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As we look back over our number theory course, several topics stand out: integers
and congruences, factorization, public-key cryptography, continued fractions, binary
quadratic forms, and elliptic curves. The integers and congruences are at the heart of
almost everything we studied. We learned that integers factor as products of primes
and got a taste of how to find such factorizations in some cases using Pollard’s (p—1)
method and Lenstra’s elliptic curve method. We learned the basics of the beautiful
theory of binary quadratic forms, their composition law, and finiteness of the group of
equivalence classes of binary quadratic forms of given discriminant. We also learned
that every positive real number a has a continued fraction, and that it is eventually
periodic if and only if « satisfies an irreducible quadratic polynomial. We learned
about three public-key cryptosystems: the Diffie-Hellman key exchange, the RSA
cryptosystem, which uses arithmetic in (Z/pgZ)*, and the ElGamal elliptic curve
cryptosystem which is used by Microsoft in their digital rights management scheme.
We spent the last month learning about the group law on an elliptic curve, torsion
points and a big theorem of Mazur, about how modularity of elliptic curves is used
in the proof of Fermat’s Last Theorem, and about the Birch and Swinnerton-Dyer
conjecture.

1 Integers, Congruences, and Factorization

The integers are built out of prime numbers, in the sense that every positive integer
has an essentially unique representation as a product of primes. If NV is an integer,
the Pollard p — 1 method was one method we studied for picking off sufficiently
power-smooth divisors of N; it involves computing

gcd(alcm(2,3,...,3) ’ N)

for various choices of ¢ and B. This motivated Lenstra’s elliptic curve method, which
does a better job; it involves trying to compute

lem(2,3,...,B) - P € E(Z/NZ)

for various B, and points P on wvarious “elliptic curves” E over Z/NZ, and hoping
that something goes wrong.



The ring
Z/NZ={0,1,...,N —1} (arithmetic mod N)

and its group of units
(Z/NZ)* ={a:1<a <N and ged(a, N) =1}

appeared repeatedly throughout the course. We learned how to efficiently compute
a" in Z/NZ using a method that involved the binary expansion of n. Wilson’s
theorem asserts that

(p—1)!'=-1 (mod p) if and only if p is prime

Fermat’s little theorem says that if 2 € (Z/NZ)*, then z¥") = 1, where p(N) =
#(Z/NZ)*; this is just a special case of Lagrange’s theorem from group theory.

A primitive root modulo N is a generator of (Z/NZ)*. We proved that primitive
roots exist when N is prime and I remarked that they also exist when N = p” is an
odd prime power. There is no primitive root in (Z/8Z)*.

If N = mr with ged(m,r) = 1, then the Chinese remainder theorem allows us
to view a congruence modulo N as a system of two congruences, one modulo m and
one modulo 7.

2 Public-key Cryptography

The Diffie-Hellman key exchange is generally regarded as the first public-key cryp-
tosystem that was unleashed on the public. If Nikita and Michael wish to publically
agree on a shared private key, together they choose a modulus p and an element
g € (Z/pZ)*. Nikita chooses a secret random number n and Michael chooses a
secret random number m. Nikita then sends ¢" to Michael and Michael sends g™
to Nikita. Both Nikita and Michael can easily compute the secret key ¢"™, but an
outsider would have great difficulty in computing ¢"™.

The RSA cryptosystem also involes arithmetic in (Z/NZ)*. Here, Nikita secretly
chooses two huge random primes p and ¢, and computes both N = pg and p(N) =
(p—1)(¢—1). She then chooses a random encryption key e that is coprime to ¢(N),
and she computes an integer d such that ed =1 (mod ¢(N)). To encrypt a message
M € Z/NZ to Nikita, you compute M€ (mod N). Then Nikita can easily recover
M = (M¢)4, but an eavesdropper would have great difficulty in finding M.

