next up previous
Next: What happened? Up: Fermat's Little Theorem Previous: Fermat's Little Theorem

Group-theoretic Interpretation

The set of invertible elements of $ \mathbb{Z}/n\mathbb{Z}$ is a group

$\displaystyle (\mathbb{Z}/n\mathbb{Z})^*
= \{ [a] \in \mathbb{Z}/n\mathbb{Z}: \gcd(a,n) = 1\}.
$

This group has order  $ \varphi (n)$. Theorem 4.3 asserts that the order of an element of $ (\mathbb{Z}/n\mathbb{Z})^\times $ divides the order $ \varphi (n)$ of $ (\mathbb{Z}/n\mathbb{Z})^\times $. This is a special case of the more general theorem that if $ G$ is a finite group and $ g\in G$, then the order of $ g$ divide $ \char93 G$.



William A Stein 2001-09-20