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I constructed N = 800610470601655221392794180058088102053408423 by mul-
tiplying together five random (and promptly forgotten) primes p with the property
that p—1 is not B-power-smooth for B = 10%. Since N is a product of five not-too-big
primes, N begs to be factored using the elliptic curve method.

1 The Elliptic Curve Method (ECM)

The following description of the algorithm is taken from Lenstra’s paper [Factoring
Integers with Elliptic Curves, Annals of Mathematics, 126, 649-673|, which you can
download from the Math 124 web page.

“The new method is obtained from Pollard’s (p — 1)-method by
replacing the multiplicative group by the group of points on a
random elliptic curve. To find a non-trivial divisor of an integer
n > 1, one begins by selecting an elliptic curve E over Z/nZ,
a point P on E with coordinates in Z/nZ, and an integer k as
GA above [k =lem(2,3, ..., B)]. Using the addition law of the curve,
“ /% one next calculates the multiple k - P of P. One now hopes that
4 there is a prime divisor p of n for which k- P and the neutral
% element O of the curve become the same modulo p; if ' is given
" by a homogeneous Weierstrass equation y?z = 2% + axz? + b2?,
Cohen and Lenstra  (ith @ = (0 : 1 : 0), then this is equivalent to the z-coordinate of
k - P being divisible by p. Hence one hopes to find a non-trivial
factor of n by calculating the greatest common divisor of this
z-coordinate with n.”

If the above algorithm fails with a specific elliptic curve E, there is an option that
is unavailable with Pollard’s (p — 1)-method. We may repeat the above algorithm
with a different choice of E. The number of points on E over Z/pZ is of the form
p+1—t for some ¢ with || < 2,/p, and the algorithm is likely to succeed if p+1—1¢
is B-power-smoth.

Suppose that P = (z1,y;) and Q) = (x9, y2) are nonzero points on an elliptic curve
y?> =13+ az + b and that P # +Q. Let A = (y; — 42)/ (71 — 72) and v = y; — A7y.
Recall that P + Q = (z3,y3) where

T3 = A2 — 21 — 29 and Y3 = —Ax3 — V.



If we do arithmetic on an elliptic curve modulo N and at some point we can not
compute A because we can not compute the inverse modulo N of z; — x5, then we
(usually) factor N.

2 Implementation and Examples
For simplicity, we use an elliptic curve of the form
v’ =2° 4+ az + 1,

which has the point P = (0,1) already on it.
The following tiny PARI function implements the ECM. It generates an error
message along with a usually nontrivial factor of N exactly when the ECM succeeds.

{ECM(N, m)= local(E);
E = el1linit([0,0,0,random(N) ,1]*Mod(1,N));
print("E: y°2 = x°3 + ",1ift(E[4]),"x+1, P=[0,11");
ellpow(E, [0,1]1*#Mod(1,N),m); \\ this fails if and only if we win!

}
The following two functions are also useful:
{lcmfirst(B) =
local(L,i); L=1; for(i=2,B,L=1lcm(L,i));
return(L) ;
}

numpoints(a,p) = return(p+l - ellap(ellinit([0,0,0,a,1]1),p));

First we will try the program on a small integer N, then we will try it on the N
at the top of this lecture. (ECM uses the random function, so the results of your run
may differ from the one below.)

? N = 5959; \\ This number motivated the ECM last time.
\\ Recall what happened when we tried to factor 5959 using the p-1 method.
? m = lemfirst(20); \\ B = 20.
? Mod(2,N) "m-1
%108 = Mod (5944, 5959)
? gcd (5944 ,5959)
%109 = 1 \\ bummer!
\\ Now we try the ECM:
? ECM(N,m)
E: y°2 = x°3 + 1201x+1, P=[0,1]
%112 = [Mod (666, 5959), Mod(3229, 5959)]
? ECM(N,m)
E: y°2 = x°3 + 1913x+1, P=[0,1]
*% ok impossible inverse modulo: Mod(101, 5959).
\\ Wonderful!! There’s a factor-——----- /\



? factor(numpoints(1913,101))

%120 =

[2 4] \\ #E(Z/101) is 16-power-smooth,
[7 1] \\ so ECM sees 101.

