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1.5 Jacobians of Curves

1. I will give a research talk in the modular curves seminar tomorrow (Thursday,
October 16, 3-4pm in SC 507) about the arithmetic of the Jacobian J1(p) of
X1(p). It will fit well with this part of the course.

2. New web page: http://modular.fas.harvard.edu/calc/. Type or paste
in a MAGMA or PARI program, click a button, get the output. No need to
install MAGMA or PARI or log in anywhere.

Today we’re going to learn about Jacobians. First, some inspiring words by
David Mumford:

“The Jacobian has always been a corner-stone in the analysis of alge-
braic curves and compact Riemann surfaces. [...] Weil’s construction [of
the Jacobian] was the basis of his epoch-making proof of the Riemann
Hypothesis for curves over finite fields, which really put characteris-
tic p algebraic geometry on its feet.” – Mumford, Curves and Their
Jacobians, page 49.

1.5.1 Divisors on Curves and Linear Equivalence

Let X be a projective nonsingular algebraic curve over an algebraically field k. A
divisor on X is a formal finite Z-linear combination

∑m
i=1 niPi of closed points in

X. Let Div(X) be the group of all divisors on X. The degree of a divisor
∑m
i=1 niPi

is the integer
∑m
i=1 ni. Let Div0(X) denote the subgroup of divisors of degree 0.

Suppose k is a perfect field (for example, k has characteristic 0 or k is finite),
but do not require that k be algebraically closed. Let the group of divisors on X
over k be the subgroup

Div(X) = Div(X/k) = H0(Gal(k/k),Div(X/k))

of elements of Div(X/k) that are fixed by every automorphism of k/k. Likewise,
let Div0(X/k) be the elements of Div(X/k) of degree 0.

A rational function on an algebraic curve X is a function X → P1, defined by
polynomials, which has only a finite number of poles. For example, if X is the
elliptic curve over k defined by y2 = x3 +ax+b, then the field of rational functions
on X is the fraction field of the integral domain k[x, y]/(y2 − (x3 + ax + b)). Let
K(X) denote the field of all rational functions on X defined over k.

There is a natural homomorphismK(X)∗ → Div(X) that associates to a rational
function f its divisor

(f) =
∑

ordP (f) · P

where ordP (f) is the order of vanishing of f at P . Since X is nonsingular, the local
ring of X at a point P is isomorphic to k[[t]]. Thus we can write f = trg(t) for
some unit g(t) ∈ k[[t]]. Then R = ordP (f).

Example 1.5.1. If X = P1, then the function f = x has divisor (0)− (∞). If X is
the elliptic curve defined by y2 = x3 + ax+ b, then

(x) = (0,
√
b) + (0,−

√
b)− 2∞,
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and
(y) = (x1, 0) + (x2, 0) + (x3, 0)− 3∞,

where x1, x2, and x3 are the roots of x3+ax+b = 0. A uniformizing parameter t at
the point ∞ is x/y. An equation for the elliptic curve in an affine neighborhood of
∞ is Z = X3 + aXZ2 + bZ3 (where ∞ = (0, 0) with respect to these coordinates)
and x/y = X in these new coordinates. By repeatedly substituting Z into this
equation we see that Z can be written in terms of X.

It is a standard fact in the theory of algebraic curves that if f is a nonzero rational
function, then (f) ∈ Div0(X), i.e., the number of poles of f equals the number of
zeros of f . For example, if X is the Riemann sphere and f is a polynomial, then
the number of zeros of f (counted with multiplicity) equals the degree of f , which
equals the order of the pole of f at infinity.

The Picard group Pic(X) of X is the group of divisors on X modulo linear
equivalence. Since divisors of functions have degree 0, the subgroup Pic0(X) of
divisors on X of degree 0, modulo linear equivalence, is well defined. Moreover, we
have an exact sequence of abelian groups

0 → K(X)∗ → Div0(X) → Pic0(X) → 0.

Thus for any algebraic curve X we have associated to it an abelian group
Pic0(X). Suppose π : X → Y is a morphism of algebraic curves. If D is a di-
visor on Y , the pullback π∗(D) is a divisor on X, which is defined as follows.
If P ∈ Div(Y/k) is a point, let π∗(P ) be the sum

∑
eQ/PQ where π(Q) = P

and eQ/P is the ramification degree of Q/P . (Remark: If t is a uniformizer at P
then eQ/P = ordQ(φ∗tP ).) One can show that π∗ : Div(Y ) → Div(X) induces
a homomorphism Pic0(Y ) → Pic0(X). Furthermore, we obtain the contravariant
Picard functor from the category of algebraic curves over a fixed base field to
the category of abelian groups, which sends X to Pic0(X) and π : X → Y to
π∗ : Pic0(Y ) → Pic0(X).

Alternatively, instead of defining morphisms by pullback of divisors, we could
consider the push forward. Suppose π : X → Y is a morphism of algebraic curves
and D is a divisor on X. If P ∈ Div(X/k) is a point, let π∗(P ) = π(P ). Then π∗
induces a morphism Pic0(X) → Pic0(Y ). We again obtain a functor, called the
covariant Albanese functor from the category of algebraic curves to the category
of abelian groups, which sends X to Pic0(X) and π : X → Y to π∗ : Pic0(X) →
Pic0(Y ).

