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1 The Definition

Finally we come to elliptic curves, which I think are the most exciting and central
easily accessibly objects in modern number theory. There are so many exciting
things to tell you about elliptic curves, that the course is suddenly going to move
more quickly than before.

Definition 1.1. An elliptic curve E over a field K is a plane cubic curve of the form
y> 4+ arzy + azy = 2° + ax7” + a4z + ae,
where a1, a9, a3, a4, ag € K and
A = —bbg — 8b3 — 27b2 + bybybg # 0,

where
by = af + dag, by = 2a4 + ara3, bg = a§ + 4ag.

Help! Don’t worry, when 2 and 3 are not equal to 0 in K, using completing the
square and a little algebra we find a change of coordinates that transforms the above
cubic equation into the form

y? = 2° + ax + b,

and then A = —16(4a® + 27b?). We will consider only elliptic curves of the form
y? = 2% + ax + b for a while.

Hey! That’s not an ellipse! You’re right, elliptic curves are not ellipses; they are
curves that first arose when 19th century mathematicians studied integral formulas
for the arc lengths of ellipses.

In these lectures, I'll give you a glimpse into two main ways in which elliptic
curves feature in mathematics. On the left hand, they provide the simplest example
of a class of diophantine equations that we still can’t totally solve. On the right
hand, when K is a finite field (or, more sneakily, a finite ring), elliptic curves can be
used as a tool for both making and breaking cryptosystems.



2 Linear and Quadratic Diophantine Equations

Consider the following question:

Let F(x,y) be an irreducible polynomial in two variables over Q. Find
all rational numbers g, yo such that F'(xg,yo) = 0.

When F' is linear, this problem is easy. The equation
F(z,y)=ax+by+c=0

defines a line, and letting y = ¢, the solutions are

(i) ree)

When F' is quadratic, the solution is not completely trivial, but it is well un-
derstood. In this case, the equation F' = 0 has infinitely many rational solutions
if and only if it has at least one solution. Moreover, it is easy to describe all solu-
tions when there is one. If (xg, o) is a solution and L is a non-tangent line through
(%0, Yo), then L will intersect the curve F' = 0 in exactly one other point (z1,z;).
Also z1,1y; € Q since a quadratic polynomial over Q with 1 rational root has both
roots rational. Thus the rational points on F' = 0 are in bijection with the slopes of
lines through (¢, yo)-

Chapter 2 of [Kato et al.] is about how to decide whether or not an F' of degree 2
has a rational point. The answer is that /' = 0 has a rational solution if and only
if ' = 0 has a solution with zg,yo € R and a solution with zy,yo € Q, for every
“p-adic field” @,. This condition, though it might sound foreboding, is easy to check
in practice. I encourage you to flip through chapter 2 of loc. cit.

3 Points on Elliptic Curves

Next suppose that F'is an irreducible cubic polynomial. The question of whether or
not F' = 0 has a rational solution is still an open problem! We will not consider this
problem further until we discuss the Birch and Swinnerton-Dyer conjecture.

Suppose that F' = 0 has a given rational solution. Then one can change coordi-
nates so that the question of finding the rational solutions to F' = 0 is equivalent to
the problem of finding all rational points on the elliptic curve

y* = 2° + ax + b.

Recall that when F' has degree 2 we can use a given rational point P on the graph
of ' =0 to find all other rational points by intersecting a line through P with the
graph of F' = 0. The graph of y? = 23 + ax + b looks like

legg and curvy line| or [curvier line]



Notice that if P is a point on the graph of the curve, then a line through P (usually)
intersects the graph in exactly two other points. In general, these two other points
usually do not have rational coordinates. However, if P and () are rational points
on the graph of 42 = 2% + ax + b and L is the line through P and @, then the
third point of intersection with the graph will have rational coordinates. Explicitly,
if P = (z1,y1) and Q = (%9, y2) then the third point of intersection has coordinates’
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Thus, given two points on E, we can find another. Also, given a single point, we can
draw the tangent line to £ through that point and obtain a third point.

3.1 To Infinity!

At first glance, the above construction doesn’t work if z; = z5. [draw picture].
Fortunately, there is a natural sense in which the graph of E is missing one point,
and when x; = x5 this one missing point is the third point of intersection.

