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Abstract. Rankin and Swinnerton-Dyer [R, S-D] prove that all zeros of the Eisenstein series Ek in

the standard fundamental domain for Γ lie on A := {eiθ : π
2
≤ θ ≤ 2π

3
}. In this paper we generalize

their theorem, providing conditions under which the zeros of other modular forms lie only on the
arc A. Using this result we prove a speculation of Ono, namely that the zeros of the unique “gap
function” in Mk, the modular form with the maximal number of consecutive zero coefficients in its
q-expansion following the constant 1, has zeros only on A. In addition, we show that the j-invariant
maps these zeros to totally real algebraic integers of degree bounded by a simple function of the
weight k.

1. Introduction and Statement of Results.

Let H denote the complex upper half plane and Γ := SL2(Z). The region

F :=
{
|z| ≥ 1 and − 1

2
≤ Re(z) ≤ 0

} ⋃ {
|z| > 1 and 0 ≤ Re(z) <

1
2

}

is the usual f undamental domain for H under the action of Γ. That is, F serves as a set of
representatives for equivalence classes for H under the action of Γ by fractional linear transfor-
mations. We say that a meromorphic function f on H is a modular f unction of weight k for
Γ if

f

(
az + b

cz + d

)
= (cz + d)−kf(z) (1.1)

for all z ∈ H and
(

a b

c d

)
∈ Γ. Further, if f is holomorphic on H and at the cusps of F, it is

a modular f orm. Denote by Mk the finite-dimensional complex vector space of such modular
forms under the action of Γ. The description of the zeros of a modular function f ∈ Mk on H
is clearly equivalent to the description of the zeros of f on F. Thus, for the remainder of this
paper, when we speak of a zero z0 of f ∈ Mk, we assume z0 ∈ F.

For even integers k ≥ 2, let Ek(z) be the usual Eisenstein series

Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn, (1.2)

where σk−1(n) =
∑

d|n dk−1 and Bk is the kth Bernoulli number. Throughout this paper,
q = e2πiz and we make the convention that E0(z) := 1. Recall that if k ≥ 4 is even, then
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Ek(z) ∈ Mk. In [R, S-D], Rankin and Swinnerton-Dyer prove that if Ek(z) = 0 and z ∈ F,
then z ∈ A, where

A :=
{

eiθ :
π

2
≤ θ ≤ 2π

3

}
. (1.3)

In this paper we generalize their result, providing a method of determining that the zeros of a
modular form f on F lie only on the arc A. Before we state this result, we recall the following
definitions:

j(z) := q−1 + 744 + 196884q + · · · (1.4)

is the usual normalized weight zero modular function and

∆(z) =
E4(z)3 − E6(z)2

1728
= q − 24q2 + 252q3 − 1472q4 + · · · (1.5)

is the unique normalized weight 12 cusp form on Γ. Further, we define

ε := e−π
√

3

( ∞∑
n=−∞

e−π
√

3(3n2−n)/2

)24

∼ 0.004809... (1.6)

We note here, and will prove later in Proposition 2.2, that |∆(z)| ≤ ε for z ∈ A. Finally, if
k = 12m + s, where s = 0, 4, 6, 8, 10, 12, 14, let

m(k) := m. (1.7)

Theorem 1. Let k ≥ 4 be even and f(z) = Ek(z) +
∑m(k)

i=1 aiEk−12i∆i ∈ Mk, where ai ∈ R.
Suppose

m(k)∑

i=1

|ai|εi <
1− δ

3 + δ
,

where δ := .03562. If f(z) = 0 and z ∈ F, then z ∈ A, and j(z) ∈ [0, 1728]. In particular,
f has m(k) simple zeros on {eiθ : π

2 < θ < 2π
3 }, and we have the following trivial zeros of f

depending on k modulo 12:

ordi(f) =
{

1 if k ≡ 2 (mod 4),
0 if k ≡ 0 (mod 4),

and

ordρ(f) =





2 if k ≡ 2 (mod 6),
1 if k ≡ 4 (mod 6),
0 if k ≡ 0 (mod 6).

(1.8)

Here ρ := e2πi/3.