1.5.2 Algebraic Definition of the Jacobian

First we describe some universal properties of the Jacobian under the hypothesis
that X(k) 6= ∅. Thus suppose X is an algebraic curve over a field k and that
X(k) 6= ∅. The Jacobian variety of X is an abelian variety J such that for an
extension k′/k, there is a (functorial) isomorphism J(k′) → Pic0(X/k′). (I don’t
know whether this condition uniquely characterizes the Jacobian.)

Fix a point P ∈ X(k). Then we obtain a map f : X(k) → Pic0(X/k) by sending
Q ∈ X(k) to the divisor class ofQ−P . One can show that this map is induced by an
injective morphism of algebraic varieties X ↪→ J . This morphism has the following
universal property: if A is an abelian variety and g : X → A is a morphism that
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sends P to 0 ∈ A, then there is a unique homomorphism ψ : J → A of abelian
varieties such that g = ψ ◦ f :

X
f //

g
  @

@@
@@

@@
J

ψ

��
A

This condition uniquely characterizes J , since if f ′ : X → J ′ and J ′ has the univer-
sal property, then there are unique maps J → J ′ and J ′ → J whose composition
in both directions must be the identity (use the universal property with A = J
and f = g).

If X is an arbitrary curve over an arbitrary field, the Jacobian is an abelian
variety that represents the “sheafification” of the “relative Picard functor”. Look
in Milne’s article or Bosch-Lüktebohmert-Raynaud Neron Models for more details.
Knowing this totally general definition won’t be important for this course, since
we will only consider Jacobians of modular curves, and these curves always have
a rational point, so the above properties will be sufficient.

A useful property of Jacobians is that they are canonically principally polarized,
by a polarization that arises from the “θ divisor” on J . In particular, there is always
an isomorphism J → J∨ = Pic0(J).

1.5.3 The Abel-Jacobi Theorem

Over the complex numbers, the construction of the Jacobian is classical. It was
first considered in the 19th century in order to obtain relations between integrals
of rational functions over algebraic curves (see Mumford’s book, Curves and Their
Jacobians, Ch. III, for a nice discussion).

Let X be a Riemann surface, so X is a one-dimensional complex manifold.
Thus there is a system of coordinate charts (Uα, tα), where tα : Uα → C is a
homeomorphism of Uα onto an open subset of C, such that the change of coordinate
maps are analytic isomorphisms. A differential 1-form on X is a choice of two
continuous functions f and g to each local coordinate z = x + iy on Uα ⊂ X
such that f dx+ g dy is invariant under change of coordinates (i.e., if another local
coordinate patch U ′

α intersects Uα, then the differential is unchanged by the change
of coordinate map on the overlap). If γ : [0, 1] → X is a path and ω = f dx+ g dy
is a 1-form, then∫

γ

ω :=
∫ 1

0

(
f(x(t), y(t))

dx

dt
+ g(x(t), y(t))

dy

dt

)
dt ∈ C.

From complex analysis one sees that if γ is homologous to γ′, then
∫
γ
ω =

∫
γ′ ω.

In fact, there is a nondegenerate pairing

H0(X,Ω1
X)×H1(X,Z) → C

If X has genus g, then it is a standard fact that the complex vector space
H0(X,Ω1

X) of holomorphic differentials on X is of dimension g. The integration
pairing defined above induces a homomorphism from integral homology to the
dual V of the differentials:

Φ : H1(X,Z) → V = Hom(H0(X,Ω1
X),C).
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This homomorphism is called the period mapping.

Theorem 1.5.2 (Abel-Jacobi). The image of Φ is a lattice in V .

The proof involves repeated clever application of the residue theorem.
The intersection pairing

H1(X,Z)×H1(X,Z) → Z

defines a nondegenerate alternating pairing on L = Φ(H1(X,Z)). This pairing
satisfies the conditions to induce a nondegenerate Riemann form on V , which gives
J = V/L to structure of abelian variety. The abelian variety J is the Jacobian ofX,
and if P ∈ X, then the functional ω 7→

∫ Q
P
ω defines an embedding of X into J .

Also, since the intersection pairing is perfect, it induces an isomorphism from J to
J∨.
Example 1.5.3. For example, suppose X = X0(23) is the modular curve attached
to the subgroup Γ0(23) of matrices in SL2(Z) that are upper triangular modulo 24.
Then g = 2, and a basis for H1(X0(23),Z) in terms of modular symbols is

{−1/19, 0}, {−1/17, 0}, {−1/15, 0}, {−1/11, 0}.

The matrix for the intersection pairing on this basis is
0 −1 −1 −1
1 0 −1 −1
1 1 0 −1
1 1 1 0


With respect to a reduced integral basis for

H0(X,Ω1
X) ∼= S2(Γ0(23)),

the lattice Φ(H1(X,Z)) of periods is (approximately) spanned by

[
(0.59153223605591049412844857432 - 1.68745927346801253993135357636*i

0.762806324458047168681080323846571478727 - 0.60368764497868211035115379488*i),
(-0.59153223605591049412844857432 - 1.68745927346801253993135357636*i

-0.762806324458047168681080323846571478727 - 0.60368764497868211035115379488*i),
(-1.354338560513957662809528899804 - 1.0837716284893304295801997808568748714097*i

-0.59153223605591049412844857401 + 0.480083983510648319229045987467*i),
(-1.52561264891609433736216065099 0.342548176804273349105263499648)

]


