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1 Can You Hear the Shape of a Lattice?

After Lecture 23, Emanuele Viola asked me whether or not the following is true:
“If f1 and fy are binary quadratic forms that represent exactly the same integers, is
fi ~ f22” The answer is no. For example, f; = (2,1,3) = 22> + zy + 3y? and f, =
(2,—1,3) = 22? —zy+3y? are inequivalent reduced positive definite binary quadratic
forms that represent exactly the same integers. Note that disc(f;) = disc(fy) = —23.
There appears to be a sense in which all counterexamples resemble the one just given.

Questions like these are central to John H. Conway’s book The sensual (quadratic)
form, which I've never seen because the Cabot library copy is checked out and the
Birkhoff copy has gone missing. The following is taken from the MATHSCINET
review (I changed the text slightly so that it makes sense):

Chapter 2 begins by posing Mark Kac’s question of “hearing the shape
of a drum”, and the author relates the higher-dimensional analogue of
this idea on tori—quotients of R™ by a lattice—to the question of what
properties of a positive definite integral quadratic form are determined
by the numbers the form represents. A property of such a form is called
“audible” if the property is determined by these numbers, or equivalently,
by the theta function of the quadratic form. As examples, he shows that
the determinant of the form and the theta function of the dual form are
audible. He also provides counterexamples to the higher-dimensional Kac
question, the first of which were found by J. Milnor...

2 Class Numbers

Proposition 2.1. Let D < 0 be a discriminant. There are only finitely many
equivalence classes of positive definite binary quadratic forms of discriminant D.

Proof. Since there is exactly one reduced binary quadratic form in each equivalence
class, it suffices to show that there are only finitely many reduced forms of discrim-
inant D. Recall that if a form (a, b, c) is reduced, then [b| < a < ¢. If (a,b,c) has



discriminant D then b> —4ac = D. Since b*> < a? < ac, we have D = b> —4ac < —3ac,
SO
3ac < —=D.

There are only finitely many positive integers a, ¢ that satisfy this inequality. O
Definition 2.2. A binary quadratic form (a, b, ¢) is primitive if ged(a, b, ¢) = 1.

Definition 2.3. The class number hp of discriminant D < 0 is the number of equiv-
alence classes of primitive positive definite binary quadratic forms of discriminant D.

I computed the following table of class number hp for —D < 839 using the
built-in PARI function gfbclassno(D,1). Notice that there are just a few 1s at the
beginning and then no more.

—D hp||-D hp||—D hp||—D hp||—D hp||—D hp||—D hp
3 1 123 2 243 3 363 4 483 4 603 4 723 4
7 1 127 5 247 6 367 9 487 7 607 13 || 727 13
11 1 131 5 251 7 371 8 491 9 611 10 || 731 12
15 2 135 6 255 12 || 375 10 || 495 16 || 615 20 || 735 16
19 1 139 3 259 4 379 3 499 3 619 5 739 5
23 3 143 10 |} 263 13 || 383 17 || 503 21 || 623 22 || 743 21
271 1 147 2 267 2 387 4 507 4 627 4 747 6
31 3 151 7 271 11 || 391 14 || 511 14 || 631 13 || 751 15
35 2 155 4 275 4 395 8 515 6 635 10 || 755 12
39 4 159 10 || 279 12 || 399 16 || 519 18 || 639 14 || 759 24
43 1 163 1 283 3 403 2 923 5 643 3 763 4
47 5 167 11 || 287 14 || 407 16 || 527 18 || 647 23 || 767 22
ol 2 171 4 291 4 411 6 231 6 651 8 716
35 4 175 6 295 8 415 10 || 535 14 || 655 12 || 775 12
29 3 179 5 299 8 419 9 239 8 659 11 || 779 10
63 4 183 8 303 10 || 423 10 | 543 12 || 663 16 || 783 18
67 1 187 2 307 3 427 2 o047 3 667 4 787 5
T 191 13 || 311 19 |} 431 21 || 531 26 || 671 30 || 791 32
w2 195 4 315 4 435 4 3955 4 675 6 795 4
9 5 199 9 319 10 || 439 15 || 559 16 || 679 18 || 799 16
83 3 203 4 323 4 443 5 263 9 683 5 803 10
87 6 207 6 327 12 || 447 14 || 567 12 || 687 12 || 807 14
91 2 211 3 331 3 451 6 571 5 691 5 811 7
9% 8 215 14 || 335 18 || 455 20 || 575 18 || 695 24 || 815 30
9 2 219 4 339 6 459 6 579 8 699 10 || 819 8
103 5 223 7 343 7 463 7 283 8 703 14 |1 823 9
107 3 227 5 347 5 467 7 o087 7 707 6 827 7
111 8 231 12 || 351 12 || 471 16 || 591 22 || 711 20 | 831 28
115 2 235 2 355 4 475 4 595 4 715 4 835 6
119 10 || 239 15 || 359 19 || 479 25 ||599 25 || 719 31 ||839 33

