Homework Assignment 3 Due Wednesday October 16

William Stein

Math 124

HARVARD UNIVERSITY

Fall 2002

Instructions: Please work with others, and acknowledge who you work with in your write up. Some of these problems will require a computer; others look like a computer might be helpful, but in fact it isn't. If you use a computer, please describe how you use the computer (you are not required to use MAGMA).

- 1. (2 points each) Find all solutions to the following quadratic equations using the quadratic formula over \mathbb{Z}/p and the algorithms from class. Describe how you use the algorithm, but use a computer for the tedious computations.
 - (a) $19x^2 + 1783x + 29485 = 0$ over $\mathbb{Z}/29527$.
 - (b) $x^2 + 2^{87} = 0$ over $\mathbb{Z}/(2^{89} 1)$.
 - (c) $x^2 + 2^{47} = 0$ over $\mathbb{Z}/(2^{53} + 5)$.
- 2. (6 points) During my lecture on Friday, I suggested that a web page assumed that in the square root algorithm I gave, either u or v must always be 0. Here $u, v \in \mathbb{Z}/p$ were defined by an equation of the form $u + vx = (1 + zx)^{\frac{p-1}{2}}$ (see Section 6.5 of the notes). Either prove this assertion or give a counterexample.
- 3. (8 points) Research the following: What is the current status of the RSA patent? Could you write a commercial program that implements the RSA cryptosystem without having to pay anyone royalties? What about a free program? Same questions, but for the Diffie-Hellman key exchange.
- 4. For any positive integer n, let $\sigma(n)$ be the sum of the divisors of n; for example, $\sigma(6) = 1 + 2 + 3 + 6 = 12$ and $\sigma(10) = 1 + 2 + 5 + 10 = 18$.
 - (a) (10 points) Suppose that n = pqr with p, q, and r primes. Devise an "efficient" algorithm that given n, $\varphi(n)$ and $\sigma(n)$, computes the factorization of n. For example, if n = 105, then p = 3, q = 5, and r = 7, so the input to the algorithm would be

$$n = 105,$$
 $\varphi(n) = 48,$ and $\sigma(n) = 192,$

and the output would be 3, 5, 7.

- (b) (3 points) Use your algorithm to factor n = 60071026003 given that $\varphi(n) = 60024000000$ and $\sigma(n) = 60118076016$.
- 5. (6 points) Let p be a prime and let ζ be a primitive pth root of unity. Prove that every \mathbb{Z} -linear combination of powers of ζ can be written uniquely as a \mathbb{Z} -linear combination of elements of $B = \{1, \zeta, \dots, \zeta^{p-2}\}$. [Hint: $\zeta^p 1 = 0$, so $\zeta^{p-1} + \dots + \zeta + 1 = 0$, so $\zeta^{p-1} = -(\zeta^{p-2} + \dots + \zeta + 1)$. Next prove somehow that the polynomial $x^{p-1} + \dots + x + 1$ does not factor over \mathbb{Q} . I might not have told you enough in the course to do this, so be resourceful.]