A natural question to ask is whether or not Theorem 1 can be applied to any interesting
families of modular forms. In Section 3 we provide such a family, the so-called “gap functions.”
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Definition. If k ≥ 4 is even, the gap function Fk(z) ∈ Mk is the unique modular form with
Fourier expansion

Fk(z) = 1 + c(m(k) + 1)qm(k)+1 + c(m(k) + 2)qm(k)+2 + · · · = 1 +
∑

n≥m(k)+1

c(n)qn

where c(n) ∈ C is the nth Fourier coefficient.

For example, we have

F12(z) = E12(z) +
24
B12

∆(z) = 1 + 196560q2 + 16773120q3 + · · · .

These and similar functions are useful in coding theory. For example, [M, O, S] considered the
parity of the real parts of the coefficients c(m(k)+1), c(m(k)+2), ... of Fk among other q-series.
In this work we are interested in the zeros of Fk. Ono speculated that these zeros of Fk all lie
on the arc A. Armed with Theorem 1, we prove this result:

Theorem 2. Suppose k ≥ 4 is even. If Fk(z) = 0 and z ∈ F, then z ∈ A and j(z) ∈ [0, 1728],
with m(k) simple zeros on the interior of the arc. Moreover, Fk has trivial zeros at i and ρ
depending on k modulo 12 as in (1.8).

We can construct totally real extensions of Q by adjoining j(z0), where z0 is a zero of any
of the functions described in Theorems 1 and 2. It is a well-known fact from the theory of
complex multiplication that if z is a CM point, j(z) is an algebraic integer. We observe an
analogous phenomenon in the case of the zeros of the gap functions; the j-invariant maps them
to totally real algebraic integers. In addition, for certain weights, these algebraic integers reduce
to supersingular j-invariants in in Fp.

Corollary 3. Suppose k ≥ 4 is even. If Fk(z) = 0 and z ∈ F, then j(z) is an algebraic integer.
If k = p − 1, where p ≥ 5 is prime, then there is a maximal ideal m of the ring of integers
of Q(j(z)) lying over p such that j(z) modulo m is the j-invariant of a supersingular elliptic
curve.

2. Preliminaries and Proof of Theorem 1.

We begin with a general discussion of the zeros of a nonzero element f ∈ Mk. A classical
result on this subject is the valence formula (see §[III.2][K]):

k

12
=

1
2
ordi(f) +

1
3
ordρ(f) + ord∞(f) +

∑

τ∈Γ\H−{i,ρ}
ordτ (f).

Writing k = 12m(k) + s as in (1.7), note that s determines the residue class of k modulo 12.
Bearing in mind the valence formula, an examination of the possible values of s implies that

ordi(f) ≥
{

1 if k ≡ 2 (mod 4),
0 if k ≡ 0 (mod 4),

and

ordρ(f) ≥





2 if k ≡ 2 (mod 6),
1 if k ≡ 4 (mod 6),
0 if k ≡ 0 (mod 6).

(2.1)
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For example, let k = 26. We have

26
12

=
13
6

=
1
2
ordi(f) +

1
3
ordρ(f) + ord∞(f) +

∑

τ∈Γ\H−{i,ρ}
ordτ (f).

Clearly ordi(f) and ordρ are nonzero. If ordρ(f) = 1, then the left hand side of the above
equation is of the form 1

2n + 5
6 . There is no integer n such that 1

2n + 5
6 = 13

6 , so we have
ordρ(f) ≥ 2. For further discussion of (2.1), see [A,O].

Again applying the valence formula for k = 12m(k) + s, by (2.1), there are at most m(k) on
F − {ρ, i}. Thus if f ∈ Mk satisfies the hypothesis of Theorem 1, then to prove Theorem 1 it
suffices to demonstrate that f has m(k) simple zeros in the interior of A.

We now require a proposition on normalization of modular functions on the arc A.

Proposition 2.1. If f is a modular function of weight k with real coefficients, then eikθ/2f(eiθ)
is real on {θ : π

2 ≤ θ ≤ 2π
3 }.

