Homework Assignment 5

(Math 252: Modular Abelian Varieties)

William A. Stein

Oct. 15 (Due: Oct. 22)

There are two problems and parts of problems are of equal weight.

1. Let $T=V / T$ be a complex torus, and $T_{1}=V_{1} / T_{1}$ and $T_{2}=V_{2} / T_{2}$ be subtori of T such that $V_{1} \cap V_{2}=0$. In this problem, you will learn how to compute $T_{1} \cap T_{2}$, which will help you to understand how I designed the T-shirt with all the wavy lines for the MSRI conference on modularity of elliptic curves.

(a) Prove that there is an exact sequence

$$
0 \rightarrow T_{1} \cap T_{2} \rightarrow T_{1} \oplus T_{2} \rightarrow T
$$

where the map $T_{1} \oplus T_{2} \rightarrow T$ is $(a, b) \mapsto a-b$.
(b) Prove that there is an exact sequence

$$
0 \rightarrow T_{1} \cap T_{2} \rightarrow T_{1} \oplus T_{2} \rightarrow T^{\prime} \rightarrow 0
$$

where $T^{\prime}=T_{1}+T_{2} \subset T$.
(c) Prove that $T^{\prime}=\left(V_{1}+V_{2}\right) / L^{\prime}$, where $L^{\prime}=\left(V_{1}+V_{2}\right) \cap L$.
(d) Conclude that

$$
T_{1} \cap T_{2} \cong L^{\prime} /\left(L_{1}+L_{2}\right),
$$

where L^{\prime} is the saturation of $L_{1}+L_{2}$ in L (i.e., $\left.L^{\prime}=\left(V_{1}+V_{2}\right) \cap L\right)$.
2. It is a fact (which you do not have to prove) that there is an abelian variety called $J_{0}(37)=V / L$ that contains the following two elliptic curves as abelian subvarieties:

$$
\begin{array}{ll}
E_{1}: & y^{2}+y=x^{3}-x \\
E_{2}: & y^{2}+y=x^{3}+x^{2}-23 x-50
\end{array}
$$

There is a basis for L with respect to which the lattices L_{1} and L_{2} that define E_{1} and E_{2} have the following basis:

$$
\begin{array}{ll}
L_{1}: & {[1,-1,1,0], \quad[1,-1,-1,1]} \\
L_{2}: & {[0,0,0,1], \quad[1,1,1,0]}
\end{array}
$$

(a) Show that $E_{1} \cap E_{2}=\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$.
(b) Part (1) shows that if $a_{p}\left(E_{i}\right)=p+1-\# E_{i}\left(\mathbf{F}_{P}\right)$, then for every prime p, we have $a_{p}\left(E_{1}\right)=a_{p}\left(E_{2}\right)$. You do not have to prove this fact to get full credit on this problem (though you are welcome to try, using, e.g., the nontrivial fact that $a_{p}\left(E_{i}\right)$ is the eigenvalue of the Hecke operator T_{p} acting on either of the basis vectors for $\left.L_{i}\right)$. Verify that $a_{p}\left(E_{1}\right)=a_{p}\left(E_{2}\right)$ for $p \leq 7$.
(c) By any means necessary, determine the rational numbers $L\left(E_{i}, 1\right) / \Omega_{E_{i}}$ for these two elliptic curves. Note that $L\left(E_{1}, 1\right) / \Omega_{E_{1}}$ is not congruent modulo 2 to $L\left(E_{2}, 1\right) / \Omega_{E_{2}}$. (Two rational numbers a and b are congruent modulo a prime p if $\operatorname{ord}_{p}(a-b)>0$.) This example illustrates that although the coefficients that define the L-series are congruent modulo 2 , the rational parts of their special values are not.

