1}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})$, the condition $W_{1}(f)=f$ is satisfied for any $f \in S_{k}(1)$. This translates into the equality

$$
\begin{equation*}
f\left(-\frac{1}{z}\right)=z^{k} f(z) \tag{1.1.1}
\end{equation*}
$$

Write $z=x+i y$ with x and y real. Then (1.1.1) along the positive imaginary axis (so $z=i y$ with y positive real) is

$$
\begin{equation*}
f\left(\frac{i}{y}\right)=i^{k} y^{k} f(i y) \tag{1.1.2}
\end{equation*}
$$

From Proposition 1.1.3 we have

$$
\begin{equation*}
\Lambda(f, s)=\int_{0}^{\infty} f(i y) y^{s-1} d y \tag{1.1.3}
\end{equation*}
$$

and this integral converges for $\operatorname{Re}(s)>\frac{k}{2}+1$.
Again using growth estimates, one shows that

$$
\int_{1}^{\infty} f(i y) y^{s-1} d y
$$

converges for all $s \in \mathbf{C}$, and defines an entire function. Breaking the path in (1.1.3) at 1 , we have for $\operatorname{Re}(s)>\frac{k}{2}+1$ that

$$
\Lambda(f, s)=\int_{0}^{1} f(i y) y^{s-1} d y+\int_{1}^{\infty} f(i y) y^{s-1} d y .
$$

Apply the change of variables $t=1 / y$ to the first term and use (1.1.2) to get

$$
\begin{aligned}
\int_{0}^{1} f(i y) y^{s-1} d y & =\int_{\infty}^{1}-f(i / t) t^{1-s} \frac{1}{t^{2}} d t \\
& =\int_{1}^{\infty} f(i / t) t^{-1-s} d t \\
& =\int_{1}^{\infty} i^{k} t^{k} f(i t) t^{-1-s} d t \\
& =i^{k} \int_{1}^{\infty} f(i t) t^{k-1-s} d t
\end{aligned}
$$

Thus

$$
\Lambda(f, s)=i^{k} \int_{1}^{\infty} f(i t) t^{k-s-1} d t+\int_{1}^{\infty} f(i y) y^{s-1} d y
$$

The first term is just a translation of the second, so the first term extends to an entire function as well. Thus $\Lambda(f, s)$ extends to an entire function.

The proof of the general case for $\Gamma_{0}(N)$ is almost the same, except the path is broken at $1 / \sqrt{N}$, since i / \sqrt{N} is a fixed point for w_{N}.

1.1.2 A Conjecture About Nonvanishing of $L(f, k / 2)$

Suppose $f \in S_{k}(1)$ is an eigenform. If $k \equiv 2(\bmod 4)$, then $L(f, k / 2)=0$ for reasons related to the discussion after the statement of Theorem 1.1.4. On the other hand, if $k \equiv 0(\bmod 4)$, then $\operatorname{ord}_{s=k / 2} L(f, k / 2)$ is even, so $L(f, k / 2)$ may or may not vanish.
Conjecture 1.1.5. Suppose $k \equiv 0(\bmod 4)$. Then $L(f, k / 2) \neq 0$.

According to [CF99], Conjecture 1.1.5 is true for weight k if there is some n such that the characteristic polynomial of T_{n} on $S_{k}(1)$ is irreducible. Thus Maeda's conjecture implies Conjecture 1.1.5. Put another way, if you find an f of level 1 and weight $k \equiv 0(\bmod 4)$ such that $L(f, k / 2)=0$, then Maeda's conjecture is false for weight k.
Oddly enough, I personally find Conjecture 1.1.5 less convincing that Maeda's conjecture, despite it being a weaker conjecture.

1.1.3 Euler Products

Euler products make very clear how L-functions of eigenforms encode deep arithmetic information about representations of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$. Given a "compatible family" of ℓ-adic representations ρ of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, one can define an Euler product $L(\rho, s)$, but in general it is very hard to say anything about the analytic properties of $L(\rho, s)$. However, as we saw above, when ρ is attached to a modular form, we know that $L(\rho, s)$ is entire.

