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1 Prime Numbers
We call positive whole numbers the natural numbers and denote them by N. Thus
N={1,2,3,4,...}.
We call all the whole numbers, both positive and negative, the integers, and write
Z=A...,—-2,-1,0,1,2,...}.

They are denoted by Z because the German word for the integers is “Zahlen” (and
19th century German number theorists rocked).

Definition 1.1. If a,b € Z then “a divides b” if ac = b for some ¢ € Z.

To save time, we write
a|b.

For example, 2 | 6 and 389 | 97734562907. Also, everything divides 0.

Definition 1.2. A natural number p > 1 is a prime if 1 and p are the only divisors
of pin N. Le., if a | p impliesa =1 or a = p.

Primes:
2,3,5,7,11,...,389,...,2003,...

Composites:
4,6,8,9,10,12,...,666 =2-3%-37,...,2001 = 3-23-29,...
Primes are “primal”—every natural number is built out of prime numbers.

Theorem 1.3 (The Fundamental Theorem of Arithmetic). Fvery positive
integer can be written as a product of primes, and this expression is unique (up to
order).



Warning: This theorem is harder to prove than I first thought it should be. Why?

First, we are lucky that there are any primes at all: if the natural numbers are
replaced by the positive rational numbers then there are no primes; e.g., 2 = % -4,
s0 3 | 2.

Second, we are fortunate to have unique factorization in Z. In other “rings”, such
as Z[v/=5] = {a + b\/=5 : a,b € Z}, unique factorization can fail. In Z[\/=5], the
number 6 factors in two different ways:

2:3=6=(1+v-5)-(1-+v-5).

If you are worried about whether or not 2 and 3 are “prime”, read this: If
2 = (a + byv/-5) - (¢ + dv/—5) with neither factor equal to +1, then taking
norms implies that

4 = (a® + 5b°) - (¢ + 5d?),

with neither factor 1. Theorem 1.3 implies that 2 = a? + 5b, which is impos-
sible. Thus 2 is “prime” in the (nonstandard!) sense that it has no divisors
besides +1 and £2. A similar argument shows that 3 has no divisors besides
41 and £3. On the other hand, as you will learn later, 2 should not be consid-
ered prime, because the ideal generated by 2 in Z[v/—5] is not prime. We have

(1++/—5)-(1—+/—5) = 6 € (2), but neither 1++/—5nor 1 —y/—5is in (2). We
also note that (14++/—5) does not factor. If (1++/—5) = (a+bv/—5)-(c+dv/—5),
then, upon taking norms,

2-3 = (a® + 5b?) - (¢* + 5d?),

which is impossible.

2 Greatest Common Divisors

Let a and b be two integers. The greatest common divisor of a and b is the biggest
number that divides both of them. We denote it by “ged(a, b)”. Thus,

Definition 2.1.
ged(a,b) = max{d :d | a and d | b}.

Warning: We define ged(0,0) = 0, instead of “infinity”.

Here are a few ged’s:

ged(1,2) =1, ged(0,a) = ged(a,0) =a, ged(3,27) =3, ged(2261,1275) =7

Warning: In Davenport’s book, he denotes our gcd by HCF and calls it the “highest
common factor”. I will use the notation gcd because it is much more common.



2.1 Euclid’s Algorithm for Computing GCDs
Can we easily compute something like ged (2261, 1275)7 Yep. Watch closely:

2261 =1-1275 + 986.

Notice that if a number d divides both 2261 and 1275, then it automatically divides
986, and of course d divides 1275. Also, if a number divides both 1275 and 986, then
it has got to divide 2261 as well! So we have made progress:

ged (2261, 1275) = ged (1275, 986)
Let’s try again:
1275 =1-986 + 289,
so ged(1275,986) = ged (986, 289). Just keep at it:

986 = 3 - 289 + 119
2890 =2-119+451
119 =251 4+ 17.

Thus ged(2261,1275) = - - - = ged(51, 17), which is 17 because 17 | 51, so
ged(2261,1275) = 17.

