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In this lecture I will sketch an outline of the proof of Fermat’s last theorem, then
give a rigorous account of what it means for an elliptic curve to be “modular”.

The are several exercises below. They are optional, but if you do them and give
them to Grigor, I suspect that he would look at them (whether or not you do the
exercises will not directly affect your course grade in any way).

1 Fermat’s Last Theorem

Theorem 1.1. Let n > 2 be an integer. If a,b,c € Z and
a* +b" =",

then abc = 0.

Proof (sketch). First reduce to the case when n = £ is a prime greater than 3 (see
Exercise 1.2). Suppose that
at +bt =t

with a, b, c € Z and abc # 0. Permuting (a, b, ¢), we may suppose that b is even and
that we have ¢ = 3 (mod 4). Following Gerhard Frey, consider the elliptic curve E
defined by

y? = z(z — a)(z + b°).

The discriminant of E is 24(abc)? (see Exercise 1.3 below).
Andrew Wiles and Richard Taylor [Annals of Math., May 1995] proved that E
must be “modular”. This means that there is a “modular form”

00
f(Z) — Z an627rmz
n=1

of “level N = abc” such that for all primes p 1 abe,

ap =p+ 1 — #E(Z/pL).



Ken Ribet [Inventiones Math., 1991] used that the discriminant of E is a per-
fect £th power (away from 2) to prove that there is a cuspidal modular form

oo
g(z) — Z bne2m'nz
n=1

of “level 2” such that
ap =0, (mod?¢)  forall p{abc.

This is a contradiction because the space of “cuspidal modular forms” of level 2 has
dimension 0 (see Section 3.1). O

Ezercise 1.2. Reduce to the prime case. That is, show that if Fermat’s last theorem
is true for prime exponents, then it is true.

Ezercise 1.3. Prove that y? = x(z — a%)(z + b°) has discriminant 2*(abc)?.

The rest of this lecture is about the words in the proof that are in quotes.

2 Holomorphic Functions
The complex upper half plane is the set
h={z€C : Im(z) > 0}.
A holomorphic function f : h — C is a function such that for all z € h the derivative

h—0 h

exists. Holomorphicity is a very strong condition because h € C can approach 0 in
many ways.

Ezample 2.1. Let SLy(Z) denote the set of 2 x 2 integers matrices with determinant 1.
If y=(2%) € SLy(Z), then the corresponding linear fractional transformation

az+b
cz+d

v(z) =

is a holomorphic function on h. (Note that the only possible pole of 7 is —%, which
is not an element of h.)

For future use, note that if f : h — C is a holomorphic function, and v = (¢ 4) €
SLy(Z), then

Fly(z) = f(v(2)(cz + d)~*
is again a holomorphic function.

Ezample 2.2. Let q(z) = €™, Then g is a holomorphic function on b and ¢’ = 27ig.
Moreover, g defines a surjective map from b onto the punctured open unit disk
D={zeC:0<|z| <1}.



3 Cuspidal Modular Forms

Let N be a positive integer and consider the set

To(N) = {(Cc‘ Z) € SLy(Z) : N | c}.

Definition 3.1 (Cuspidal Modular Form). A cuspidal modular form of level N
is a holomorphic function f : h — C such that

1. f|, = f for all y € Ty (N),
2. for every v € SLy(Z),
lim f(v(z))

Z—r00

0,
and

3. f has a Fourier expansion:
o
[ = Z ang".
n=1

Ezercise 3.2. Prove that condition 3 is implied by conditions 1 and 2, so condition 3 is
redundant. [Hint: Since vy = (1) € T'o(IV), condition 1 implies that f(z+1) = f(z),
so there is a function F'(¢) on the open punctured unit disc such that F'(¢(z)) = f(2).
Condition 2 implies that lim,_,o F'(¢) = 0, so by complex analysis F' extends to a
holomorphic function on the full open unit disc.]

Definition 3.3. The g-ezpansion of f is the Fourier expansion f =Y "7 a,q".

FEzercise 3.4. Suppose that f € Sy([o(N)). Prove that

f(2)dz = f(v(2))d(7(2))
for all v € I'y(N). [Hint: This is simple algebraic manipulation.]

Ezercise 3.5. Let S3(Tg(N)) denote the set of cuspidal modular forms of level N.
Prove that Sy(I'g(V)) forms a C-vector space under addition.

3.1 The Dimension of Sy(I'¢(N))
The dimension of Sy(I'z(NV)) is

. H Vo U3 Voo
T(N) =1+ 2 22 1B _ Vo
dime Sp(To(N)) =1+ 5 — 7 = 5 — =~

where p = NT[, y(1 +1/p), and vp =[], (1 + (%)) unless 4 | N in which case
vy =0, and v3 =[], x (1 + (_73)) unless 2 | N or 9 | N in which case v3 = 0, and
Voo = Y4 ¥(ged(d, N/d)). For example,

- 3 1 0 2
dlm@SQ(F0(2))—1—{—5_1_5_5_0,
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and 12 0 0 2
i To(11) =14 = — 22 _ = —1.
dime S(To(11)) =1+ 55— 7 — 5~ 3

One can prove that the vector space S(I'9(11)) has basis

oo

f=q]JO-¢0 =" =q¢-2¢ - +2¢" + " + 2" = 2¢" +---

n=1

Ezercise 3.6. Compute the dimension of Sy (I'y(25)).

4 Modularity of Elliptic Curves

Let F be an elliptic curve defined by a Weierstrass equation y? = 23 + az + b with
a,b € Q. For each prime p{ A = —16(4a® + 27b%), set

ap =p+1—#E(Z/pZ).
Definition 4.1 (Modular). E is modular if there exists a cuspidal modular form
F(2) =) bag" € S3(Lo(A))
n=1
such that b, = a, for all p{ A.

At first glance, modularity appears to be a bizarre and unlikely property for an
elliptic curve to have. When poor Taniyama (and Shimura) first suggested in 1955
that every elliptic curve is modular, people were dubious. But Taniyama was right.
The proof is that conjecture is one of the crowning achievements of number theory.

Theorem 4.2 (Breuil, Conrad, Diamond, Taylor, Wiles).

EVERY ELLIPTIC CURVE OVER Q IS MODULAR.

Wiles



