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1 The Continued Fraction Algorithm

Let z € R and write
T =ag+ to

with ap € Z and 0 < ty < 1. If £y # 0, write

L +t
— =q
i 1+t
with a; € Nand 0 < t; < 1. Thus ¢, = ﬁ = [0, a1 + t;1], which is a (nonintegral)

continued fraction expansion of ¢;. Continue in this manner so long as ¢,, # 0 writing

— = Opy1 Tt
tn

with a,+1 € N and 0 <t%,,; < 1. This process, which associates to a real number z
the sequence of integers ayg, a1, as, . . ., is called the continued fraction algorithm.

Ezample 1.1. Let x = %. Then z = 2—|—§, so ag = 2 and £y = % Then % = % = 1+%,
so a; =1 and t; = 5. Then % = 2,50 ay = 2, t, = 0, and the sequence terminates.

Notice that
- =12,1,2
3 [ o ]’

so the continued fraction algorithm produces the continued fraction of g.
Proposition 1.2. For every n such that a,, is defined, we have

x = |ag, @1, ..., 0, + 1],
and if t, # 0 then x = [ag, ay, - . ., Gy, %]

Proof. Use induction. The statements are both true when n = 0. If the second
statement is true for n — 1, then
1 1

| =lao, a1, -, an_1,0n + tn] = a0, a1, -, A1, Qn, —]
tnfl tn

r = [a(Ja ai,...,0n-1,

Similarly, the first statement is true for n if it is true for n — 1.



Ezxample 1.3. Let x = 1+2—\/5 Then

=1+ 5
so ap =1 and {5 = _1%‘/5 We have
1 2 -2-2v/5 1++/5
o —1++v5 -4 2
so again a; = 1 and ¢; = _1+‘/5 Likewise, a, = 1 for all n.

crazy-looking equality makes sense??

1+v5 1

Does the following
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Ezxample 1.4. Next suppose x = e. Then
ag, ai,ag,...=2,1,2,1,1,4,1,1,6,1,1,8,1,1,...

? contfrac(exp(1))

w=12,1,2,1,1,4,1,1,6,1,1,8,1,1, 10, 1, 1,

12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 2]
? \\ to get more terms, increase the real precision:
? \p60
? contfrac(exp(1),[])

wn2=102,1,2,1,1, 4,1,1,6,1,1,8, 1,1, 10, 1, 1,
12,1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, 22, 1,
1, 24, 1,1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, 1, 1, 34,
1, 1, 36, 1, 1, 38, 1, 1, 40, 1, 1, 42, 2]

The following program uses a proposition we proved yesterday to compute the partial

convergents of a continued fraction:

{convergents (v)=
local(pp,qq,p,q,tp,tq,answer) ;

pp=1; qg=0; p=v[i]; q=1; \\ pp is p_{n-1} and p is p_n.
answer = vector(length(v)); \\ put answer in this vector

answer[1] = p/q;
for(n=2,length(v),

tp=p; tq=q; p=vInl*p+pp; q=vInl*q+qq; pp=tp; qq=tq;

answer[n] = p/q;
);

return(answer) ;



Let’s try this with 7:

? contfrac(Pi)

%26 = [3, 7, 15, 1, 292, 1, 1, ...]

? convergents([3,7,15])

%27 = [3, 22/7, 333/106]

? convergents([3,7,15,1,292])

%28 = [3, 22/7, 333/106, 355/113, 103993/33102]
? %[61%1.0

%29 = 3.1415926530119026040. . .

?7 % - Pi

%30 = -0.000000000577890634. . .

2 Infinite Continued Fractions

Theorem 2.1. Let ag,aq,as,... be a sequence of integers such that a, > 0 for all
n > 1, and for each n > 0, set ¢, = [ag, a1, - ..ay|. Then lim ¢, ezists.
n—oo

Proof. For any m > n, the number ¢, is a partial convergent of [ay, ..., an,]. Recall
from the previous lecture that the even convergents cy, form a strictly increasing
sequence and the odd convergents co, 1 form a strictly decreasing sequence. More-
over, the even convergents are all < ¢; and the odd convergents are all > ¢y. Hence
ag = lim, o cop and oy = lim, o cop 1 both exist and oy < «;. Finally, by a
proposition from last time

1 1
<
Gon - Gon—1 — 2n(2n — 1)

‘CQ'H, - C2n71‘ =

SO ap = Q. ]

We define

[ag,ay,...] = lim ¢,.
n—oo

Example 2.2. We use PARI to illustrate the convergence of the theorem for x = 7.

? a = contfrac(Pi)

%38 = [3, 7, 16, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, ...]
? ¢ = convergents(a)

%39 = [3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, ...]

7 \p9 \\ so we can see.

realprecision = 9 significant digits
? [c[1]*1.0, c[3]*1.0, c[5]*1.0, c[7]1*1.0] \\ odd ones converge up to pi
%43 = [3.00000000, 3.14150943, 3.14159265, 3.14159265]
? [c[2]*1.0,c[4]1%1.0,c[6]1%1.0,c[8]1*1.0] \\ even ones swoop down on pi.
%44 = [3.14285714, 3.14159291, 3.14159265, 3.14159265]



Theorem 2.3. Let x € R be a real number. Then
x = |ag, a1, as, - . .|,
where ag, a1, as, . .. s the sequence produced by the continued fraction algorithm.

Proof. 1f the sequence is finite then some ¢, = 0 and the result follows by Proposi-
tion 1.2. Suppose the sequence is infinite. By Proposition 1.2,

1
x = [ag, a1, ..., 0n, —].
ln

By a proposition from the last lecture?,

%pn +pn—1
EQn +Qn71
Thus if ¢, = [ag, a1, - - -, ay), then
DPn
T—Ch=2——
qn

5 Pnln + Pn1Gn — 5-Pnn — Pndn-1
Gn (iqn + Qn—l)
_ Pn-10n — Pndn-1
n (iqn + qnfl)
(="

qn (iQn + Qn—l)

Thus
1
|z —cn| = .
qn (Eqn + qn—l)
1
<
Qn(anJrIQn + anl)
1 1

= < — 0.
qn " 9n+1 o n(n + 1)

(In the inequality we use that a,1 is the integer part of i, and is hence < %)
O

"'Which we apply in a case when the partial quotients of the continued fraction are not integers!
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