Proof. From the functional equation (1.1) we have f(−1/z) = zkf(z). For z = a + bi ∈ A, we
have − 1

z = −a+bi
a2+b2 = −a + bi. Write f in terms of its Fourier expansion as

f(z) =
∑

n≥nf

ane2πin(a+bi) =
∑

n≥nf

ane2πn(−b+ai),

where nf is an integer which depends on f . We have

f(−1/z) =
∑

n≥nf

ane2πin(−a+bi) =
∑

n≥nf

ane2πn(−b−ai) = f(z).

Note that −1/eiθ = ei(π−θ). The above facts imply that

eik(π−θ)/2f(ei(π−θ)) = eik(π−θ)/2eikθf(eiθ)

eik(π−θ)/2f(eiθ) = eik(π+θ)/2f(eiθ)

e−ikθ/2f(eiθ) = eikθ/2f(eiθ)

eikθ/2f(eiθ) = eikθ/2f(eiθ).

¤
Notice that Proposition 2.1 shows us that j(z) is real for z ∈ A. Furthermore, we have

that j(i) = 1728, j(ρ) = 0, and that j is a bijection between F and C. An application of the
intermediate value theorem implies that j(z) ∈ [0, 1728] for all z ∈ A. Similarly, in [R,S-D],
Rankin and Swinnerton-Dyer use the intermediate value theorem to describe the zeros of Ek(z)
for k ≥ 12 after proving that

eikθ/2Ek(eiθ) = 2 cos(kθ/2) + Rk, (2.2)

where
|Rk| < 1 + δ (2.3)

where δ := .03562 as above. A stronger bound will not be necessary for the purposes of this
paper, though one could be easily calculated (again, see [R, S-D]). However, we will need a
bound for ∆(z) when z ∈ A, which we now provide:
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Proposition 2.2. If z ∈ A, then |∆(z)| ≤ ε, where ε is defined as in (1.6).

Proof. A standard identity (see §[III.2][K]) gives us

∆(z) = e2πiz
∞∏

n=1

(1− e2πinz)24 =

(
e2πiz/24

∞∏
n=1

(1− e2πinz)

)24

.

By Euler’s pentagonal number theorem §[14.5][A], we have

∞∏
n=1

(1− e2πinz) =
∞∑

n=−∞
(−1)ne2πiz(3n2−n)/2.

Writing z = eiθ = a + bi for a, b ∈ R, we have
∣∣∣∣∣
∞∏

n=1

(1− e2πinz)

∣∣∣∣∣ ≤
∞∑

n=−∞
|(−1)ne2πi(a+bi)|(3n2−n)/2 =

∞∑
n=−∞

e−πb(3n2−n)

Now, for z = a + bi ∈ A, e−πb(3n2−n) is maximized at z = e2πi/3 = − 1
2 +

√
3

2 i so

|e2πiz|
∣∣∣∣∣
∞∏

n=1

(1− e2πinz)

∣∣∣∣∣

24

≤ e−π
√

3

( ∞∑
n=−∞

e−π
√

3(3n2−n)/2

)24

= ε.

A Maple calculation shows that ε ∼ 0.004809 . . . . ¤
We are now ready to proceed with the proof of the main theorem.

Proof of Theorem 1. Write k = 12m(k) + s as in (1.7). The theorem is easily proven for the
lower weights by noting that E4, E6 are supported by zeros at ρ and i respectively, and that
for k < 12 and k = 14, we have Ek = Ea

4Eb
6, where a, b ∈ Z≥0 are chosen so that 4a + 6b = k

§[III.2][K]. Write

H(θ) := eikθ/2f(eiθ) = H0(θ) +
m(k)∑

j=1

aje
12jiθ/2∆jHj(θ), (2.4)

where Hj(θ) = e(k−12j)iθ/2Ek−12j(eiθ). By (2.2) and (2.3), we have Hj(θ) = 2 cos((k −
12j)θ/2) + Rk−12j , where |Rk−12j | < 1 + δ. Thus

H(θ) := 2 cos(kθ/2) + Rk +
m(k)∑

j=1

aje
12jiθ/2∆j(2 cos((k − 12j)θ/2) + Rk−12j) (2.5)

The bound on ∆(z) from Proposition 2.1, (2.2) and (2.3) imply that
∣∣∣∣∣∣
Rk +

m(k)∑

j=1

aje
12jiθ/2∆j(2 cos((k − 12j)θ/2) + Rk−12j)

∣∣∣∣∣∣
≤ 1 + δ +

m(k)∑

j=1

|aj |εj(3 + δ).

