Homework Assignment 6

(Math 252: Modular Abelian Varieties)

William A. Stein

Oct. 22 (Due: Oct. 29)

1. Formation of Néron models commutes with products:

Let A and B be abelian varieties over \mathbf{Q} . Show that if \mathcal{A} and \mathcal{B} are the Néron models of A and B, respectively, then the Néron model of $A \times_{\mathbf{Q}} B$ is $\mathcal{A} \times_{\mathbf{Z}} \mathcal{B}$. [Hint: Use the universal property of products–see Hartshorne's book, Section 3, page 87. You can just work formally, if you are not familiar with schemes. Also, I chose the base to be \mathbf{Q} for concreteness; the statement is true in general.]

2. The Néron models functor:

- (a) Suppose $\varphi : A \to B$ is a homomorphism of abelian varieties. Prove that there is a homomorphism $\mathcal{A} \to \mathcal{B}$ of Néron models whose generic fiber is φ .
- (b) Suppose $0 \to A \to B \to C \to 0$ is an exact sequence of abelian varieties. Prove that there is a complex of Néron models $0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$ whose generic fiber is $0 \to A \to B \to C \to 0$. [Hint: By "complex" I mean that the sequence of Néron models need not be exact. The only condition is that the composition of $\mathcal{A} \to \mathcal{B}$ with $\mathcal{B} \to \mathcal{C}$ is the 0 map.]

3. Component groups over \mathbf{F}_p and $\overline{\mathbf{F}}_p$:

Give an example of an abelian variety A and a prime p such that

$$\Phi_{A,p}(\overline{\mathbf{F}}_p) \neq \Phi_{A,p}(\mathbf{F}_p)$$

[Hint: Your A should be an elliptic curve. You may use Corollary 15.2.1, which is on page 359 of Silverman's book Arithmetic of Elliptic Curves, which we now recall. Let K be a finite extension of \mathbf{Q}_p with valuation v normalized so that $v(\pi) = 1$, where π is a generator of the maximal ideal of the ring of integers of K, and let k be the residue class field of K. Corollary 15.2.1. Let E be an elliptic curve over K. If E has split multiplicative reduction, then $\Phi_{E,v}(k)$ is cyclic of order $-\operatorname{ord}_v(j(E))$. In all other cases, $\Phi_{E,v}(k)$ has order at most 4. Now choose an E with nonsplit multiplicative reduction over \mathbf{Q}_p , which attains split multiplicative reduction over an unramified extension of \mathbf{Q}_p .]