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12
Newforms

These are notes for Math 252 by William Stein. These are
based on lectures given by Ken Ribet at Berkeley in 1996.

First we discuss explicitly how Up, for p | N , acts on old forms, and how Up can
fail to be diagonalizable. Then we describe a canonical generator for Sk(Γ1(N)) as
a free module over TC. Finally, we observe that the subalgebra of TQ generated
by Hecke operators Tn with (n, N) = 1 is isomorphic to a product of number fields.

12.1 The Up Operator

Let N be a positive integer and M a divisor of N . For each divisor d of N/M we
define a map

αd : Sk(Γ1(M)) → Sk(Γ1(N)) : f(τ) 7→ f(dτ).

We verify that f(dτ) ∈ Sk(Γ1(N)) as follows. Recall that for γ =
(

a b
c d

)
, we write

(f |[γ]k)(τ) = det(γ)k−1(cz + d)−kf(γ(τ)).

The transformation condition for f to be in Sk(Γ1(N)) is that f |[γ]k(τ) = f(τ). Let
f(τ) ∈ Sk(Γ1(M)) and let ιd =

(
d 0
0 1

)
. Then f |[ιd]k(τ) = dk−1f(dτ) is a modular

form on Γ1(N) since ι−1
d Γ1(M)ιd contains Γ1(N). Moreover, if f is a cusp form

then so is f |[ιd]k.

Proposition 12.1.1. If f ∈ Sk(Γ1(M)) is nonzero, then{
αd(f) : d | N

M

}
is linearly independent.

Proof. If the q-expansion of f is
∑

anqn, then the q-expansion of αd(f) is
∑

anqdn.
The matrix of coefficients of the q-expansions of αd(f), for d | (N/M), is upper
triangular. Thus the q-expansions of the αd(f) are linearly independent, hence
the αd(f) are linearly independent, since the map that sends a cusp form to its
q-expansion is linear.

When p | N , we denote by Up the Hecke operator Tp acting on the image space
Sk(Γ1(N)). For f =

∑
anqn ∈ Sk(Γ1(N)), we have

f |Up =
∑

anpq
n.
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Suppose f =
∑

anqn ∈ Sk(Γ1(M)) is a normalized eigenform for all of the Hecke
operators Tn and 〈n〉, and p is a prime that does not divide M . Then

f |Tp = apf and f |〈p〉 = ε(p)f.

Assume N = prM , where r ≥ 1 is an integer. Let

fi(τ) = f(piτ),

so f0, . . . , fr are the images of f under the maps αp0 , . . . , αpr , respectively, and
f = f0. We have

f |Tp =
∑
n≥1

anpq
n + ε(p)pk−1

∑
anqpn

= f0|Up + ε(p)pk−1f1,

so
f0|Up = f |Tp − ε(p)pk−1f1 = apf0 − ε(p)pk−1f1.

Also
f1|Up =

(∑
anqpn

)
|Up =

∑
anqn = f0.

More generally, for any i ≥ 1, we have fi|Up = fi−1.
The operator Up preserves the two dimensional vector space spanned by f0

and f1, and the matrix of Up with respect to the basis f0, f1 is

A =
(

ap 1
− ε(p)pk−1 0

)
,

which has characteristic polynomial

X2 − apX + pk−1ε(p). (12.1.1)

12.1.1 A Connection with Galois Representations

This leads to a striking connection with Galois representations. Let f be a newform
and let K = Kf be the field generated over Q by the Fourier coefficients of f . Let
` be a prime and λ a prime lying over `. Then Deligne (and Serre, when k = 1)
constructed a representation

ρλ : Gal(Q/Q) → GL(2,Kλ).

If p - N`, then ρλ is unramified at p, so if Frobp ∈ Gal(Q/Q) if a Frobenius element,
then ρλ(Frobp) is well defined, up to conjugation. Moreover, one can show that

det(ρλ(Frobp)) = pk−1ε(p), and
tr(ρλ(Frobp)) = ap.

(We will discuss the proof of these relations further in the case k = 2.) Thus the
characteristic polynomial of ρλ(Frobp) ∈ GL2(Eλ) is

X2 − apX + pk−1ε(p),

which is the same as (12.1.1).
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12.1.2 When is Up Semisimple?

Question 12.1.2. Is Up semisimple on the span of f0 and f1?

If the eigenvalues of Up are distinct, then the answer is yes. If the eigenvalues
are the same, then X2 − apX + pk−1ε(p) has discriminant 0, so a2

p = 4pk−1ε(p),
hence

ap = 2p
k−1
2

√
ε(p).

Open Problem 12.1.3. Does there exist an eigenform f =
∑

anqn ∈ Sk(Γ1(N))
such that ap = 2p

k−1
2

√
ε(p)?

