Lecture 13: Quadratic Reciprocity 11

William Stein

Math 124 HARVARD UNIVERSITY Fall 2001

IN-CLASS MIDTERM THIS WEDNESDAY, OCTOBER 17!

Monday’s lecture will be a review lecture; Grigor’s review session is on Monday at 4pm; T
will have an extra office hour in SC 515, Tuesday, 2:35-3:30.

1 Recall Gauss’s Lemma

We proved the following lemma in the previous lecture.

Lemma 1.1. Let p be an odd prime and a an integer with p 1 a. Form the numbers
a, 2a, 3a, ..., ’%la and reduce them modulo p to lie in the interval (=5, £). Let v be the

number of negative numbers in the resulting set. Then (%) = (-1)".

2 Euler’s Conjecture
Lemma 2.1. Let a,b € Q. Then for any n € Z,
#((a,0)NZ)=# ((a,b+2n)NZ)=# ((a+2n,b) NZ) (mod 2).

Proof. If n > 0, then
(a,b+2n) = (a,b) U [b,b+ 2n),

where the union is disjoint. Let [z] denote the least integer > x. There are 2n integers,
(b],[0] +1,...,[0] +2n — 1,
in the interval [b, b+ 2n), so the assertion of the lemma is true in this case. We also have
(a,b —2n) = (a,b)\[b — 2n,b)

and [b— 2n, b) also contains exactly 2n integers, so the lemma is also true when n is negative.
The statement about # ((a + 2n,b) NZ) is proved in a similar manner. 0O

The following proposition was first conjectured by Euler, based on extensive numerical ev-
idence. Once we’ve proved this proposition, it will be easy to deduce the quadratic reciprocity
law.

Proposition 2.2 (Euler’s Conjecture). Let p be an odd prime and a € N a natural number
with p 1 a.



1. The symbol ( ) depends only on p modulo 4a.

a
2. If q is a prime with ¢ = —p (mod 4a), then (%) = (%)

Proof. To apply Gauss’s lemma, we have to compute the parity of the intersection of

—1
S:{a,Qa,3a,...p2 a}

= (i) o (o) 0o (1= D) ).

where b = 2a or (a — 1), whichever is an integer. (Why? We have to check that every element
of S that reduces to something in the interval (—&,0) lies in 7. This is clear if b = £a < ’%1(1. If

and

b= %(a —1), then bp+ 5§ > 1’%1@, so ((b— %)p, bp) is the last interval that could contain an element
of of S that reduces to (—%,0).) Also note that the integer endpoints of I are not in S, since those
endpoints are divisible by p, but no element of S is divisible by p.

Dividing I through by a, we see that

#(sm):#(Zm21>,

1 p P 3p 2p (26=1)p bp
= (22 (22 gy (2P Y
a <(2a’a) (2&’ a) U( 2¢ ' a
Write p = 4ac + r, and let
ror 3r 2r (2b—1)r br
J=((—._ TV (S T
((Qa’a)u<2a’ a)u U( 2a ’a))

The only difference between I and J is that the endpoints of intervals are changed by addition
of an even integer. By Lemma 2.1,

where

v=+# (Zm %I) =#(ZNJ) (mod 2).

Thus (;‘—)) = (—1)” depends only on 7, i.e., only on p modulo 4a. WOW!

If g = —p (mod 4a), then the only change in the above computation is that r is replaced
by 4a — r. This changes é] into

_ T T 3r 2r (20— 1)r br

Thus K is the same as —%I , except even integers have been added to the endpoints. By
Lemma 2.1,

a

#KNZ)=+# ((11) OZ) (mod 2),

SO (%) = (g), which completes the proof. O



The following more careful analysis in the special case when a = 2 helps illustrate the
proof of the above lemma, and is frequently useful in computations.

Proposition 2.3. Let p be an odd prime. Then
(2) B 1 ifp==41 (mod 8)
p) |-1 ifp=+3 (mod8)
Proof. When a = 2, the set S = {a,2a,...,2- ’%1} is

{2,4,6,...,p—1}.

We must count the parity of the number of elements of S that lie in the interval I = (§,p).
Writing p = 8¢ + r, we have

#uns)=#(31nz) = # ((2.5) n2)

# (e e 5) 07) =4 ((5)07) ma

where the last equality comes from Lemma 2.1. The possibilities for r are 1,3,5,7. When
r = 1, the cardinality is 0, when r = 3,5 it is 1, and when r = 7 it is 2. O

3 The Quadratic Reciprocity Law

With the lemma in hand, it is straightforward to deduce the quadratic reciprocity law.

Theorem 3.1 (Gauss). Suppose that p and q are distinct odd primes. Then

<§) | (%) = (-7

Proof. First suppose that p = ¢ (mod 4). By swapping p and ¢ if necessary, we may assume
that p > ¢, and write p — ¢ = 4a. Since p = 4a + q,

(0)-(=59-(2)-)
(0)-(59-()-()-6)

Proposition 2.2 implies that (“) = ( ), since p = ¢ (mod 4a). Thus

(0 (-G) - -

where the last equality is because 2 2 is even if and only if = is even.
Next suppose that p Z ¢ (mod 4), so p = —¢ (mod 4). erte p + q = 4a. We have

(-(5)-() = <z>=<4:p>=<z>p-l

Since p = —¢ (mod 4a), Proposition 2.2 implies that (’—;) = (%). Since (—I)T'% =1, the
proof is complete.

and




3.1 Examples
Example 3.2. Is 6 a square modulo 3897 We have

() () () () -

Here, we found that (555) = —1 using Proposition 2.3 and that 389 = 3 (mod 8). We found

389
(i) as follows:
BN (3 (2)
389/ \ 3 /) \3) 7

389
Thus 6 is a square modulo 389.

Annoyingly, though we know that 6 is a square modulo 389, we still don’t know an x such
that 2> = 6 (mod 389)!

? for(a=1,388,if (Mod(a,389) "2==6,printi(a, " ")))
28 361

Example 3.3. Is 3 a square modulo p = 7263773597 We proved that the answer is “no” in
the previous lecture by computing 37~! (mod p). It’s easier to prove that the answer is no
using Theorem 3.1:

3 . 726377358 726377359 1
— | =(-)" [ —— ) =—(z])=-1
726377359 ) 3 - 3)

4 Some Homework Hints

Spend time studying for the midterm in addition to doing the homework. To point you in
the right direction on the homework problems, here are some hints.

1)
2)
3)
4) Write down an element of (Z/p?Z)* that looks like it might have order p, and prove

that it does. Recall that if a, b have orders n, m, with ged(n, m) = 1, then ab has order
nm.

Use the quadratic reciprocity law, just like in the above examples.
Use the quadratic reciprocity law.
Relate the statement for n = 3 to the statement for n > 3.

(
(
(
(

(5)
(6)
(7)
(8)

Replace > (%) by > (%’) and use that <%’> = (f—)) . (;’j)

Write a little program.



