Homework Assignment 3
 Math 252: Modular Abelian Varieties

William A. Stein
Oct. 1 (Due: Oct. 8)

There are four problems, each of equal weight.

1. Let $p \geq 5$ be a prime. In this problem, we apply a general result of Shimura to show that the genus of $X_{1}(p)$ is $(p-5)(p-7) / 24$. Let $\bar{\Gamma}_{1}(N)$ denote the image of $\Gamma_{1}(N)$ in $\mathrm{PSL}_{2}(\mathbf{Z})$.
(a) Read Prop. 1.40 of Shimura's Introduction to the Arithmetic Theory of Automorphic Functions, which asserts that for a finite index subgroup G of $\mathrm{PSL}_{2}(\mathbf{Z})$, the genus of $X(G)$ is

$$
g=1+\frac{\mu}{12}-\frac{\nu_{2}}{4}-\frac{\nu_{3}}{3}-\frac{\nu_{\infty}}{2},
$$

where $\mu=\left[\operatorname{PSL}_{2}(\mathbf{Z}): G\right], \nu_{2}$ is the number of elliptic points for G of order $2, \nu_{3}$ is the number of elliptic points for G of order 3 , and ν_{∞} is the number of cusps. An elliptic point of order $n>1$ is an element $z \in \mathfrak{h}$ whose stabilizer in G has order n. [Hint: You do not have to actually write anything at all to get full credit for this part of the problem!]
(b) Let $G=\bar{\Gamma}_{1}(N)$. Show that $\mu=\left(p^{2}-1\right) / 2$. [Hint: Use a past homework problem.]
(c) Let $G=\bar{\Gamma}_{1}(N)$. Show that $\nu_{\infty}=p-1$. [Hint: From a past homework problem, you know that the cusps for $\Gamma(p)$ are in bijection with vectors $\pm(x, y)$, where $x, y, \in \mathbf{Z} / p \mathbf{Z}$ and $\operatorname{gcd}(x, y, p)=1$. The cusps for $\Gamma_{1}(p)$ are the orbits of the cusps for $\Gamma(p)$ under the action of $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Show that every such orbit contains an element (x, y) with $0 \leq y<p$ and $x=0$.]
(d) Let $G=\bar{\Gamma}_{1}(N)$, with $N \geq 5$. Show that $\nu_{2}=\nu_{3}=0$. [Hint: Shimura proves the analogue of this statement in his book. You could find his proof and adapt it.]
(e) Conclude that if $p \geq 5$ is prime, then the genus of $X_{1}(p)$ is $(p-5)(p-7) / 24$.
2. For $i=1,2$, let $g_{1}=\left(\begin{array}{cc}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right) \in \bar{\Gamma}_{1}(N)$. Then g_{1} and g_{2} lie in the same right coset $\bar{\Gamma}_{1}(N) x$ if and only if $c_{1} \equiv \varepsilon c_{2}(\bmod N)$ and $d_{1} \equiv \varepsilon d_{2}(\bmod N)$, where $\varepsilon= \pm 1$. [Hint: Compute $g_{1} g_{2}^{-1}$ explicitly to obtain a system of congruences that characterize whether or not g_{1} and g_{2} are in the same coset.]
3. For $i=1,2$ let $\alpha_{i}=a_{i} / b_{i}$ be cusps written in lowest terms. Then $\alpha_{2}=$ $\gamma\left(\alpha_{1}\right)$ for some $\gamma \in \bar{\Gamma}_{1}(N)$ if and only if $b_{2} \equiv \varepsilon b_{1}(\bmod N)$ and $a_{2} \equiv \varepsilon a_{1}$ $\left(\bmod \operatorname{gcd}\left(b_{1}, N\right)\right)$, with $\varepsilon= \pm 1$. [Hint: The tricky part is to prove that the congruence conditions imply that the cusps are conjugate; for this, construct matrices $\left(\begin{array}{lll}a_{2} & r_{2} \\ b_{2} & s_{2}\end{array}\right)$ and $\left(\begin{array}{ll}a_{1} & r_{1} \\ b_{1} & s_{1}\end{array}\right)$ that, by Problem 2, lie in the same right coset.]
4. In this problem we compute with modular symbols for the modular curve $X_{1}(5)$. Recall that

$$
s=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad t=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) .
$$

(a) Show that the genus of $X_{1}(5)$ is 0 using Problem 1.
(b) Use Exercise 2 to write down $\left(p^{2}-1\right) / 2=12$ pairs (c, d) that are the bottom two entries of a set of right coset representatives for $\bar{\Gamma}_{1}(5)$ in $\mathrm{PSL}_{2}(\mathbf{Z})$.
(c) Let C be the free abelian group generated by the pairs (c, d) from part (ii), subject to the relations $x+x s=0$ and $x=0$ if $x=x s$, where x runs through the 12 pairs (c, d). What is the rank of C ?
(d) Compute the kernel Z of the linear map $C \rightarrow \operatorname{Div}\left(X_{1}(5)\right)$ that sends (c, d) to $g(\infty)-g(0) \in \operatorname{Div}\left(X_{1}(5)\right)$, where $g=\left(\begin{array}{c}* \\ c \\ c\end{array}\right)$.
(e) Compute the subgroup B of C generated by $x+x t+x t^{2}$ and also x when $x=x t$, where x runs through the 12 pairs (c, d).
(f) Observe that $B=Z$, so $\mathrm{H}_{1}\left(X_{1}(5), \mathbf{Z}\right)=0$.
(g) Compute C / B. Remark: (not part of the problem) The group C / B is isomorphic to the relative homology

$$
\mathrm{H}_{1}\left(X_{1}(5), \mathbf{Z},\{\text { cusps }\}\right) .
$$

(h) Challenge ("extra credit"): Prove that for any prime p, if we construct C and Z as above, but with $\Gamma_{1}(5)$ replaced by $\Gamma_{1}(p)$, then the quotient C / Z is free of rank $p-2$.