We can compute these numbers using Proposition 2.1. The following PARI pro-
gram enumerates the primitive reduced forms of discriminant D.
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{isreduced(a,b,c) =
if (b"2-4%a*xc>=0 || a<o0,
error("reduce: (a,b,c) must be positive definite."));
if (! (abs(b)<=a && a<=c), return(0));
if(abs(b)==a || a==c, return(b>=0));

return(1);
}
{reduce(f) =
local(D, k, t, a,b,c);
a=f[1]; b=f[2]; c=f[3]; D=b"2-4xaxc;
if(D>=0 || a<0, error("reduce: (a,b,c) must be positive definite."));
while(!isreduced(a,b,c), \\ ! means ‘‘not’’
if (c<a,
b=-b; t=a;, a=c; c=t,
\\ else
if (abs(b)>a || -b==a,
k = floor((a-b)/(2xa));
b = b+2xkx*a;
¢ = (b"2-D)/(4*a);
)
)
);
return([a,b,c])
}
{reducedforms (D)=
local (bound, forms, b, r);
if (D >0 || D%4 == 2 || D%4==3, error("Invalid discriminant"));
bound = floor(-D/3);
forms = [];
for(a = 1, bound,
for(c = 1, bound,
if (3*axc<=-D && issquare(4*axc+D),
b = floor(sqrt(4*a*c+D));
r = reduce([a,b,c]);
printi([a,b,c], " -——=> ", 1);
if (gcd(r[1],gcd(r[2],r[3])) == 1,
forms = setunion(forms,[r]); print(""),
\\ else
print (" \t(not primitive)")
)
)
)
);
return(eval (forms)) ; \\ eval gets rid of the annoying quotes.
}



For example, when D = —419 the program finds exactly 9 reduced forms:

? D = -419

%21 = -419

? qfbclassno(D,1)

%22 = 9

? reducedforms (D)

[1, 1, 105] -——-> [1, 1, 105]
[1, 3, 1071 -———> [1, 1, 105]
[1, 5, 111] ----> [1, 1, 105]
[1, 7, 1171 ----> [1, 1, 105]
[1, 9, 125] ----> [1, 1, 105]
[1, 11, 135] ----> [1, 1, 105]
[3, 1, 35] ---—> [3, 1, 35]
[3, 5, 371 ----> [3, -1, 35]
[3, 7, 39] ----> [3, 1, 35]
[3, 11, 45] ----> [3, -1, 35]
[5, 1, 21] -————> [5, 1, 21]
[5, 9, 251 -———> [5, -1, 21]
[5, 11, 27] ————> [5, 1, 21]
[7, 1, 18] ----> [7, 1, 15]
9, 7, 131 ----> [9, 7, 13]
[9, 11, 151 -———> [9, -7, 13]
[13, 7, 91 -——-> [9, -7, 13]
[15, 1, 71 --———> [7, -1, 15]
[15, 11, 9] ----> [9, 7, 13]
[21, 1, 5] ----> [5, -1, 21]
[25, 9, 5] ---—> [5, 1, 21]
[27, 11, 5] ----> [5, -1, 21]
[35, 1, 3] ----> [3, -1, 35]
[37, 5, 31 --—--> [3, 1, 35]
[39, 7, 31 ----> [3, -1, 35]
[45, 11, 3] ----> [3, 1, 35]
[105, 1, 1] -———> [1, 1, 105]
[107, 3, 11 -———> [1, 1, 105]
[111, 5, 1] ----> [1, 1, 105]
(117, 7, 11 ----> [1, 1, 105]
[125, 9, 1] ----> [1, 1, 105]
[135, 11, 1] ----> [1, 1, 105]

