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1 Introduction
A binary quadratic form is a homogeneous polynomial
az® + bxy + cy® € Zlx,y).

(There is a theory of quadratic forms in n-variables, but we will not study it in this
course.) Chapter VI of Davenport’s book is clear and well written. Read it.

The Classic Problem: Given a binary quadratic form f(z,y) = az? + bxy + cy?,
what is the set of integers {f(x,y): x,y € Z}?

That is, for which integers n are there integers x and y such that
az® + bry + cy® = n?

We gave a clean answer to this question in the last lecture in the case when f(x,y) =
22 + y2. The set of sums of two squares is the set of integers n such that any prime
divisor p of n of the form 4m + 3 exactly divides n to an even power (along with 0).
In your homework (Problem 5), you will give a simple answer to the question of
which numbers are of the form z? + 2y2. Is there a simple answer in general?

2 Equivalence

Definition 2.1. The modular group SLo(Z) is the group of all 2 x 2 integer matrices
with determinant +1.

If g=(29%) € SLy(Z) and f(x,y) = azx® + bry + cy? is a quadratic form, let

flo(z,y) = flpz + qy, 1o+ sy) = f ((p q) ["TD :

r s) |y

where for simplicity we will sometimes write f ([ﬂ) for f(z,vy).



Proposition 2.2. The above formula defines a right action of the group SLa(Z) on
the set of binary quadratic forms, in the sense that

f|gh = (f‘g)|h-

faay =1 (a0 7] ) = 11 (1([1] )) = Gl

Proposition 2.3. Let g € SLy(Z) and let f(x,y) be a binary quadratic form. The set
of integers represented by f(x,y) is exactly the same as the set of integers represented

by flg(x,y)-

Proof.

O

Proof. If f(x9,y0) = n then since g~! € SLy(Z), we have g ! {xo] € 72, so

Yo
flg (9_1 [zED = f(wo,y0) = n.

Thus every integer represented by f is also represented by f|,. Conversely, if

flg(@o, yo) = n, then f (g [zo}) =n, so [ represents n. O]
0

Define an equivalence relation ~ on the set of all binary quadratic forms by
declaring that f is equivalent to f’ if there exists g € SLo(Z) such that f|, =

For simplicity, we will sometimes denote the quadratic form az? + bry + cy?
by (a,b,c¢). Then, for example since g = ( o) € SLy(Z), we see that (a,b,c) ~
(¢, —b,a), since if f(x y) = az?® + bry + cy?, then f(~v,z) = ay? — bzy + cx?.

Ezample 2.4. Consider the binary quadratic form
f(z,y) = 4582 + 2142y + 25¢°.

Solving the representation problem for f might, at first glance, look hopeless. We
find f(z,y) for a few values of z and y:

f(=1,-1)=17-41
f(-1, )_2 229
f0,-1) =
f(1,1)=269
f(= 1,2)—2 5-13
f(=1,3) =

Each number is a sum of two squares! Letting g = (_,7 73 ), we have

flg = 458(4z — 3y)* + 214(4x — 3y) (=172 + 13y) + 25(—= 17z + 13y)* = - - - = 2> + ¢!l
9

By Proposition 2.3, f represents an integer n if and only if n is a sum of two squares.



3 Discriminants
Definition 3.1. The discriminant of f(z,y) = ax?® + bxy + cy? is b? — 4ac.
Ezample 3.2. disc(z? + y?) = —4 and

disc(458, 214, 25) = 214% — 4 - 25 - 458 = —4.

That the discriminants are the same is a good hint that (1,0,1) and (458,214, 25)
are closely related. Inspecting discriminants is more effective than simply computing
f(z,y) for many values of z and y and staring at the result.

Proposition 3.3. If f ~ f', then disc(f) = disc(f’).

