Homework Assignment 3 Math 252: Modular Abelian Varieties

William A. Stein

Oct. 1 (Due: Oct. 8)

There are four problems, each of equal weight.

- 1. Let $p \ge 5$ be a prime. In this problem, we apply a general result of Shimura to show that the genus of $X_1(p)$ is (p-5)(p-7)/24. Let $\overline{\Gamma}_1(N)$ denote the image of $\Gamma_1(N)$ in $\mathrm{PSL}_2(\mathbf{Z})$.
 - (a) Read Prop. 1.40 of Shimura's Introduction to the Arithmetic Theory of Automorphic Functions, which asserts that for a finite index subgroup G of $PSL_2(\mathbf{Z})$, the genus of X(G) is

$$g = 1 + \frac{\mu}{12} - \frac{\nu_2}{4} - \frac{\nu_3}{3} - \frac{\nu_\infty}{2},$$

where $\mu = [\text{PSL}_2(\mathbf{Z}) : G]$, ν_2 is the number of elliptic points for G of order 2, ν_3 is the number of elliptic points for G of order 3, and ν_{∞} is the number of cusps. An elliptic point of order n > 1 is an element $z \in \mathfrak{h}$ whose stabilizer in G has order n. [Hint: You do not have to actually write anything at all to get full credit for this part of the problem!]

- (b) Let $G = \overline{\Gamma}_1(N)$. Show that $\mu = (p^2 1)/2$. [Hint: Use a past homework problem.]
- (c) Let $G = \overline{\Gamma}_1(N)$. Show that $\nu_{\infty} = p 1$. [Hint: From a past homework problem, you know that the cusps for $\Gamma(p)$ are in bijection with vectors $\pm(x, y)$, where $x, y \in \mathbb{Z}/p\mathbb{Z}$ and $\gcd(x, y, p) = 1$. The cusps for $\Gamma_1(p)$ are the orbits of the cusps for $\Gamma(p)$ under the action of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Show that every such orbit contains an element (x, y) with $0 \le y < p$ and x = 0.]
- (d) Let $G = \overline{\Gamma}_1(N)$, with $N \ge 5$. Show that $\nu_2 = \nu_3 = 0$. [Hint: Shimura proves the analogue of this statement in his book. You could find his proof and adapt it.]
- (e) Conclude that if $p \ge 5$ is prime, then the genus of $X_1(p)$ is (p-5)(p-7)/24.
- 2. For i = 1, 2, let $g_1 = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \in \overline{\Gamma}_1(N)$. Then g_1 and g_2 lie in the same right coset $\overline{\Gamma}_1(N)x$ if and only if $c_1 \equiv \varepsilon c_2 \pmod{N}$ and $d_1 \equiv \varepsilon d_2 \pmod{N}$, where $\varepsilon = \pm 1$. [Hint: Compute $g_1g_2^{-1}$ explicitly to obtain a system of congruences that characterize whether or not g_1 and g_2 are in the same coset.]

- 3. For i = 1, 2 let $\alpha_i = a_i/b_i$ be cusps written in lowest terms. Then $\alpha_2 = \gamma(\alpha_1)$ for some $\gamma \in \overline{\Gamma}_1(N)$ if and only if $b_2 \equiv \varepsilon b_1 \pmod{N}$ and $a_2 \equiv \varepsilon a_1 \pmod{\gcd(b_1, N)}$, with $\varepsilon = \pm 1$. [Hint: The tricky part is to prove that the congruence conditions imply that the cusps are conjugate; for this, construct matrices $\binom{a_2 r_2}{b_2 s_2}$ and $\binom{a_1 r_1}{b_1 s_1}$ that, by Problem 2, lie in the same right coset.]
- 4. In this problem we compute with modular symbols for the modular curve $X_1(5)$. Recall that

$$s = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $t = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$.

- (a) Show that the genus of $X_1(5)$ is 0 using Problem 1.
- (b) Use Exercise 2 to write down $(p^2 1)/2 = 12$ pairs (c, d) that are the bottom two entries of a set of right coset representatives for $\overline{\Gamma}_1(5)$ in $\text{PSL}_2(\mathbf{Z})$.
- (c) Let C be the free abelian group generated by the pairs (c, d) from part (ii), subject to the relations x + xs = 0 and x = 0 if x = xs, where x runs through the 12 pairs (c, d). What is the rank of C?
- (d) Compute the kernel Z of the linear map $C \to \text{Div}(X_1(5))$ that sends (c, d) to $g(\infty) g(0) \in \text{Div}(X_1(5))$, where $g = \begin{pmatrix} * & * \\ c & d \end{pmatrix}$.
- (e) Compute the subgroup B of C generated by $x + xt + xt^2$ and also x when x = xt, where x runs through the 12 pairs (c, d).
- (f) Observe that B = Z, so $H_1(X_1(5), \mathbb{Z}) = 0$.
- (g) Compute C/B. **Remark:** (not part of the problem) The group C/B is isomorphic to the relative homology

$$H_1(X_1(5), \mathbb{Z}, \{cusps\}).$$

(h) Challenge ("extra credit"): Prove that for any prime p, if we construct C and Z as above, but with $\Gamma_1(5)$ replaced by $\Gamma_1(p)$, then the quotient C/Z is free of rank p-2.