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1
Modularity of Abelian Varieties

1.1 Modularity Over Q

Definition 1.1.1 (Modular Abelian Variety). Let A be an abelian variety
over Q. Then A is modular if there exists a positive integer N and a surjective
map J1(N)→ A defined over Q.

The following theorem is the culmination of a huge amount of work, which
started with Wiles’s successful attack [7] on Fermat’s Last Theorem, and culmi-
nated with [1].

Theorem 1.1.2 (Breuil, Conrad, Diamond, Taylor, Wiles). Let E be an

elliptic curve over Q. Then E is modular.

We will say nothing about the proof here.
If A is an abelian variety over Q, let EndQ(A) denote the ring of endomorphisms

of A that are defined over Q.

Definition 1.1.3 (GL2-type). An abelian variety A over Q is of GL2-type if the
endomorphism algebra Q ⊗ EndQ(A) contains a number field of degree equal to
the dimension of A.

For example, every elliptic curve E over Q is trivially of GL2-type, since Q ⊂
Q⊗ EndQ(E).

Proposition 1.1.4. If A is an abelian variety over Q, and K ⊂ Q⊗EndQ(A) is

a field, then [K : Q] divides dim A.

Proof. As discussed in [4, §2], K acts faithfully on the tangent space Tan0(A/Q)
over Q to A at 0, which is a Q vector space of dimension dim(A). Thus Tan0(A/Q)
is a vector space over K, hence has Q-dimension a multiple of [K : Q].

Proposition 1.1.4 implies, in particular, that if E is an elliptic curve over Q,
then EndQ(E) = Q. Recall that E has CM or is a complex multiplication elliptic
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curve if EndQ(E) 6= Z). Proposition 1.1.4 implies that if E is a CM elliptic curve,
the extra endomorphisms are never defined over Q.

Proposition 1.1.5. Suppose A = Af ⊂ J1(N) is an abelian variety attached to a

newform of level N . Then A is of GL2-type.

Proof. The endomorphism ring of Af contains Of = Z[. . . , an(f), . . .], hence the
field Kf = Q(. . . , an(f), . . .) is contained in Q⊗ EndQ(A). Since Af = nπJ1(N),
where π is a projector onto the factor Kf of the anemic Hecke algebra T0 ⊗Z Q,
we have dim Af = [Kf : Q]. (One way to see this is to recall that the tangent
space T = Hom(S2(Γ1(N)),C) to J1(N) at 0 is free of rank 1 over T0 ⊗Z C.)

Conjecture 1.1.6 (Ribet). Every abelian variety over Q of GL2-type is modular.

Suppose

ρ : Gal(Q/Q)→ GL2(Fp)

is an odd irreducible continuous Galois representation, where odd means that

det(ρ(c)) = −1,

where c is complex conjugation. We say that ρ is modular if there is a newform
f ∈ Sk(Γ1(N)), and a prime ideal ℘ ⊂ Of such that for all ` - Np, we have

Tr(ρ(Frob`)) ≡ a` (mod ℘),

Det(ρ(Frob`)) ≡ `k−1 · ε(`) (mod ℘).

Here χp is the p-adic cyclotomic character, and ε is the (Nebentypus) character of
the newform f .

Conjecture 1.1.7 (Serre). Every odd irreducible continuous representation

ρ : Gal(Q/Q)→ GL2(Fp)

is modular. Moreover, there is a formula for the “optimal” weight k(ρ) and level

N(ρ) of a newform that gives rise to ρ.

In [6], Serre describes the formula for the weight and level. Also, it is now known
due to work of Ribet, Edixhoven, Coleman, Voloch, Gross, and others that if ρ is
modular, then ρ arises from a form of the conjectured weight and level, except in
some cases when p = 2. (For more details see the survey paper [5].) However, the
full Conjecture 1.1.7 is known in very few cases.

Remark 1.1.8. There is interesting recent work of Richard Taylor which connects
Conjecture 1.1.7 with the open question of whether every variety of a certain type
has a point over a solvable extension of Q. The question of the existence of solvable
points (“solvability of varieties in radicals”) seems very difficult. For example, we
don’t even know the answer for genus one curves, or have a good reason to make
a conjecture either way (as far as I know). There’s a book of Mike Fried that
discusses this solvability question.

Serre’s conjecture is very strong. For example, it would imply modularity of all
abelian varieties over Q that could possibly be modular, and the proof of this
implication does not rely on Theorem 1.1.2.
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Theorem 1.1.9 (Ribet). Serre’s conjectures on modularity of all odd irreducible

mod p Galois representations implies Conjecture 1.1.6.

To give the reader a sense of the connection between Serre’s conjecture and
modularity, we sketch some of the key ideas of the proof of Theorem 1.1.9; for
more details the reader may consult Sections 1–4 of [4].