Proof. By tedious but elementary algebra (see page 133 of Davenport’s book), one
sees that if g € SLy(Z), then

disc(f1) = disc(f) - (det(g))* = disc(f).
Since f' = f|, for some g € SLy(Z), the proposition follows. O

WARNING: The converse of the proposition is false! Forms with the same dis-
criminant need not be equivalent. For example, the forms (1,0,6) and (2,0, 3) have
discriminant —24, but are not equivalent. To see this, observe that (1,0,6) repre-
sents 1, but 222 + 3y? does not represent 1.

Proposition 3.4. The set of all discriminants of forms is exactly the set of integers d
such that d =0 or 1 (mod 4).

Proof. First note that b2 —4ac is a square modulo 4, so it must equal 0 or 1 modulo 4.
Next suppose d is an integer such that d =0 or 1 (mod 4). If we set

) —d/4, ifd=0 (mod 4)
| —=(d-1)/4 ifd=1 (mod 4),
then disc(1, 0, ¢) = d in the first case and disc(1, 1, ¢) = d in the second. O

Definition 3.5. The form (1,0,—d/4) or (1,1,—(d — 1)/4) of discriminant d that
appears in the proof of the previous proposition is called the principal form of dis-
criminant d.

d principal form
—4 (1,0,1) z? + y?
5 (1,1,-1) 2+ xy —y?
-7 (1,1,2) 2?2 + zy + 2°
8 (1,0,-2) x? — 2y?
—23 (1,1,6) 2?2 + zy + 61
389 (1,1,-97) z? + 2y — 97y?



4 Definite and Indefinite Forms

Definition 4.1. A quadratic form with negative discriminant is called definite. A
form with positive discriminant is called indefinite.

Let (a, b, c) be a quadratic form. Multiply by 4a and complete the square:

4a(az® + bry + cy®) = 4a*x* + dabry + 4acy?
= (2az + by)? + (4ac — b*)y?

If disc(a, b,c) < 0 then dac — b?> = —disc(a, b,c) > 0, so ax? + bry + cy? takes only
positive or only negative values, depending on the sign of a. In this sense, (a, b, ¢) is
very definite about its choice of sign. If disc(a, b, ¢) > 0, then (2az+by)?+ (dac—b?)y?
takes both positive and negative values, so (a, b, ¢) does also.

We will consider only definite forms in the next two lectures.

5 Real Life

The following text is from the documentation for binary quadratic forms in the
MAGMA computer algebra system. A quick scan of the buzzwords emphasized (by
me) below conveys an idea of where binary quadratic forms appear in mathematics.

A binary quadratic form is an integral form az? + bzy + cy? which is repre-
sented in MAGMA by a tuple (a, b, c). Binary quadratic forms play an central
role in the ideal theory of quadratic fields, the classical theory of complex mul-
tiplication, and the theory of modular forms. Algorithms for binary quadratic
forms provide efficient means of computing in the ideal class group of orders
in a quadratic field. By using the explicit relation of definite quadratic forms
with lattices with nontrivial endomorphism ring in the complex plane, one can
apply modular and elliptic functions to forms, and exploit the analytic theory
of complex multiplication.

The structures of quadratic forms of a given discriminant D correspond to
ordered bases of ideals in an order in a quadratic number field, defined up
to scaling by the rationals. A form is primitive if the coefficients a, b, and
¢ are coprime. For negative discriminants the primitive reduced forms in
this structure are in bijection with the class group of projective or invertible
ideals. For positive discriminants, the reduced orbits of forms are used for this
purpose. Magma holds efficient algorithms for composition, enumeration of
reduced forms, class group computations, and discrete logarithms. A significant
novel feature is the treatment of nonfundamental discriminants, corresponding
to nonmaximal orders, and the collections of homomorphisms between different
class groups coming from the inclusions of these orders.

The functionality for binary quadratic forms is rounded out with various func-
tions for applying modular and elliptic functions to forms, and for class poly-
nomials associated to class groups of definite forms.



