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In 1987, Hendrik Lenstra published the landmark paper Factoring Integers with
Elliptic Curves, Annals of Mathematics, 126, 649-673, which you can download from
the Math 124 web page. Lenstra’s method is also described in §IV.4 of Silverman
and Tate’s Rational Points on Elliptic Curves, §VIIL5 of [Davenport|, and in §10.3
of Cohen’s A Course in Computational Algebraic Number Theory.

In this lecture and the next, I will tell you about Lenstra’s clever algorithm. It
shines at finding “medium sized” factors of an integer N, which these days means 10
to 20 decimal digits but probaby not 30 decimal digits. The ECM method is thus
not useful for earning money by factoring RSA challenge numbers, but is essential
when factoring most integers. It also has small storage requirements. Lenstra writes:

“It turns out that ... the elliptic curve method
is one of the fastest integer factorization methods
that is currently used in practice. The quadratic > g
sieve algorithm still seems to perform better on
integers that are built up from two prime numbers
of the same order of magnitude; such integers are
of interest in cryptography.”

Lenstra’s discover of the elliptic curve method was inspired by Pollard’s (p —
method. I will spend most of the rest of this lecture introducing you to it.

1 Power-Smoothness

Definition 1.1 (Power-smooth). Let B be a positive integer. A positive integer n
is B-power-smooth if all prime powers dividing n are less than or equal to B. The
power-smoothness of n is the largest B such that n is B-power-smooth.

The following two PARI functions compute whether or not an integer is B-power-
smooth and also the power-smoothness of n.

{ispowersmooth(n, B) = \\ true if and only if n is B-powersmooth
local(F,i);
F = factor(n);



for(i=1,matsize(F)[1],if(F[i,1]"F[i,2]1>B,return(0)));
return(l) ;

}

{powersmoothness(n) = \\ the powersmoothness of n.
local(F,L,1);
F = factor(n);
L=1;
for(i=1,matsize(F) [1],L=max(L,F[i,1]"F[i,2]1));
return(L) ;

2 Pollard’s (p — 1)-Method

Let N be an integer that we wish to factor. Choose a positive integer B (usually
< 10° in practice). The Pollard (p — 1)-method hunts for prime divisors p of N such
that p — 1 is B-power-smooth. Here is the strategy. Suppose that p | N and a > 1
is an integer that is prime to p. By Fermat’s Little Theorem,

a?'=1 (mod p).

Assume that further that p — 1 is B-power-smooth and let m = lem(1,2,3,...B).
Then B | m,so p—1|m, and so
™ =1 (mod p).
Thus
p|ged(@™ —1,N) > 1.

Usually ged(a™ — 1, N) < N also, and when this is the case we have split N. In
the unlikely case when ged(a™ — 1, N) = N, then ¢™ =1 (mod ¢") for every prime
power divisor of N. In this case, repeat the above steps but with a smaller choice
of B (so that m is smaller). Also, it’s a good idea to check from the start whether
or not NN is not a perfect power M", and if so replace N by M.

In practice, we don’t know p. We choose a B, then an a, cross our fingers, and
proceed. If we split IV, great! If not, increase B or change a and try again.

For fixed B, this algorithm works when N is divisible by a prime p such that
p — 1 is B-power-smooth. How many primes p have the property that p — 1 is B-
power-smooth? Is this very common or not? Using the above two functions, we find
that roughly 15% of primes p between 10 and 10'° 4+ 10000 are such that p — 1 is
10® power-smooth.

\\ Count the number of B-power-smooth numbers an interval.
{cnt(B)= s=0;t=0;
for(p=10~15, 10715+10000,
if (isprime(p),



t++;if (ispowersmooth(p-1,B),s++)
)
)s
s/t*1.0
}
? ¢nt(1076)
%5 = 0.1482889733840304182509505703

Thus the Pollard (p — 1)-method with B = 10° is blind to 85% of the primes
around 10'°. There are nontrivial theorems about densities of power-smooth num-
bers, but I will not discuss them today.

