Lecture 16: Programming in PARI, II

William Stein

Math 124 HARVARD UNIVERSITY Fall 2001

1 Beyond One Liners

In today’s relaxing but decidely non-mathematical lecture, you will learn a few new
PARI programming commands. Feel free to try out variations of the examples below
(especially because there is no homework due this coming Wednesday). Also, given
that you know PARI fairly well by now, ask me questions during today’s lecture!

1.1 Reading Files

The \r command allows you to read in a file.

Ezample 1.1. Create a file pm.gp that contains the following lines

{powermod(a, p, n) =
return (1ift(Mod(a,p)”n));}

Now use \r to load this little program into PARI:

> ?powermod
*xx powermod: unknown identifier.
> \rpm \\ \rpm.gp would do the same thing
? 7powermod
powermod(a, p, n) = return(lift(Mod(a,p) n));
? powermod(2,101,7)
hl =27

If we change pm.gp, just type \r to reload it (omitting the file name reloads the
last file loaded). For example, suppose we change return (1ift(Mod(a,p)"n)) in
pm.gp to return (lift(Mod(a,p) "n)-p). Then

? \r
? powermod(2,101,7)
h2 = =74

1.2 Arguments

PARI functions can have several arguments. For example,

{add(a, b, c)=

return (a + b + ¢);}
7 add(1,2,3)
%3 =6

If you leave off arguments, they are set equal to 0.

? add(1,2)
W =3

If you want the left-off arguments to default to something else, include that infor-
mation in the declaration of the function:

{add(a, b=-1, c=2)=
return (a + b + ¢);}

? add(1,2)

%6 =5

? add(1)

wt = 2

? add(1,2,3)

%8 =6

1.3 Local Variables Done Right

Amidst the haste of a previous lecture, I mentioned that an unused argument can
be used as a poor man’s local variable. The following example illustrates the right
way to declare local variables in PARI.

Ezample 1.2. The function verybad below sums the integers 1, 2, ...n whilst wreak-
ing havoc on the variable i.

{verybad(n)=
i=0;
for(j=1,n, i=i+j);
return(i) ;}

? verybad(3)

%9 =6

? i=4;

? verybad(3);

71

w13 =6 \\ ouch!! what have you done to my eye!

The function poormans is better, but it uses a cheap hack to simulate a local variable.

{poormans(n, i=0)=
for(j=1,n, i=i+j);
return(i) ;}

? i=4;

? poormans (3)

%16 = 6

?1i

W7 = 4 \\ good

The following function is the best, because i is local and it’s clearly declared as such.

{best(n)=
local(i);
i=0; for(j=1,n, i=i+j);
return(i) ;}

? i=4;

? best(3)

%18 = 6

?1i

%19 = 4

1.4 Making Your Program Listen

The input command reads a PARI expression from the keyboard. The expression
is evaluated and the result returned to your program. This behavior is at first
disconcerting if, like me, you naively expect input to return a string. Here are some
examples to illustrate the input command:

? 7input

input(): read an expression from the input file or standard input.

? s = input();

1+1

78 \\ s is not the string "1+1", as you might expect
w24 = 2

? s=input ()

hi there

%25 = hithere

? type(s) \\ PARI views s as a polynomial in the variable hithere
%26 = "t_POL"

? s=input ()

"hi there"

%27 = "hi there"

7 type(s) \\ now it’s a string

%28 = "t_STR"

1.5 Writing to Files
Use the write command:

? ?write
write(filename,a): write the string expression a to filename.
? write("testfile", "Hello Kitty!")

The write command above appended the line “Hello Kitty!” to the last line of
testfile. This is useful if, e.g., you want to save key bits of work during a session
or in a function. There is also a logging facility in PARI, which records most of
what you type and PARI outputs to the file pari.log.

7 \1
log = 1 (on)
? 242
%29 = 4
7\1
log = 0 (off)
[logfile was "pari.log"]

2 Coming Attractions

The rest of this course is about continued fractions, quadratic forms, and elliptic
curves. The following illustrates some relevant PARI commands which will help us
to explore these mathematical objects.

? 7contfrac

contfrac(x,{b},{1max}): continued fraction expansion of x ...

? contfrac(7/9)

%30 = [0, 1, 3, 2]

? contfrac(sqrt(2))

w1 =11, 2,2,2,2,2,2,2,2,2,2,2, ...

? 7qfbclassno

gfbclassno(x,{flag=0}): class number of discriminant x using Shanks’s
method by default. If (optional) flag is set to 1, use Euler products.
? gfbclassno(-15,1) \\ ALWAYS use flag=1, since ‘‘the authors were too

%32 = 2 \\ lazy to implement Shanks’ method completely...’’
? E=ellinit([0,1,1,-2,0]);

? P=[0,0];

? elladd(E,P,P)

»36 = [3, 5]

7 elladd(E,P,[3,5])
w37 = [-11/9, 28/27]

? a=-11/9;b=28/27; \\ this is an ‘‘amazing’’ point on the curve.
? b"2+b == a"3+a"2-2xa
%38 =1