Theorem 1.1.6. Let $f=\sum a_{n} q^{n}$ be a newform in $S_{k}\left(\Gamma_{1}(N), \varepsilon\right)$, and let $L(f, s)=$ $\sum_{n \geq 1} a_{n} n^{-s}$ be the associated Dirichlet series. Then $L(f, s)$ has an Euler product

$$
L(f, s)=\prod_{p \mid N} \frac{1}{1-a_{p} p^{-s}} \cdot \prod_{p \nmid N} \frac{1}{1-a_{p} p^{-s}+\varepsilon(p) p^{k-1} p^{-2 s}} .
$$

Note that it is not really necessary to separate out the factors with $p \mid N$ as we have done, since $\varepsilon(p)=0$ whenever $p \mid N$. Also, note that the denominators are of the form $F\left(p^{-s}\right)$, where

$$
F(X)=1-a_{p} X+\varepsilon(p) p^{k-1} X^{2}
$$

is the reverse of the characteristic polynomial of Frob_{p} acting on any of the ℓ-adic representations attached to f, with $p \neq \ell$.
Recall that if p is a prime, then for every $r \geq 2$ the Hecke operators satisfy the relationship

$$
\begin{equation*}
T_{p^{r}}=T_{p^{r-1}} T_{p}-p^{k-1} \varepsilon(p) T_{p^{r-2}} . \tag{1.1.4}
\end{equation*}
$$

Lemma 1.1.7. For every prime p we have the formal equality

$$
\begin{equation*}
\sum_{r \geq 0} T_{p^{r}} X^{r}=\frac{1}{1-T_{p} X+\varepsilon(p) p^{k-1} X^{2}} . \tag{1.1.5}
\end{equation*}
$$

Proof. Multiply both sides of (1.1.5) by $1-T_{p} X+\varepsilon(p) p^{k-1} X^{2}$ to obtain the equation

$$
\sum_{r \geq 0} T_{p^{r}} X^{r}-\sum_{r \geq 0}\left(T_{p^{r}} T_{p}\right) X^{r+1}+\sum_{r \geq 0}\left(\varepsilon(p) p^{k-1} T_{p^{r}}\right) X^{r+2}=1 .
$$

This equation is true if and only if the lemma is true. Equality follows by checking the first few terms and shifting the index down by 1 for the second sum and down by 2 for the third sum, then using (1.1.4).

$E_{0}=[0,0,0,0,1], E_{1}=\left[[0,0,1,-1,0], E_{2}=[0,1,1,-2,0], E_{3}=[0,0,1,-7,6]\right.$
FIGURE 1.1.1. Graph of $L(E, s)$ for s real, for curves of ranks 0 to 3 .

Note that $\varepsilon(p)=0$ when $p \mid N$, so when $p \mid N$

$$
\sum_{r \geq 0} T_{p^{r}} X^{r}=\frac{1}{1-T_{p} X}
$$

Since the eigenvalues a_{n} of f also satisfy (1.1.4), we obtain each factor of the Euler product of Theorem 1.1.6 by substituting the a_{n} for the T_{n} and p^{-s} for X into (1.1.4). For $(n, m)=1$, we have $a_{n m}=a_{n} a_{m}$, so

$$
\sum_{n \geq 1} \frac{a_{n}}{n^{s}}=\prod_{p}\left(\sum_{r \geq 0} \frac{a_{p^{r}}}{p^{r s}}\right)
$$

which gives the full Euler product for $L(f, s)=\sum a_{n} n^{-s}$.

1.1.4 Visualizing L-function

A. Shwayder did his Harvard junior project with me on visualizing L-functions of elliptic curves (or equivalently, of newforms $f=\sum a_{n} q^{n} \in S_{2}\left(\Gamma_{0}(N)\right)$ with $a_{n} \in \mathbf{Z}$ for all n. The graphs in Figures 1.1.1-1.1.2 of $L(E, s)$, for s real, and $|L(E, s)|$, for s complex, are from his paper.

FIGURE 1.1.2. Graph of $|L(E, s)|$, for s complex for $y^{2}+y=x^{3}-x^{2}-10 x-20$

References

[CF99] J. B. Conrey and D. W. Farmer, Hecke operators and the nonvanishing of L-functions, Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 143-150. MR 2000f:11055
[Kna92] A. W. Knapp, Elliptic curves, Princeton University Press, Princeton, NJ, 1992.
[Li75] W-C. Li, Newforms and functional equations, Math. Ann. 212 (1975), 285-315.