Since RSA doesn’t make sense in the context of elliptic curves, we turn to the
ElGamal system. Nikita publically chooses an elliptic curve E over Z/pZ and a point
B € E(Z/pZ). She then secretly computes a random integer n and publishes nB.
To send Nikita a message P € E(Z/pZ), you choose a random number r and send
Nikita the pair

(rB, P+ r(nB)).
From this pair, Nikita can compute
P =P+r(nB)—n(rB),

but Nikita’s adversary will probably have great difficulty because the elliptic curve
discrete log problem appears to be so difficult.
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3 Continued Fractions

A continued fraction is a finite or infinite expression of the form

1
ap + — 1
a1 + i
G2+ oo

where ag € R and ay, as, ... are positive real numbers. Usually we considered only
integral continued fractions, in which case the a; are in Z.
The partial convergents
DPn

n

= [ag, - - -, Gn]

have many amazing properties, and the recurrence that defines p,, and g, lies at the
heart of almost everything we proved about continued fractions:

p_1 =1, Po = ag, P1 = a1po +p_1 = a1ap + 1, Pn = QpPp-1 + Pn—2,
q-1 =0, Q@ =1, 1 = 190 + ¢-1 = ay, Gn = AnGn—1 + Gn—o2-

The nicest result that we proved was that @ € R has an eventually-periodic
continued fraction if and only if « is a root of an irreducible quadratic polynomial.

4 Binary Quadratic Forms
A binary quadratic form is a polynomial
q(z,y) = ax® + bzy + cy?

with a, b, ¢ € Z. For example ¢(z,y) = z? + y? is a binary quadratic form, and there
is a simple criterion for whether or not an integer n is of the form n = ¢(z,y) for
z,y € L.

The discriminant b2 —4ac of ¢ is congruent to either 0 or 1 modulo 4. Suppose D is
a negative discrimant and consider the set of equivalence classes of binary quadratic
forms of discriminant D, where two forms ¢; and ¢y are equivalent if and only if
there exists g € SLy(Z) such that g, = r, where

wen=a(s())

A reduced binary quadratic form is one for which [b| < a < ¢ and, in addition,
when one of the two inequalities is an equality then b > 0. Every form is equivalent
to exactly one reduced form, so it is possible to decide whether or not two forms are
equivalent. Also, there are only finitely many equivalence classes of fixed discriminant
D < 0. This finite set has a natural group structure.



5 Elliptic Curves

From the point of view of number theory, elliptic curves y? = 23 +az + b are perhaps
the most interesting of all curves. The points on E form a group if we declare that
P+ Q-+ R=0if and only if P, @), and R are colinear.

The group

E(Q ={(z,y) €@xQ : y* =2’ +az + b} U{O}

may be either finite or infinite, though Barry Mazur proved that the group E(Q);or
of elements of finite order has size at most 16.

The Birch and Swinnerton-Dyer conjecture predicts that E(Q) is infinite if and
only if L(E,1) = 0, where

L(E,s) = i anpn °
n=1

and the a,, encode information about E over Z/pZ for all primes p. More precisely,
ords—y L(E, s) should equal the rank of E(Q). It is an open problem to exhibit a
curve such that L(E,1) = L'(E,1)=L"(E,1) = L"(E,1) =0.

Andrew Wiles proved Fermat’s last theorem a few years ago by showing that if
a’ + b* = ¢t is a counterexample, then the elliptic curve

y? = z(x — a*)(z +b°)

is attached to a modular form, which, by work of Ken Ribet, can’t possibly exist.

6 Remarks on the Final Examination

Due to popular demand, and so we can have a review session during reading week,
I’ve decided to slightly modify the final exam dates: The take-home final exam will
be available Friday, January 11 and due on Monday, January 21 at 5pm. It
should not take you every waking moment during those days to do the exam. Choose
a subset of the days that is good for you.

I will give a review session on Wednesday, January 9 at 11am in SC 216, i.e.,
the regular place and time that our course meets. I intend to answer your questions
then and get you pointed in the right direction for the final, which I’ll make available
on Friday, January 11.

I posted “A. Student’s” solutions to assignments 1, 4, 5, 6, 7, and 9 on the web
page.l If you typed up good solutions to assignments 2, 3, 8, or 10, please email
them to me. I'll post them under Anonymous Student (A. Student) or under your
name, whichever you prefer. You will be doing the other students in our course a
great favor.

For your convenience, I assembled all of the lecture notes and homework assign-
ments (without solutions) together into a single book, which I've posted at

http://modular.fas.harvard.edu/edu/Fall2001/124/lectures/lectures_all

1T make no warranties as to the correctness of A. Student’s solutions.



