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Key Idea: There is an element of (Z/pZ) of order p — 1.

1 Polynomials over Z/pZ

Proposition 1.1. Let f € (Z/pZ)|x] be a nonzero polynomial over the ring Z/pZ.
Then there are at most deg(f) elements o € Z/pZ such that f(«) = 0.

Proof. We proceed by induction on deg(f). The cases deg(f) = 0,1 are clear. Write
f=apa™ + a1z + ap. If f(o) =0 then
f(z) =f(z) - fla)

=a,(z" —a")+--a1(z —a) +a(l—1)

=@z —a)(a, (" + o+ ")+ ay)

= (z — a)g(x),
for some polynomial g(x) € (Z/pZ)[x]. Next suppose that f(8) = 0 with 8 # «.
Then (8—a)g(B) = 0, so, since —a # 0 (hence ged(S—a, p) = 1, we have g(3) = 0.
By our inductive hypothesis, g has at most n — 1 roots, so there are at most n — 1
possibilities for 5. It follows that f has at most n roots. O

Proposition 1.2. Let p be a prime number and let d be a divisor of p — 1. Then
f(z) =z —1 € (Z/pZ)[z] has ezactly d solutions.

Proof. Let e be such that de = p — 1. We have
P 1= (2 -1
= (@ = () + @ )
= (z* — 1)g(a),

where deg(g(z)) = p—1—d. Recall that Fermat’s little theorem implies that 27! —1
has exactly p — 1 roots in Z/pZ. By Proposition 1.1, f(z) has at most p — 1 — d
roots and % — 1 has at most d roots, so g(z) has exactly p — 1 roots and z? — 1 has
exactly d roots, as claimed. O

WARNING: The analogue of this theorem is false for some f € (Z/nZ)[z] with n
composite. For example, if n = n; - ny with ny,ny # 1, then f = nz has at least two
distinct zeros, namely 0 and ny # 0.



2 The Structure of (Z/pZ)* = {1,2,...,p— 1}

In this section, we prove that the group (Z/pZ)* is cylic.

Definition 2.1. A primitive root modulo p is an element of (Z/pZ)* of order p — 1.

Question: For which primes p is there a primitive root? (Ans. Every prime.)

Lemma 2.2. Suppose a,b € (Z/nZ)* have orders r and s, respectively, and that
ged(r, s) = 1. Then ab has order rs.

This is a general fact about commuting elements of a group.

Proof. Since (ab)™ = a™b™ = 1, the order of ab is a divisor rys; of rs, where ry | r
and s; | s. Thus
a1yt = (ab)t = 1.

Raise both sides to the power r9, where r;79 = r. Then

a,rlr2slb7llr2sl — 1,
so, since a1 = (a"1"2)% =1,

prirs — 1,

This implies that s | 717957, and, since ged(s,rire) = 1, it follows that s = s;. A
similar argument shows that r» = ry, so the order of ab is rs. O

Theorem 2.3. For every prime p there is a primitive root mod p. In other words,
the group (Z/pZ)* is a cyclic group of order p — 1.

Proof. Write

p—1=q"q* q"
as a product of distinct primes g;.
n

By Proposition 1.2, the polynomial 2% — 1 has exactly ¢;* roots, and the poly-
-1

nomial 2% — 1 has exactly ¢;""" roots. Thus there is an a; € Z/pZ such that

n; n;—1
aj = 1buta # 1. This a; has order ¢/*. For each i = 1,...,r, choose such
an a;. By repeated application of Lemma 2.2, we see that

a= a1a9 - - - Qp

has order ¢i" --- ¢/~ = p — 1, so a is a primitive root. O

Remark 2.4. There are ¢(p — 1) primitive roots modulo p, since there are ¢} — q;”_l

ways to choose a;. To see this, we check that two distinct choices of sequence
ai,...,a, define two different primitive roots. Suppose that

!

!
10y *** Ay = A0y " * * G,



with a;, a; of order ¢, for i = 1,...,7. Upon raising both sides of this equality to
the power s = ¢3” - - - ¢'", we see that a] = a'’. Since ged(s, ¢'") = 1, there exists ¢
such that st =1 (mod ¢'*). It follows that

a = (@) = (@) = al.

Upon canceling a; from both sides, we see that as---a, = @), - - - a,; by repeating the
above argument, we see that a; = a] for all ¢. Thus, different choices of the a; must
lead to different primitive roots; in other words, if the primitive roots are the same,
then the a; were the same.

For example, there are ¢(16) = 2* — 2% = 8 primitive roots mod 17:

? for(n=1,16,if (znorder (Mod(n,17))==16,printi(n," ")))
3567 10 11 12 14

Ezxample 2.5. In this example, we illustrate the proof of Theorem 2.3 when p = 13.
We have
p—1=12=22.3.

The polynomial z* — 1 has roots {1,5,8,12} and z? — 1 has roots {1,12}, so we
take a; = 5. The polynomial z*® — 1 has roots {1,3,9}, so set a; = 3. Finally,
a=>5-3=15=2. Note that the successive powers of 2 are

2,4,8,3,6,12, 11,9, 5, 10, 7, 1,

so 2 really does have order 12.

Example 2.6. The result is false if, e.g., p is replaced by a big power of 2. The
elements of (Z/8Z)* all have order dividing 2, but ¢(8) = 4.

Theorem 2.7. Let p™ be a power of an odd prime. Then there is an element of
(Z/p"Z)* of order p(p™). Thus (Z/p"Z)* is cyclic.

I will not prove Theorem 2.7 in class. I will probably put a problem on your next
homework set that will guide you to a proof.

3 Artin’s Conjecture

Conjecture 3.1 (Emil Artin). If a € Z is not —1 or a perfect square, then the
number N (z,a) of primes p < x such that a is a primitive root modulo p is asymptotic
to C(a)m(x), where C(a) is a constant that depends only on a. In particular, there
are infinitely many primes p such that a is a primitive root modulo p.

Nobody has proved this conjecture for even a single choice of a. There are partial
results, e.g., that there are infinitely many p such that the order of a is divisible by the
largest prime factor of p— 1. (See, e.g., Moree, Pieter, A note on Artin’s conjecture.)



