Homework Assignment 6: Quadratic Forms Due **Friday** November 8

William Stein

Math 124

Harvard University 2002

Fall

Instructions: Please work with others. (It is possible to do some of the explicit computations in quadratic fields using the number fields functionality of MAGMA or some other computer program; feel free to do so, but describe what you do.) There are **7 problems**.

- 1. (2 points) Let n be a positive integer. Prove that n is a sum of two integer squares if and only if n is a sum of two rational squares.
- 2. (a) (3 points) Find a positive integer n that has at least three different representations as the sum of two squares, disregarding signs and the order of the summands.
 - (b) (3 points) Prove that for every $r \geq 1$, there is an integer n that has at least r different representations as the sum of two squares, disregarding signs and the order of the summands.
- 3. Prove the following two statements. You may assume (without proof) that the ring \mathcal{O}_K of integers in $K = \mathbb{Q}(\sqrt{d})$ is a principal ideal domain (and even a euclidean domain) for $d = -1, \pm 2, \pm 3, +5$. Everywhere below x and y are integers.
 - (a) (2 points) A prime p is of the form $x^2 + 2y^2$ if and only if p = 2 or $p \equiv 1$ or 3 (mod 8).
 - (b) (2 points) A prime p is of the form $x^2 2y^2$ if and only if p = 2 or $p \equiv \pm 1 \pmod{8}$.
 - (c) (2 points) Let p be a prime. Then p or -p is of the form $x^2 3y^2$ if and only if p = 2, 3 or $p \equiv \pm 1 \pmod{12}$.
- 4. Assume for the moment that $K = \mathbb{Q}(\sqrt{-5})$ is a principal ideal domain (it's actually not, as you will see below).
 - (a) (3 points) Prove under this hypothesis that p is of the form $x^2 + 5y^2$ if and only if p = 5 or $p \equiv 1, 3, 7, 9 \pmod{20}$.

- (b) (2 points) Give an explicit example to show that the statement you proved in part (a) is false.
- (c) (1 point) Conclude that $\mathbb{Z}[\sqrt{-5}]$ is not a principal ideal domain.
- 5. Let $\mathcal{O} = \mathbb{Z}[\sqrt{-5}]$. Let $I_1 = (3, 1 + \sqrt{-5})$ and $I_2 = (5, \sqrt{-5})$.
 - (a) (3 points) Find two elements $\alpha, \beta \in \mathcal{O}$ such that

$$(\alpha, \beta) = I_1 I_2 = \{ x_1 x_2 : x_1 \in I_1, x_2 \in I_2 \}.$$

- (b) (5 points) Prove that every ideal in \mathcal{O} can be generated by two elements.
- 6. (a) Show that there are exactly 3 equivalence classes of positive definite binary quadratic forms of discriminant -23. Find reduced representatives explicitly.
 - (b) Let $\alpha = \frac{1+\sqrt{-23}}{2}$ and set $\mathcal{O} = \mathbb{Z}[\alpha]$. By the result of (a), the ideal class group $\operatorname{Pic}(\mathcal{O})$ of \mathcal{O} has order 3. Find three ideals in \mathcal{O} that representative the three distinct elements of $\operatorname{Pic}(\mathcal{O})$.
 - (c) Do the following two ideals define the same equivalence class in $Pic(\mathcal{O})$?

$$I_1 = (4, 3 + 3\alpha), \qquad I_2 = (32, 19 + 27\alpha).$$

7. (3 points) Let $d \neq 0, 1$ be a square-free integer, and let $K = \mathbb{Q}(\sqrt{d})$ be the field generated by \sqrt{d} . Let \mathcal{O}_K be the ring of integers in K (thus $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ if $d \equiv 1 \pmod{4}$ and $\mathcal{O}_K = \mathbb{Z}[\sqrt{d}]$ otherwise). We say that a prime $p \in \mathbb{Z}$ ramifies in K if the ideal $p\mathcal{O}_K$ equals \wp^2 for some nonunit ideal $\wp \subset \mathcal{O}_K$. For each of the following d, find the primes p that ramify in $K = \mathbb{Q}(\sqrt{d})$:

$$d = -1, 2, 5, -5, 21, -389.$$

[Hint: One approach is to consider $\mathcal{O}_K/p\mathcal{O}_K = \mathcal{O}_K/\wp^2\mathcal{O}_K$. Note that the latter ring has elements $x \neq 0$ with the property that $x^2 = 0$.]