? factor(numpoints(1913,59))

%119 =

[2 1] \\ #E(Z/59) is 29-power-smooth,
[29 1] \\ so ECM doesn’t see 59.

\\ Here’s the view from another angle:
? E = ellinit([0,0,0,1752,0]*Mod(1,5959)) ;
? P = [0,1]*Mod(1,5959);
? ellpow(E,P,2)
%127 = [Mod (4624, 5959), Mod(1495, 5959)]
? ellpow(E,P,3)
%128 = [Mod (3435, 5959), Mod(1031, 5959)]
7 ellpow(E,P,4)
%129 = [Mod (803, 5959), Mod(5856, 5959)]
? ellpow(E,P,8)
%133 = [Mod (1347, 5959), Mod(2438, 5959)]
? ellpow(E,P,m)

*x*%*  impossible inverse modulo: Mod(101, 5959).

Now we are ready to try the big integer N from the begining of the lecture.

N

800610470601655221392794180058088102053408423;

B 100;

m = lemfirst(B);

ECM(N,m) ;

: y©2 = x73 + 273687051132207711452727265152539544370874547x+1, P=[0,1]
. many tries ..

ECM(N,m) ;

1 y°2 = x73 + 174264237886300715545169749498695137077020788x+1, P=[0,1]
B=1000; \\ give up and try a bigger B.

m=lcmfirst(B);

ECM(N,m) ;

1 y©2 = x73 + 652986182461202633808585244537305097270008449x+1, P=[0,1]
. many tries ...

ECM(N,m) ;

: y©2 = x73 + 755060727645891482095225151281965348765197238x+1, P=[0,1]
B=10000; \\ try an even bigger B

m=lcmfirst(B);

ECM(N,m) ;

1 y©2 = x73 + 722355978919416556225676818691766898771312229x+1, P=[0,1]
ECM(N,m) ;

1 y°2 = x73 + 124781379199538996805045456359983628056546634x+1, P=[0,1]
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? ECM(N,m) ;
E: y°2 = x73 + 350310715627251979278144271594744514052364663x+1, P=[0,1]
? ECM(N,m) ;
E: y72 = x”3 + 39638500146503230913823829562620410547947307x+1, P=[0,1]
*x*%*  impossible inverse modulo: Mod(1004320322301182911,
800610470601655221392794180058088102053408423) .

Thus N = N; - Ny = 1004320322301182911 - 797166454590134548773760793. One
checks that neither N; nor Nj is prime. Next we try ECM on each:

? N1 = 1004320322301182911; N2 = N / Ni;
? ECM(N1,m);
E: y°2 = x°3 + 725771039569085210x+1, P=[0,1]
*okok impossible inverse modulo: Mod(1406051123, 1004320322301182911).
? ECM(N2,m) ;
E: y°2 = x°3 + 573369475441522110156437806x+1, P=[0,1]
**¥x  impossible inverse modulo: Mod(2029256729,
797166454590134548773760793) .

Now
N = N 1-Ni9-Noi-Nyo = 1406051123-714284357-2029256729-392836669307471617,

and one can check that Ny i, Ni2, Ny are prime but that N, 5 is composite. Again,
we apply ECM:

? N22 = 392836669307471617
%173 = 392836669307471617
? ECM(N22,m)
E: y°2 = x"3 + 133284810657519512x+1, P=[0,1]
%174 = [0]
? ECM(N22,m)
E: y°2 = x°3 + 368444010842952211x+1, P=[0,1]
%175 = [Mod(236765299763600601, 392836669307471617),
Mod (63845045623767003, 392836669307471617)]

? ECM(N22,m)
E: y°2 = x"3 + 245772885854824846x+1, P=[0,1]
%176 = [0]
? ECM(N22,m)
E: y°2 = x"3 + 33588046732320063x+1, P=[0,1]

*+*  impossible inverse modulo: Mod(615433499, 392836669307471617) .

This time it took a long time to factor N, because m is too large so we often get
both factors. A smaller m would have worked more quickly. In any case, we discover
that the prime factorization is

N = 1406051123 - 714284357 - 2029256729 - 615433499 - 638308883.



