Homework Assignment 7: Elliptic Curves I Due Wednesday November 20

William Stein

Math 124

HARVARD UNIVERSITY

Fall 2002

Instructions: Please work with others, and feel free to use a computer, especially on problem 4. (There are **7 problems.**)

- 1. We call a line in \mathbb{C}^2 rational if it is the set of zeros of an equation ax + by + c = 0 with $a, b, c \in \mathbb{Q}$.
 - (a) (1 point) Suppose P and Q are distinct elements of \mathbb{Q}^2 . Prove that the unique line in \mathbb{C}^2 that contains P and Q is rational.
 - (b) (2 points) Suppose that L_1 and L_2 are distinct rational lines in \mathbb{C}^2 that intersect. Prove that their intersection is a rational point.
- 2. (4 points) Let $Y \subset \mathbb{C}^2$ be the set of complex solutions (x,y) to the equation $y^2 = x^5 + 1$. Find (with proof!) the closure of Y in \mathbb{P}^2 .
- 3. (3 points) Let E be the elliptic curve defined by $y^2 = x^3 + 1$. Find the divisor associated to the rational function (x+1)/(y-1).
- 4. (6 points) Let x and y be indeterminates.
 - (a) Prove that $\mathbb{C}[x,y]/(y^2-(x^3+1))$ is integrally closed in $\mathbb{C}(x)[y]/(y^2-(x^3+1))$. That is, if $f(x), g(x) \in \mathbb{C}(x)$ are rational functions in x and f(x) + yg(x) satisfies a monic polynomial with coefficients in $\mathbb{C}(x)$, then f(x) and g(x) are polynomials.
 - (b) Prove that $\mathbb{C}[x,y]/(y^2-x^3)$ is not integrally closed in $\mathbb{C}(x)[y]/(y^2-x^3)$. [Hint: Consider t=y/x.]
- 5. Let E be the elliptic curve defined by $y^2 = x^3 + x + 1$. Consider the points $P = (72: -611: 1), Q = (1/4: -9/8: 1), \text{ and } R = (1: \sqrt{3}: 1) \text{ on } E.$
 - (a) (2 points) Compute the sum of P and Q on E.
 - (b) (2 points) Find nonzero integers n and m such that nP = mQ.
 - (c) (2 points) Compute R + R.
 - (d) (3 points) Is there any integer n such that nR = P? (Hint: Keep in mind the automorphism $\sqrt{3} \mapsto -\sqrt{3}$ of $\mathbb{Q}(\sqrt{3})$.)
- 6. Let g(t) be a quartic polynomial with distinct complex roots, and let α be a root of g(t). Let $\beta \neq 0$ be any complex number.
 - (a) (3 points) Prove that the equations

$$x = \frac{\beta}{t - \alpha}$$
 and $y = x^2 u = \frac{\beta^2 u}{(t - \alpha)^2}$

define an algebraic map from the curve $u^2 = g(t)$ (in \mathbb{C}^2) to the curve $y^2 = f(x)$ (in \mathbb{C}^2), where f(x) is the cubic polynomial

$$f(x) = g'(\alpha)\beta x^3 + \frac{1}{2}g''(\alpha)\beta^2 x^2 + \frac{1}{6}g'''(\alpha)\beta^3 x + \frac{1}{24}g''''(\alpha)\beta^4.$$

(You just have to check that if (u, t) satisfies $u^2 = g(t)$ then (x, y) defined by the above equations satisfies $y^2 = f(x)$.)

- (b) (3 points) Prove that since g has distinct complex roots, f also has distinct roots, so $u^2 = g(t)$ is an elliptic curve.
- 7. This problem is about the connection between elliptic curves and ellipses. Let α and β be positive real numbers with $\beta \leq \alpha$, and let C be the ellipse

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1.$$

(a) (3 points) Prove that the arc length of C is given by the integral

$$4\alpha \int_0^{\pi/2} \sqrt{1-k^2\sin^2\theta} d\theta$$

for an appropriate choice of constant k depending on α and β .

- (b) (1 point) Check your value for k in (i) by verifying that when $\alpha = \beta$, the integral yields the correct value for the arc length of a circle.
- (c) (3 points) Prove that the integral in (i) is also equal to

$$4\alpha \int_0^1 \sqrt{\frac{1-k^2t^2}{1-t^2}} dt = 4\alpha \int_0^1 \frac{1-k^2t^2}{\sqrt{(1-t^2)(1-k^2t^2)}} dt.$$

(d) (0 points) By Exercise 6, the equation

$$u^2 = (1 - t^2)(1 - k^2 t^2)$$

determines an elliptic curve. Hence the problem of determining the arc length of an ellipse comes down to evaluating the integral

$$\int_0^1 \frac{1 - k^2 t^2}{u} dt$$

on the elliptic curve determined by $u^2 = (1 - t^2)(1 - k^2 t^2)$.