It is a curious fact that the Ramanujan conjectures, which were proved by
Deligne in 1973, imply that |ap| ≤ 2p(k−1)/2, so the above equality remains taunt-
ing. When k = 2, Coleman and Edixhoven proved that |ap| < 2p(k−1)/2.

12.1.3 An Example of Non-semisimple Up

Suppose f = f0 is a normalized eigenform. Let W be the space spanned by f0, f1

and let V be the space spanned by f0, f1, f2, f3. Then Up acts on V/W by f2 7→ 0
and f3 7→ f2. Thus the matrix of the action of Up on V/W is ( 0 1

0 0 ), which is
nonzero and nilpotent, hence not semisimple. Since W is invariant under Up this
shows that Up is not semisimple on V , i.e., Up is not diagonalizable.

12.2 The Cusp Forms are Free of Rank One over TC

12.2.1 Level 1

Suppose N = 1, so Γ1(N) = SL2(Z). Using the Petersson inner product, we see
that all the Tn are diagonalizable, so Sk = Sk(Γ1(1)) has a basis

f1, . . . , fd

of normalized eigenforms where d = dim Sk. This basis is canonical up to ordering.
Let TC = T ⊗C be the ring generated over C by the Hecke operator Tp. Then,
having fixed the basis above, there is a canonical map

TC ↪→ Cd : T 7→ (λ1, . . . , λd),

where fi|T = λifi. This map is injective and dimTC = d, so the map is an
isomorphism of C-vector spaces.

The form
v = f1 + · · ·+ fn

generates Sk as a T-module. Note that v is canonical since it does not depend on
the ordering of the fi. Since v corresponds to the vector (1, . . . , 1) and T ∼= Cd

acts on Sk
∼= Cd componentwise, this is just the statement that Cd is generated

by (1, . . . , 1) as a Cd-module.
There is a perfect pairing Sk ×TC → C given by〈∑

f, Tn

〉
= a1(f |Tn) = an(f),

where an(f) denotes the nth Fourier coefficient of f . Thus we have simultaneously:
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1. Sk is free of rank 1 over TC, and

2. Sk
∼= HomC(TC,C) as T-modules.

Combining these two facts yields an isomorphism

TC
∼= HomC(TC,C). (12.2.1)

This isomorphism sends an element T ∈ T to the homomorphism

X 7→ 〈v|T,X〉 = a1(v|T |X).

Since the identification Sk = HomC(TC,C) is canonical and since the vector v is
canonical, we see that the isomorphism (12.2.1) is canonical.

Recall that Mk has as basis the set of products Ea
4Eb

6, where 4a + 6b = k, and
Sk is the subspace of forms where the constant coefficient of their q-expansion is 0.
Thus there is a basis of Sk consisting of forms whose q-expansions have coefficients
in Q. Let Sk(Z) = Sk ∩ Z[[q]], be the submodule of Sk generated by cusp forms
with Fourier coefficients in Z, and note that Sk(Z)⊗Q ∼= Sk(Q). Also, the explicit
formula (

∑
anqn)|Tp =

∑
anpq

n +pk−1
∑

anqnp implies that the Hecke algebra T
preserves Sk(Z).

Proposition 12.2.1. The Fourier coefficients of each fi are totally real algebraic
integers.

Proof. The coefficient an(fi) is the eigenvalue of Tn acting on fi. As observed
above, the Hecke operator Tn preserves Sk(Z), so the matrix [Tn] of Tn with respect
to a basis for Sk(Z) has integer entries. The eigenvalues of Tn are algebraic integers,
since the characteristic polynomial of [Tn] is monic and has integer coefficients.

The eigenvalues are real since the Hecke operators are self-adjoint with respect
to the Petersson inner product.

Remark 12.2.2. A CM field is a quadratic imaginary extension of a totally real
field. For example, when n > 2, the field Q(ζn) is a CM field, with totally real
subfield Q(ζn)+ = Q(ζn + 1/ζn). More generally, one shows that the eigenvalues
of any newform f ∈ Sk(Γ1(N)) generate a totally real or CM field.

Proposition 12.2.3. We have v ∈ Sk(Z).

Proof. This is because v =
∑

Tr(Tn)qn, and, as we observed above, there is a basis
so that the matrices Tn have integer coefficients.

Example 12.2.4. When k = 36, we have

v = 3q + 139656q2 − 104875308q3 + 34841262144q4 + 892652054010q5

− 4786530564384q6 + 878422149346056q7 + · · · .

The normalized newforms f1, f2, f3 are

fi = q + aq2 + (−1/72a2 + 2697a + 478011548)q3 + (a2 − 34359738368)q4

(a2 − 34359738368)q4 + (−69/2a2 + 14141780a + 1225308030462)q5 + · · · ,

for a each of the three roots of X3−139656X2−59208339456X−1467625047588864.