Now, assuming
m(k)∑

i=1

|ai|εi <
1− δ

3 + δ
,
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we have

1 + δ +
m(k)∑

i=1

|ai|εi(3 + δ) < 2. (2.6)

Let n be an integer such that k
4 ≤ n ≤ k

3 . Note that H(θ) is a real-valued function dominated
by the trigonometric function 2 cos(kθ/2). Considering the bound (2.6), (2.5) implies that
H(2nπ/k) is strictly positive or negative depending on the parity of n. Thus, by the intermediate
value theorem, H(θ) has at least as many zeros in the open interval (π/2, 2π/3) as there are
integers in the the interval [k

4 , k
3 ] minus one, and this number is m(k). Recalling (2.1) and the

following discussion, this fact is sufficient to finish the proof. ¤

3. Gap Functions and the j-invariant

We begin by providing the following bound on the coefficients of the q-expansion of arbitrary
powers of ∆(z).

Theorem 3.1. If s is a positive integer, then define integers τs(n) by

∆(z)s =
∞∑

n=0

τs(n)qn := qs
∞∏

n=1

(1− qn)24s.

If n ≥ 1, then

|τs(n)| ≤ n7s−1

s6s
.

Proof. We have

τs(n) =
∑

k1+...+ks=n
1≤ki≤n

s∏

i=1

τ(ki).

A well-known result of Deligne (see, for example, §[III.2][K]) gives the following strong bound
on the q-expansion coefficients of ∆(z):

|τ(n)| ≤ n11/2σ0(n).

For n ≥ 40, n11/2σ0(n) ≤ n11/2( log n
log 2 + 1) ≤ n11/2n1/2 = n6, and a simple Maple calculation

shows that |τ(n)| ≤ n6 for 1 ≤ n ≤ 40. Thus

|τs(n)| ≤
∑

k1+···+ks=n
1≤ki≤n

s∏

i=1

|τ(ki)| ≤
∑

k1+···+ks=n
1≤ki≤n

s∏

i=1

k6
i

which implies

|τs(n)| ≤
∑

k1+···+ks=n
1≤ki≤n

(n

s

)6s

≤ ns−1
(n

s

)6s

.

Here we use that the maximum product of s positive integers whose sum is n is bounded by(
n
s

)s. We also use that the first s− 1 choices k1, ..., ks−1 determine the choice of ks. Thus

|τs(n)| ≤ ns−1
(n

s

)6s

=
n7s−1

s6s
.
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¤
Proof of Theorem 2. We proceed by induction on the weight k. Three facts are needed to
establish the basis of our induction. For k ≤ 300, Maple calculations, using the method of this
proof, establish first that the zeros of Fk lie on the arc A as in the statement of the theorem,
and second that |eikθ/2Fk(eiθ)| < 4 for π

2 < θ < 2π
3 . Write

eikθ/2Fk(eiθ) = eikθ/2Ek(eiθ) +
m(k)∑

j=1

aje
12ijθ/2∆(eiθ)je(k−12j)iθ/2Fk−12j(eiθ) (3.1)

with the convention that F0 := 1. We note here that the q-expansion coefficients of ∆ are
integers and so aj ∈ R. The third fact which we require, and will prove later, is that if k ≥ 300,
then

m(k)∑

j=1

|aj |εj <
1− δ

4
. (3.2)

These three facts complete the basis step of our induction. Assuming (3.2), we have

1− δ > 4
m(k)∑

j=1

|aj |εj ≥
m(k)∑

j=1

|aj ||e12ijθ/2∆j ||e(k−12j)iθ/2Fk−12j |

which implies

1− δ >

∣∣∣∣∣∣

m(k)∑

j=1

aje
12ijθ/2∆je(k−12j)iθ/2Fk−12j

∣∣∣∣∣∣
. (3.3)