The graph of E that we drew above is a graph in the plan R?. The plane is a
subset of the projective plane P2, which I will define in just a moment. The closure
of the graph of y? = 23+ ax +b in P? has exactly one extra point, which has rational
coordinates, and which we denote by co. Formally, P? can be viewed as the set of
triples (a, b, ¢) with a, b, ¢ not all 0 modulo the equivalence relation

(a,b,c) ~ (Aa, Ab, Ac)

for any nonzero . Denote by (a : b : ¢) the equivalence class of (a, b, c). The closure
of the graph of y? = x3 4+ ax + b is the graph of 4?2 = 23 + ax2? + bz? and the extra
point oo is (0 : 1:0).

Venerable Problem: Find an algorithm that, given an elliptic curve E over Q,
outputs a complete description of the set of rational points (zg, o) on E.

This problem is difficult. In fact, so far it has stumped everyone! There is
a conjectural algorithm, but nobody has succeeded in proving that it is really an
algorithm, in the sense that it terminates for any input curve E. Several of your
profs at Harvard, including Barry Mazur, myself, and Christophe Cornut (who will
teach Math 129 next semester) have spent, or will probably spend, a huge chunk of
their life thinking about this problem. (Am I being overly pessimistic?)

How could one possible “describe” the set of rational points on E in the first
place? In 1923, Louis Mordell proved an amazing theorem, which implies that there
is a reasonable way to describe the rational points on E. To state his theorem, we
introduce the “group law” on FE.

Tt is traditional in a course like ours for me to derive these formulas. I'm not going to, because
it’s simple algebra and once you see the geometric picture it is easy to carry out. You should do
this as an exercise, or read the derivation in [Kato et al.] or [Davenport).



4 The Group Law

Consider the set E(Q) = {oo} U {(z0,%0) : ¥2 = z + azo + b}. There is a natural
way to endow the set F(Q) with a group structure. Here’s how it works. First,
the element oo € E(Q) is the 0 element of the group. Next, suppose P and @ are
elements of F(Q). Just like we did earlier, draw the line through P and @) and let
R = (z3,y3) be the third point of intersection. Define P + Q) = (x3,—y3). There
are various special cases to consider, such as when P = @ or the third point of
intersection is oo, but I will let your read about them in [Kato et al.]. It is clear
that this binary operation on FE(Q) satisfies P + @ = @ + P. Also, the inverse of
P = (z1,y1) is —P = (z1, —y1). The only other axiom to check in order to verify that
+ gives E(Q) an abelian group structure is the associative law. This is simple but
very tedious to check using only elementary methods?. Fortunately, we can coerce
the computer algebra system MAGMA into verifying the associative law for us:

// The field K = Q(a,b,x0,x1,x2)

K<a,b,x0,x1,x2> := FieldOfFractions(PolynomialRing(Rationals(),5));

// The polynomial ring R = K[y0,y1,y2]

R<y0,y1,y2> := PolynomialRing(K,3);

// A maximal ideal of R.

I := ideal<R | y0~2 - (x0"3+a*x0+b), yl172 - (x173+axxl+b), y272-(x2"3+a*x2+b)>;
// The field L contains three distinct "generic" points on E.

L := quo<R|I>;

E := EllipticCurve([L| a,bl); // The elliptic curve y"2 = x"3 + a*x + b.
PO := E!'[L|x0,y0]; P1 := E![LIx1,y1]; P2 := E![L|x2,y2];

lhs := (PO + P1) + P2; rhs := PO + (P1 + P2);

lhs eq rhs;

true // yeah!

5 Mordell’s Theorem

Theorem 5.1 (Mordell). The group E(Q) is finitely generated.

This means that there are points P, ..., P, € E(Q) such that every element of
E(Q) is of the form ny P, +- - - +n,. P, for some ny,...n, € Z. I won’t prove Mordell’s
theorem in this course. You can find an elementary proof of most of it in §1.3 of
[Kato et al.].?

Ezample 5.2. Consider the elliptic curve E given by y?> = 23+ +1. Then F(Q) ~ Z
with generator (0,1). We have 2(0,1) = (-1/4,-9/8), 3(0,1) = (72,611), and

4(0,1) = (355 608

2The right way to prove that the associate law holds is to develop the theory of algebraic curves
and define the group law in terms of divisors; this is way outside the scope of this course.

3Matt Baker is teaching a graduate course (255r) this semester, and he is just about to present
a proof of Weil’s generalization of Mordell’s theorem.
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