12.2 The Cusp Forms are Free of Rank One over TC 101

12.2.2 General Level

Now we consider the case for general level N . Recall that there are maps

Sk(Γ1(M)) → Sk(Γ1(N)),

for all M dividing N and all divisor d of N/M .
The old subspace of Sk(Γ1(N)) is the space generated by all images of these

maps with M |N but M 6= N . The new subspace is the orthogonal complement of
the old subspace with respect to the Petersson inner product.

There is an algebraic definition of the new subspace. One defines trace maps

Sk(Γ1(N)) → Sk(Γ1(M))

for all M < N , M | N which are adjoint to the above maps (with respect to the
Petersson inner product). Then f is in the new part of Sk(Γ1(N)) if and only if f
is in the kernels of all of the trace maps.

It follows from Atkin-Lehner-Li theory that the Tn acts semisimply on the new
subspace Sk(Γ1(M))new for all M ≥ 1, since the common eigenspaces for all Tn

each have dimension 1. Thus Sk(Γ1(M))new has a basis of normalized eigenforms.
We have a natural map ⊕

M |N

Sk(Γ1(M))new ↪→ Sk(Γ1(N)).

The image in Sk(Γ1(N)) of an eigenform f for some Sk(Γ1(M))new is called a
newform of level Mf = M . Note that a newform of level less than N is not
necessarily an eigenform for all of the Hecke operators acting on Sk(Γ1(N)); in
particular, it can fail to be an eigenform for the Tp, for p | N .

Let
v =

∑
f

f(q
N

Mf ) ∈ Sk(Γ1(N)),

where the sum is taken over all newforms f of weight k and some level M | N . This
generalizes the v constructed above when N = 1 and has many of the same good
properties. For example, Sk(Γ1(N)) is free of rank 1 over T with basis element v.
Moreover, the coefficients of v lie in Z, but to show this we need to know that
Sk(Γ1(N)) has a basis whose q-expansions lie in Q[[q]]. This is true, but we will
not prove it here. One way to proceed is to use the Tate curve to construct a
q-expansion map H0(X1(N),ΩX1(N)/Q) → Q[[q]], which is compatible with the
usual Fourier expansion map.
Example 12.2.5. The space S2(Γ1(22)) has dimension 6. There is a single newform
of level 11,

f = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + · · · .

There are four newforms of level 22, the four Gal(Q/Q)-conjugates of

g = q − ζq2 + (−ζ3 + ζ − 1)q3 + ζ2q4 + (2ζ3 − 2)q5

+ (ζ3 − 2ζ2 + 2 ζ − 1)q6 − 2ζ2q7 + ...

where ζ is a primitive 10th root of unity.
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12.3 Decomposing the Anemic Hecke Algebra

We first observe that it make no difference whether or not we include the Diamond
bracket operators in the Hecke algebra. Then we note that the Q-algebra generated
by the Hecke operators of index coprime to the level is isomorphic to a product of
fields corresponding to the Galois conjugacy classes of newforms.

Proposition 12.3.1. The operators 〈d〉 on Sk(Γ1(N)) lie in Z[. . . , Tn, . . .].

Proof. It is enough to show 〈p〉 ∈ Z[. . . , Tn, . . .] for primes p, since each 〈d〉 can be
written in terms of the 〈p〉. Since p - N , we have that

Tp2 = T 2
p − 〈p〉pk−1,

so 〈p〉pk−1 = T 2
p −Tp2 . By Dirichlet’s theorem on primes in arithmetic progression

[34, VIII.4], there is another prime q congruent to p mod N . Since pk−1 and qk−1

are relatively prime, there exist integers a and b such that apk−1+bqk−1 = 1. Then

〈p〉 = 〈p〉(apk−1 + bqk−1) = a(Tp
2 − Tp2) + b(Tq

2 − Tq2) ∈ Z[. . . , Tn, . . .].

Let S be a space of cusp forms, such as Sk(Γ1(N)) or Sk(Γ1(N), ε). Let

f1, . . . , fd ∈ S

be representatives for the Galois conjugacy classes of newforms in S of level Nfi

dividing N . For each i, let Ki = Q(. . . , an(fi), . . .) be the field generated by the
Fourier coefficients of fi.

Definition 12.3.2 (Anemic Hecke Algebra). The anemic Hecke algebra is the
subalgebra

T0 = Z[. . . , Tn, . . . : (n, N) = 1] ⊂ T

of T obtained by adjoining to Z only those Hecke operators Tn with n relatively
prime to N .

Proposition 12.3.3. We have T0 ⊗Q ∼=
∏d

i=1 Ki.

The map sends Tn to (an(f1), . . . , an(fd)). The proposition can be proved using
the discussion above and Atkin-Lehner-Li theory, but we will not give a proof here.
Example 12.3.4.
When S = S2(Γ1(22)), then T0 ⊗Q ∼= Q ×Q(ζ10) (see Example 12.2.5). When
S = S2(Γ0(37)), then T0 ⊗Q ∼= Q×Q.