From (3.1),(3.3),(2.2), and (2.3), we have

eikθ/2Fk(eiθ) = 2 cos(kθ/2) + Rk + Tk, (3.4)

where |Rk| < 1 + δ and |Tk| < 1 − δ. Noting that |Rk| + |Tk| < 2 and arguing in a manner
analogous to the proof of Theorem 1, again assuming (3.2), (3.4) proves that Fk has zeros on
the arc A as described in the statement of Theorem 2. Assuming (3.2) for k ≥ 300, we must
show that |Fk(z)| < 4 for z ∈ A to complete the induction. By (2.2),(2.3), and (3.2) we have

|eikθ/2Fk(eiθ)| < 2 + Rk +
m(k)∑

j=1

|aj ||e12ijθ/2∆j ||e(k−12j)iθ/2Fk−12j | < 4.

Thus we have proven that Fk has zeros on A as desired, and its normalization is bounded
in such a way that we can move on to prove the same result for Fk+12 This completes the
induction, though we must now establish (3.2).

As a modular form in Mk, Fk = 1 + c(m(k) + 1)qm(k)+1 + c(m(k) + 2)qm(k)+2 + . . . is
completely determined by its first m(k) + 1 coefficients. Thus the problem of calculating the
ai can be reduced to a linear algebra problem; given the first few q-expansion coefficients, we
wish to compute the coefficients ai of the modular form with respect to the alternate basis
Ek, ∆Fk−12, ..., ∆m(k)Fk−12m(k). Note that

∆sFk−12s = qs + τs(s + 1)qs+1 + τs(s + 2)qs+2 + · · ·+ τs(m(k))qm(k) + . . . .
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Letting

A :=




1 0 0 · · · 0 0
− 2k

Bk
1 0 · · · 0 0

− 2k
Bk

σk−1(2) τ(2) 1 · · · 0 0
− 2k

Bk
σk−1(3) τ(3) τ2(3) · · · 0 0
...

...
...

...
...

...
− 2k

Bk
σk−1(m(k)− 1) τ(m(k)− 1) τ2(m(k)− 1) · · · 1 0

− 2k
Bk

σk−1(m(k)) τ(m(k)) τ2(m(k)) · · · τm(k)−1(m(k)) 1




,

we apply Cramer’s rule to the equation

A(a0, · · · , am(k)) = (1, 0, · · · , 0)

to arrive at the equality

ai =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · 0 1 0 · 0
− 2k

Bk
1 0 · 0 0 0 · 0

− 2k
Bk

σk−1(2) τ(2) 1 · 0 0 0 · 0
− 2k

Bk
σk−1(3) τ(3) τ2(3) · 0 0 0 · 0
...

...
...

...
...

...
...

...
...

− 2k
Bk

σk−1(i− 1) τ(i− 1) τ2(i− 1) · 1 0 0 · 0
− 2k

Bk
σk−1(i) τ(i) τ2(i) · τi−1(i) 0 0 · 0
...

...
...

...
...

...
...

...
...

− 2k
Bk

σk−1(m(k)− 1) τ(m(k)− 1) τ2(m(k)− 1) · τi−1(m(k)− 1) 0 τi+1(m(k − 1)) · 0
− 2k

Bk
σk−1(m(k)) τ(m(k)) τ2(m(k)) · τi−1(m(k) 0 τi+1(m(k)) · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Clearly a0 = 1 and a1 = 2k
Bk

. Fix an i > 1. To simplify the corresponding matrix, we expand by
minors on the on the (i + 1)st column, and then “move up the diagonal,” expanding by minors
on the (m(k) + 1)st column, the m(k)th column, the (m(k) − 1)st column etc., reducing our
problem to the calculation of the i by i matrix formed by taking the upper left (i+1) by (i+1)
matrix and eliminating the 1st row and the (i + 1)st column. This reduces the calculation of
ai to the calculation of the determinant of the matrix




− 2k
Bk

1 0 · 0
− 2k

Bk
σk−1(2) τ(2) 1 · 0

− 2k
Bk

σk−1(3) τ(3) τ2(3) · 0
...

...
...

...
...

