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Today we study the question of which integers are the sum of two squares.

1 Sums of Two Squares

During the next four lectures, we will study binary quadratic forms. A simple ex-
ample of a binary quadratic form that will occupy us today is

r? + y2.
A typical question that one asks about a quadratic form is which integers does it

represent. “Are there integers = and y so that 2?+y? = 3897 So that 22+y? = 200177

1.1 Which Numbers are the Sum of Two Squares?

The main goal of today’s lecture is to prove the following theorem.

Theorem 1.1. A number n is a sum of two squares if and only if all prime factors
of n of the form 4m + 3 have even exponent in the prime factorization of n.

Before tackling a proof, we consider a few examples.

Ezample 1.2.
5 =124 22

7 is not a sum of two squares.

2001 is divisible by 3 because 2 + 1 is, but not by 9 since 2 + 1 is not, so 2001
is not a sum of two squares.

2-3*.5-7?.13 is a sum of two squares.

389 is a sum of two squares, since 389 = 1 (mod 4) and 389 is prime.

e 21 = 3.7 is not a sum of two squares even though 21 =1 (mod 4).



In preparation for the proof of Theorem 1.1, we recall a result that emerged when
we analyzed how partial convergents of a continued fraction converge.

a
Lemma 1.3. If z € R and n € N, then there is a fraction 3 in lowest terms such
that 0 < b <n and

-3 < -
zT——| < —.
bl =~ b(n+1)
Proof. Let [ag, a1,...] be the continued fraction expansion of x. As we saw in the

proof of Theorem 2.3 in Lecture 18, for each m

1

‘x_f’_m 1
dm * dm+1

m

Since ¢,,,11 is always at least 1 bigger than ¢, and gy = 1, either there exists an m
such that ¢, < n < ¢ny1, or the continued fraction expansion of z is finite and n is
larger than the denominator of the rational number z. In the first case,

‘ Pm 1 < 1
dm Qm'qm+1_Qm'(n+1),
a Pm . . . a
SO = satisfies the conclusion of the lemma. In the second case, just let ;=7
dm

Definition 1.4. A representation n = z> + y? is primitive if ged(z,y) = 1.

Lemma 1.5. If n is diwvisible by a prime p of the form 4m + 3, then n has no
primitive representations.

Proof. If n has a primitive representation, n = x? + y2, then
plz®+y® and ged(z,y) =1,

sopfz and p{y. Thus z° + 3> = 0 (mod p) so, since Z/pZ is a field we can divide
by 4% and see that

(z/y)*=-1 (mod p).

Thus the quadratic residue symbol (_71) equals +1. However,

<__1> = (-1 = (=1)"F" = (=1)2m = 1,

O

Proof of Theorem 1.1. (=) Suppose that p is of the form 4m + 3, that p" || n
(exactly divides) with r odd, and that n = 2% + y?. Letting d = ged(z,y), we have

z=dz', y=dy’, n=dn



with ged(2’,9') = 1 and
($I)2 + (yl)2 — 7’LI.

Because r is odd, p | n’, so Lemma 1.5 implies that ged(z', y') > 1, a contradiction.

(<) Write n = n?n, where ny has no prime factors of the form 4m + 3. It suffices
to show that n, is a sum of two squares. Also note that

(23 + y1) (25 + 13) = (m122 + Y1y2)” + (212 — Tou1)?,

so a product of two numbers that are sums of two squares is also a sum of two
squares.’ Also, the prime 2 is a sum of two squares. It thus suffices to show that if p
is a prime of the form 4m + 1, then p is a sum of two squares.

Since .
(D)7 = (=)™ =41,
—1 is a square modulo p; i.e., there exists r such that 7> = —1 (mod p). Taking

n = [/p] in Lemma 1.3 we see that there are integers a, b such that 0 < b < ,/p and

T a< 1 < 1
p bl bn+1) b\/z_)'
If we write
c=rb+pa
then )
p b
o< —=="=p
ol < 45 = 5=
and

0 < b®+c < 2p.
But ¢ = rb (mod p), so
V+=0+r? =bp*(1+r*) =0 (mod p).

Thus % + ¢ = p. O

1.2 Computing x and y

Suppose p is a prime of the form 4m + 1. There is a construction of Legendre
of z and y that is explained on pages 120-121 of Davenport. I'm unconvinced that
it is any more efficient than the following naive algorithm: compute /p — x? for
r =1,2,... until it’s an integer. This takes at most ,/p steps. Here’s a simple PARI
program which implements this algorithm.

! This algebraic identity is secretely the assertion that the norm map N : Q(i)* — Q* sending
T + iy to (z +iy)(z —iy) = 2 + y? is a homomorphism.



{sumoftwosquares(n) =
local(y);
for(x=1,floor(sqrt(n)),
y=sqrt (n-x~2);
if (y-floor(y)==0, return([x,floor(y)]))
);

error(n," is not a sum of two squares.")

2 Sums of More Squares

Every natural number is a sum of four squares. See pages 124—-126 of Davenport for
a proof.

A natural number is a sum of three squares if and only if it is not a power of 4
times a number that is congruent to 7 modulo 8. For example, 7 is not a sum of
three squares. This is more difficult to prove.