Without loss, we may assume that A is Q-simple. As explained in the not trivial
[4, Thm. 2.1], this hypothesis implies that

K = Q⊗Z EndQ(A)

is a number field of degree dim(A). The Tate modules

Tate`(A) = Q` ⊗ lim
←−
n≥1

A[`n]

are free of rank two over K ⊗Q`, so the action of Gal(Q/Q) on Tate`(A) defines
a representation

ρA,` : Gal(Q/Q)→ GL2(K ⊗Q`).

Remarks 1.1.10. That these representations take values in GL2 is why such A are
said to be “of GL2-type”. Also, note that the above applies to A = Af ⊂ J1(N),
and the `-adic representations attached to f are just the factors of ρA,` coming
from the fact that K ⊗Q`

∼=
∏

λ|` Kλ.

The deepest input to Ribet’s proof is Faltings’s isogeny theorem, which Faltings
proved in order to prove Mordell’s conjecture (there are only a finite number of
L-rational points on any curve over L of genus at least 2).

If B is an abelian variety over Q, let

L(B, s) =
∏

all primes p

1

det (1− p−s · Frobp |Tate`(A))
=
∏

p

Lp(B, s),

where ` is a prime of good reduction (it makes no difference which one).

Theorem 1.1.11 (Faltings). Let A and B be abelian varieties. Then A is isoge-

nous to B if and only if Lp(A, s) = Lp(B, s) for almost all p.

Using an analysis of Galois representations and properties of conductors and
applying results of Faltings, Ribet finds an infinite set Λ of primes of K such that
all ρA,λ are irredudible and there only finitely many Serre invariants N(ρA,λ) and
k(ρA,λ). For each of these λ, by Conjecture 1.1.7 there is a newform fλ of level
N(ρA,λ)) and weight k(ρA,λ) that gives rise to the mod ` representation ρA,λ.
Since Λ is infinite, but there are only finitely many Serre invariants N(ρA,λ)),
k(ρA,λ), there must be a single newform f and an infinite subset Λ′ of Λ so that
for every λ ∈ Λ′ the newform f gives rise to ρA,λ.

Let B = Af ⊂ J1(N) be the abelian variety attached to f . Fix any prime p of
good reduction. There are infinitely many primes λ ∈ Λ′ such that ρA,λ

∼= ρB,λ̃ for

some λ̃, and for these λ,

det
(

1− p−s · Frobp |A[λ]
)

= det
(

1− p−s · Frobp |B[λ̃]
)

.

This means that the degree two polynomials in p−s (over the appropriate fields,
e.g., K ⊗Q` for A)

det
(

1− p−s · Frobp |Tate`(A)
)
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and
det

(

1− p−s · Frobp |Tate`(B)
)

are congruent modulo infinitely many primes. Therefore they are equal. By Theo-
rem 1.1.11, it follows that A is isogenous to B = Af , so A is modular.

1.2 Modularity of Elliptic Curves over Q

Definition 1.2.1 (Modular Elliptic Curve). An elliptic curve E over Q is
modular if there is a surjective morphism X1(N)→ E for some N .

Definition 1.2.2 (Q-curve). An elliptic curve E over Q-bar is a Q-curve if for
every σ ∈ Gal(Q/Q) there is an isogeny Eσ → E (over Q).

Theorem 1.2.3 (Ribet). Let E be an elliptic curve over Q. If E is modular,

then E is a Q-curve, or E has CM.

This theorem is proved in [4, §5].

Conjecture 1.2.4 (Ribet). Let E be an elliptic curve over Q. If E is a Q-curve,

then E is modular.

In [4, §6], Ribet proves that Conjecture 1.1.7 implies Conjecture 1.2.4. He does
this by showing that if a Q-curve E does not have CM then there is a Q-simple
abelian variety A over Q of GL2-type such that E is a simple factor of A over Q.
This is accomplished finding a model for E over a Galois extension K of Q, re-
stricting scalars down to Q to obtain an abelian variety B = ResK/Q(E), and

using Galois cohomology computations (mainly in H2’s) to find the required A of
GL2-type inside B. Then Theorem 1.1.9 and our assumption that Conjecture 1.1.7
is true together immediately imply that A is modular.

Ellenberg and Skinner [3] have recently used methods similar to those used
by Wiles to prove strong theorems toward Conjecture 1.2.4. See also Ellenberg’s
survey [2], which discusses earlier modularity results of Hasegawa, Hashimoto,
Hida, Momose, and Shimura, and gives an example to show that there are infinitely
many Q-curves whose modularity is not known.

Theorem 1.2.5 (Ellenberg, Skinner). Let E be a Q-curve over a number

field K with semistable reduction at all primes of K lying over 3, and suppose

that K is unramified at 3. Then E is modular.
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