%23 = [[1, 1, 1051, [3, -1, 35], [3, 1, 35], [6, -1, 211, [5, 1, 21],
(v, -1, 151, [7, 1, 15], [9, -7, 13], [9, 7, 13]]

? length(%23)

%24 = 9

Theorem 2.4 (Heegner, Stark-Baker, Goldfeld-Gross-Zagier). Suppose D is
a negative discriminant that is either square free or 4 times a square-free number.
Then



e hp =1 only for D =—-3,—4,—-7,—8,—11,—19, —43, —67, —163.

e hp =2 only for D = —15,—20,—24, —35, —40, —51, —52, —88, —91,
—115,—-123, —148, —187, —232, —235, —267, —403, —427.

e hp =3 only for D = —23,—31, —59, —83, —107, —139, —211, —283, —307,
—331,—379, —499, —547, —643, —883, —907.

e hp =4 only for D = —39,—55,—56, —68, ..., —1555.

To quote Henri Cohen: “The first two statements concerning class numbers 1
and 2 are very difficult theorems proved in 1952 by Heegner and in 1968-1970 by
Stark and Baker. The general problem of determing all imaginary quadratic fields
with a given class number has been solved in principle by Goldfeld-Gross-Zagier,
but to my knowledge the explicit computations have been carried to the end only
for class numbers 3 and 4 (in addition to the already known class numbers 1 and 2).

3 The Class Group

There are much more sophisticated ways to compute hp than simply listing the
reduced binary quadratic forms of discriminant D, which is an O(|D|) algorithm.
For example, there is an algorithm that can compute hp for D having 50 digits in
a reasonable amount of time. These more sophisticated algorithms use the fact that
the set of primitive positive definite binary quadratic forms of given discriminant is
a finite abelian group.

Definition 3.1. Let f; = (a1, b1, ¢1) and fo = (a9, b, ¢2) be two quadratic forms of
the same discriminant D. Set s = (b + b2)/2, n = (by — b2)/2 and let u,v, w and d
be such that

uay + vag + ws = d = ged(ay, ag, s)

(obtained by two applications of Euclid’s algorithm), and let dy = ged(d, ¢1, ¢2, ).
Define the composite of the equivalence classes of the two forms f; and f5 to be the
equivalence class of the form

by + —=(v(s — be) — wey),

a1as 2ay bg —D
d2 ’ d 461,3 ’

(as, b3, c3) = <do

This mysterious-looking group law is induced by “multiplication of ideals” in the
“ring of integers” of the quadratic imaginary number field Q(v/D). The following
PARI program computes this group operation:

{composition(f1, f2)=
local(al,bl,cl,a2,b2,c2,D,s,n,bz0,bzl,u,v,w);
al=f1[1]; bil=f1[2]; c1=f1[3];
a2=f2[1]; b2=f2[2]; c2=f2[3];
D = b172 - 4x*alxcl;
if(b2°2 - 4%a2xc2 != D, error("Forms must have the same discriminant."));



s = (b1+b2)/2;

n = (b1-b2)/2;
bezout(al,a2);
bezout (bz0[3],s);
u = bz1[1]*bz0[1];

v = bz1[1]1*bz0[2];

o o
N N
= O
o

w = bz1[2];
d = bz1[3];
d0 = gcd(gecd(ged(d,cl),c2),n);

a3 = d0*al*a2/d"2;

b3 = b2+2xa2x (vx (s-b2)-wxc2)/d;
c3 = (b3°2-D)/(4%*a3);

f3 = reduce([a3,b3,c3]);
return(f3);

}

Let’s try the group out in the case when D = —23.

? reducedforms(-23)

[1, 1, 6] --———> [1, 1, 6]

[2, 1, 31 -———> [2, 1, 3]

[3, 1, 21 ----> [2, -1, 3]

6, 1, 11 ----> [1, 1, 6]

%56 = [[1, 1, 6], [2, -1, 31, [2, 1, 3]]

Thus the group has elements (1,1,6), (2,—1,3), and (2,1,3). Since h_y3 = 3, the
group must be cyclic of order 3. Let’s find the identity element.

? composition([1,1,6],[2,-1,3]1)
%58 = [2, -1, 3]

Thus the identity element must be (1,1,6). The element (2, —1,3) is a generator for
the group:

? composition([2,-1,3],[2,-1,3])
%59 = [2, 1, 3]

? composition([2,-1,3],[2,1,3])
%60 = [1, 1, 6]