Cool. Aside from tedious arithmetic, that was quick and very mechanical.

The Algorithm: That was an illustration of Euclid’s algorithm. You just
“Divide and switch.”

More formally, fix a,b € N with a > b. Using “divide with quotient and remain-
der”, write a = bg + r, with 0 < r < b. Then, just as above,

ged(a, b) = ged(b, 7).

Let a; = b, by = r, and repeat until r = 0. Soon enough we have computed ged(a, b).
Here’s are two more examples:

Ezxample 2.2. Set a = 15 and b = 6.
15 = 6243 ged(15,6) = ged(6, 3)
6 = 3-240 ged(6,3) = ged(3,0) =3
We can just as easily do an example that is “10 times as hard”:
Ezxample 2.3. Set a = 150 and b = 60.
150 = 60-2+30 ged (150, 60) = ged(60, 30)
60 = 30-2+0 ged (60, 30) = ged(30,0) = 30

With Euclid’s algorithm in hand, we can prove that if a prime divides the product
of two numbers, then it has got to divide one of them. This result is the key to proving
that prime factorization is unique.



Theorem 2.4 (Euclid). Let p be a prime and a,b € N. If p | ab then p | a or p | b.

Proof. If p | a we are done. If p { a then ged(p,a) = 1, since only 1 and p divide p.
Stepping through the Euclidean algorithm from above, we see that ged(pb, ab) = b.
At each step, we simply multiply the equation through by b. Since p | pb and, by
hypothesis, p | ab, it follows that p | ged(pb, ab) = b. O

3 Numbers Do Factor

Let n = 1275, and recall from above that 17 | 1275, so n is definitely composite,
n=17-75. Next, 75is 5-15=5-5-3. So, finally, 1275 =3-5-5-17.

Now suppose n is any positive number. Then, just as above, n can be written as
a product of primes:

e If n is prime, we are done.

e If n is composite, then n = ab with a,b < n. By induction, a,b are products
of primes, so n is also a product of primes.

What if we had done something differently when breaking 1275 apart as a product
of primes? Could the primes that show up be different? Why not just try? We have
1275 = 5-255. Now 255 = 5-51 and 51 = 17- 3, so everything turned out the same.
Will it always?

Incidently, there’s an open problem nearby:

Unsolved Question: Is there an algorithm which can factor any given integer n so
quickly that its “running time” is bounded by a polynomial function of the number
of decimal digits of n.

I think most people would guess “no”, but nobody has yet proved that it can’t be
done (and told everyone...). If there were such an algorithm, then the cryptosystem
that I use to send my girlfriend private emails would probably be easily broken.

3.1 A $10,000 Challenge

If you factor the following 174-digit number, affectionality known as “RSA-576”,
then the RSA company will give you TEN THOUSAND DOLLARS!!!

18819881292060796383869723946165043980716356337941738270076335
64229888597152346654853190606065047430453173880113033967161996
92321205734031879550656996221305168759307650257059

This number is called RSA-576, since it has 576 binary digits. See
http: //www.rsasecurity.com /rsalabs/challenges/factoring/index.html

for more details.



4 The Fundamental Theorem of Arithmetic

We can now prove Theorem 1.3. The idea is simple. Suppose we have two factoriza-
tion. Use Theorem 2.4 to cancel primes from each, one prime at a time. At the end
of the game, we discover that the factorizations have to consist of exactly the same
primes. The technical details, with all the p’s and ¢’s are given below:

Proof. We have
n=Dp1-P2---DPd,
with each p; prime. Suppose that

n=4q - g9 qm

is another expression of n as a product of primes. Since

prln=q- (g gm),

Euclid’s theorem implies that p; = ¢; or p1 | g2+ - gm- By induction, we see that
p1 = ¢; for some 7.

Now cancel p; and ¢;, and repeat the above argument. Eventually, we find that,
up to order, the two factorizations are the same. O