− 2k
Bk

σk−1(i− 1) τ(i− 1) τ2(i− 1) · 1
− 2k

Bk
σk−1(i) τ(i) τ2(i) · τi−1(i)




(3.5)

Denote the matrix in (3.5) by Dki = (dαβ) and note that

det Dki =
∑

σ∈Si

sgn(σ)d1σ(1) · · · diσ(i).
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Consider a permutation σ of columns of (dαβ) which induces a nonzero product d1σ(1) · · · diσ(i).
We have two nonzero choices for d1σ(1). There are three nonzero entries in the 2nd row and we
cannot choose d2σ(1), so there are two nonzero choices. Continuing in this manner and noting
that diσ(i) is determined by d1σ(1), ..., di−1σ(i−1), we have 2i−1 possible nonzero products. With
this in mind we define a new function B on the matrices Dki by

B(Dki) = 2i−1 max{|d1σ(1)| · · · |diσ(i)| : σ ∈ Si}

and note that |ai| = | detDki| ≤ B(Dki).
Now, substituting the trivial bound σk−1(n) ≤ nk and the bound of Theorem 3.1, we have

|ai| ≤ B




| 2k
Bk
| 1 0 · 0

| 2k
Bk
|2k 26 1 · 0

| 2k
Bk
|3k 36 313

312 · 0
...

...
...

...
...

| 2k
Bk
|(i− 1)k (i− 1)6 (i−1)13

312 · 1

| 2k
Bk
|ik i6 i13

312 · i7(i−1)−1

(i−1)6(i−1)




. (3.6)

If we write Dik as a set of i column vectors (v1, · · · , vj , · · · , vi), it follows from the definition of B
that B(v1, · · · , cvj , · · · , vi) = cB(v1, · · · , vj , · · · , vi) for any complex number c. This is because
factoring out c is equivalent to multiplying every element in the set {d1σ(1) · · · diσ(i) : σ ∈ Si}
by c−1, which doesn’t change which element of that set has maximal absolute value. Thus
factoring | 2k

Bk
| from the first column and 1

(j−1)6(j−1) from the jth for j > 1, we have that (3.6)

is equal to
(∣∣Bk

2k

∣∣ 212 · · · (i− 1)6(i−1)
)−1

times

B




1 1 0 · · · 0 0
2k 26 212 · · · 0 0
3k 36 313 · · · 0 0
...

...
... · · · ...

...
(i− 1)k (i− 1)6 (i− 1)13 · · · (i− 1)7(i−2)−1 (i− 1)6(i−1)

ik i6 i13 · · · i7(i−2)−1 i7(i−1)−1




(3.7)

Denote the matrix in (3.7) by Uki = (uαβ). We now claim that

max{|u1σ(1)| · · · |uiσ(i)| : σ ∈ Si} = u12u23 · · ·u(i−1)iui1 = ik(1)(212) · · · (i− 1)6(i−1). (3.8)

To see this, first note that we must choose one entry from the first column. Say this entry is ur1.
In addition, we must choose one nonzero entry from every row besides the rth, and none of these
entries can be in the first column. In order to maximize the product, we want to choose the
entry in each row that is not in the first column of maximum absolute value. Thus we choose the
entries u12, u23, ..., u(r−1)r, u(r+1)(r+2), ..., u(i−1)i. Note that the structure of the matrix, which
is “almost diagonal,” allows this as a possible element of the set {u1σ(1) · · ·uiσ(i) : σ ∈ Si}.
In particular, it gives us the product u12u23 · · ·u(r−1)rur1u(r+1)(r+2) · · ·u(i−1)i. Examining the
matrix (uαβ), it is clear that the maximum product is induced when r = i, ur1 = ik.

From (3.7) and (3.8), we have

|ai| ≤
(∣∣∣∣

Bk

2k

∣∣∣∣ 212 · · · (i− 1)6(i−1)

)−1

B(Uki)
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which implies

|ai| ≤
∣∣∣∣
Bk

2k

∣∣∣∣
−1 (

(212) · · · (i− 1)6(i−1)
)−1

2i−1ik(1)
(
(212) · · · (i− 1)6(i−1)

)
=

∣∣∣∣
2k

Bk

∣∣∣∣ 2i−1ik.