3 Pollard’s Method in Action!

We now illustrate the Pollard (p — 1)-method through several examples.

Ezxample 3.1. Let N = 5917. We try to use the Pollard p — 1 method with B =5 to
split N. We have m = lem(1,2,3,4,5) = 60. Take a = 2. We have

260 —1=3416 (mod 5917), (can compute quickly!)

SO
ged(2%° — 1,5917) = ged(3416,5917) = 61.

Wow, we found a prime factor of N!
In PARI, these computations are carried out as follows:

{lcmfirst(B) = \\ compute the lcm of 1,2,3,...,B
local(L,i);
L=1;
for(i=2,B,L=1cm(L,i));
return(L) ;}

? lemfirst(5)

%8 = 60

? Mod(2,5917)°60 - 1

%9 = Mod (3416, 5917)

? gcd(3416,5917)

%10 = 61

Example 3.2. Let N = 779167. First try B =5 and a = 2:
260 — 1 =710980 (mod N),

and ged(2%° — 1, N) = 1. Thus no prime divisor p of N has the property that p — 1
is 5-power-smooth. Next, we try B = 15. We have m = lem(1,2,...,15) = 360360,
and

2300360 _ 1 = 584876 (mod N),

SO
ged (230930 _ 1) N) = 2003,

and we have split V!



Ezample 3.3. Let N = 61-71. Then both61—-1=60=2?-3-5and 71—-1=2-5-7
are 7-power-smooth, so Pollard’s (p — 1)-method with any B > 7 will fail, but in a
confidence-inspiring way. Suppose B =7, so m = lem(1,2,...,7) = 420. Then

220 _1=0 (mod N),

so ged(2? — 1, N) = N, and we get nothing. If we shrink B to 5, then Pollard
works:
20 —1=1464 (mod N),

and ged(2%° — 1, N) = 61, so we split N.

4 Motivation for the Elliptic Curve Method

Fix an integer B. If N = pq with p and ¢ prime and neither p — 1 nor ¢ — 1 a
B-power-smooth number, then the Pollard (p — 1)-method is extremely unlikely to
work. For example, let B = 20 and suppose that N = 59 . 101 = 5959. Note
that neither 59 — 1 = 2 - 29 nor 107 — 1 = 2 - 53 is B-power-smooth. With m =
lem(1,2,3,...,20) = 232792560, we have

2™ —1=5944 (mod N),

and ged(2™ — 1, N) = 1, so we get nothing.

As remarked above, the problem is that p — 1 is not 20-power-smooth for either
p = 59 or p = 101. However, notice that p — 2 = 3 - 19 is 20-power-smooth! If
we could somehow replace the group (Z/pZ)*, which has order p — 1, by a group of
order p — 2, and compute a™ for an element of this new group, then we might easily
split N. Roughly speaking, this is what Lenstra’s elliptic curve factorization method
does; it replaces (Z/pZ)* by an elliptic curve E over Z/pZ. The order of the group
E(Z/pZ) is p + 1 & s for some nonnegative integer s < 2,/p (any s can occur). For
example, if E' is the elliptic curve

v =2+ 2+ 54

over Z/59Z then E(Z/59Z) is cyclic of order 57. The set of numbers 59 + 1 £ s for
s < 15 contain numbers with very small power-smoothness.

I won’t describe the elliptic curve factorization method until the next lecture. The
basic idea is as follows. Suppose that we wish to factor N. Choose an integer B.
Choose a random point P and a random elliptic curve y? = 23 +az +b “over Z/NZ”
that goes through P. Let m = lem(1,2,...,B). Try to compute mP working
modulo N and using the group law formulas. If at some point it is necessary to
divide modulo N, but division is not possible, we (usually) find a nontrivial factor
of N. Something going wrong and not being able to divide is analogous to a™ being
congruent to 1 modulo p.

More details next time!



