next up previous
Next: Partial Convergents Up: Lecture 17: Continued Fractions, Previous: Introduction

Finite Continued Fractions

Definition 2.1   A finite continued fraction is an expression

$\displaystyle a_0 + \frac{1}{a_1+\frac{1}{a_2 + \cdots + \frac{1}{a_m},}}$

where each $ a_n$ is a rational number and $ a_n>0$ for all $ n\geq 1$. If the $ a_n$ are integers, we say that the continued fraction is integral.

To get a feeling for continued fractions, observe that

$\displaystyle [a_0]$ $\displaystyle = a_0,$    
$\displaystyle [a_0, a_1]$ $\displaystyle = a_0 + \frac{1}{a_1} = \frac{a_0 a_1 + 1}{a_1},$    
$\displaystyle [a_0, a_1, a_2]$ $\displaystyle = a_0 + \frac{1}{a_1 + \frac{1}{a_2}} = \frac{a_0 a_1 a_2 + a_0 + a_2}{a_1 a_2 + 1}.$    

Also,

$\displaystyle [a_0, a_1, \ldots ,a_{m-1}, a_m]$ $\displaystyle = [a_0, a_1, \ldots, a_{m-2}, a_{m-1} + \frac{1}{a_m}]$    
  $\displaystyle = a_0 + \frac{1}{[a_1,\ldots, a_m]}$    
  $\displaystyle = [a_0, [a_1,\ldots, a_m]].$    



Subsections

William A Stein 2001-10-24