Thus
m(k)∑

j=1

|aj |εj ≤
∣∣∣∣
2k

Bk

∣∣∣∣
m(k)∑

j=1

2j−1jkεj (3.9)

A standard bound on the Bernoulli numbers (see §[15][I, R], pp. 232) gives us | 2k
Bk
| < k(πe)k

(k/2)k ,
which implies

∣∣∣∣
2k

Bk

∣∣∣∣
m(k)∑

j=1

2j−1jkεj <
k(πe)k

(k/2)k

m(k)∑

j=1

2j−1jkεj

Noting that m(k) ≤ k/12 and 2j−1jkεj is monotonically increasing for 1 ≤ j ≤ m(k), we have

k(πe)k

(k/2)k

m(k)∑

j=1

2j−1jkεj <
k(πe)k

(k/2)k
m(k)k+1εm(k)2m(k)−1 ≤ k2(πeε1/1221/12)k

24(6)k

which decreases monotonically as k ≥ 59 approaches infinity. Further, for k ≥ 300, k2(πeε1/1221/12)k

24(6)k <
1−δ
4 . This implies (3.2) and completes the proof. ¤

As stated before, if a zero of a modular function lies on A, then the j-invariant of that zero
is a real number in the interval [0, 1728]. In order to prove Corollary 3, however, we need more
information. Following [A, O], we define the following polynomials hk and modular forms Ẽk(z)
for even k ≥ 4:

hk(x) :=





1 if k ≡ 0 (mod 12),
x2(x− 1728) if k ≡ 2 (mod 12),
x if k ≡ 4 (mod 12),
x− 1728 if k ≡ 6 (mod 12),
x2 if k ≡ 8 (mod 12),
x(x− 1728) if k ≡ 10 (mod 12),

Ẽk(z) :=





1 if k ≡ 0 (mod 12),
E4(z)2E6(z) if k ≡ 2 (mod 12),
E4(z) if k ≡ 4 (mod 12),
E6(z) if k ≡ 6 (mod 12),
E4(z)2 if k ≡ 8 (mod 12),
E4(z)E6(z) if k ≡ 10 (mod 12).

In [A, O], Ahlgren and Ono prove the following lemma using these definitions:

Lemma 3.2. Suppose that f ∈ Mk has leading coefficient 1. Let F̃ (f, x) be the unique rational
function in x for which

f(z) = ∆(z)m(k)Ẽk(z)F̃ (f, j(z)).
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Then F̃ (f, x) is a polynomial.

For f(z) ∈ Mk, we then define the polynomial F (f, x) by

F (f, x) := hk(x)F̃ (f, x). (3.10)

Note that F is constructed so that F (f, x) = 0 if and only if x = j(z), where z ∈ F is a zero of
f .

Proof of Corollary 3. Fix a weight k, and write

F ′k =
m(k)∑

j=0

a′j∆
jE

rj

4 E
sj

6 = 1 + c′(m(k) + 1)qm(k)+1 + c′(m(k) + 2)qm(k)+2 + · · ·

where ri, si ∈ Z≥0 are chosen so that 4ri + 6si = k − 12j. Because F ′k ∈ Mk, it is determined
by its first m(k) + 1 coefficients. Thus F ′k = Fk, our familiar gap function. Observe that the
coefficients of the q-expansions of ∆, E4, E6 are integers. Therefore a′j , c

′
j ∈ Z; the coefficients

of Fk are integers. Noting that Ẽk(z) is a product of E4, E6 for each k, we have that F (Fk, x) is
a monic polynomial in Z[x]. Thus the zeros of F (Fk, x) are algebraic integers, and these zeros
are precisely the j(z) where Fk(z) = 0.

Consider the polynomial

Sp(x) :=
∏

E/Fp

supersingular

(x− j(E)) ∈ Fp[x]

A well-known result of Deligne (see [S]) implies that if p ≥ 5 is prime, then

Sp(x) ≡ F (Ep−1, x) (mod p).

Note that the Von-Staudt congruences imply that 2(p−1)
Bp−1

≡ 0 (mod p). In addition, Fk, as a
modular form in Mk, is determined by its first m(k) + 1 coefficients. Thus, considering these
q-expansion coefficients,

Fp−1 ≡ Ep−1 ≡ 1 (mod p).

which implies
F (Fp−1, x) ≡ F (Ep−1, x) ≡ Sp(x) (mod p).

¤
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