Lecture 11: Primitive Roots

William Stein

Math 124 Harvard University Fall 2001

Key Idea: There is an element of $(\mathbb{Z}/p\mathbb{Z})$ of order p-1.

1 Polynomials over $\mathbb{Z}/p\mathbb{Z}$

Proposition 1.1. Let $f \in (\mathbb{Z}/p\mathbb{Z})[x]$ be a nonzero polynomial over the ring $\mathbb{Z}/p\mathbb{Z}$. Then there are at most $\deg(f)$ elements $\alpha \in \mathbb{Z}/p\mathbb{Z}$ such that $f(\alpha) = 0$.

Proof. We proceed by induction on $\deg(f)$. The cases $\deg(f) = 0, 1$ are clear. Write $f = a_n x^n + \cdots + a_1 x + a_0$. If $f(\alpha) = 0$ then

$$f(x) = f(x) - f(\alpha)$$

$$= a_n(x^n - \alpha^n) + \dots + a_1(x - \alpha) + a_0(1 - 1)$$

$$= (x - \alpha)(a_n(x^{n-1} + \dots + \alpha^{n-1}) + \dots + a_1)$$

$$= (x - \alpha)g(x),$$

for some polynomial $g(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$. Next suppose that $f(\beta) = 0$ with $\beta \neq \alpha$. Then $(\beta - \alpha)g(\beta) = 0$, so, since $\beta - \alpha \neq 0$ (hence $\gcd(\beta - \alpha, p) = 1$, we have $g(\beta) = 0$. By our inductive hypothesis, g has at most n - 1 roots, so there are at most n - 1 possibilities for β . It follows that f has at most n roots. \square

Proposition 1.2. Let p be a prime number and let d be a divisor of p-1. Then $f(x) = x^d - 1 \in (\mathbb{Z}/p\mathbb{Z})[x]$ has exactly d solutions.

Proof. Let e be such that de = p - 1. We have

$$x^{p-1} - 1 = (x^d)^e - 1$$

$$= (x^d - 1)((x^d)^{e-1} + (x^d)^{e-2} + \dots + 1)$$

$$= (x^d - 1)g(x),$$

where $\deg(g(x)) = p-1-d$. Recall that Fermat's little theorem implies that $x^{p-1}-1$ has exactly p-1 roots in $\mathbb{Z}/p\mathbb{Z}$. By Proposition 1.1, f(x) has at most p-1-d roots and x^d-1 has at most d roots, so g(x) has exactly p-1 roots and x^d-1 has exactly d roots, as claimed.

WARNING: The analogue of this theorem is false for some $f \in (\mathbb{Z}/n\mathbb{Z})[x]$ with n composite. For example, if $n = n_1 \cdot n_2$ with $n_1, n_2 \neq 1$, then f = nx has at least two distinct zeros, namely 0 and $n_2 \neq 0$.

2 The Structure of $(\mathbb{Z}/p\mathbb{Z})^* = \{1, 2, \dots, p-1\}$

In this section, we prove that the group $(\mathbb{Z}/p\mathbb{Z})^*$ is cylic.

Definition 2.1. A primitive root modulo p is an element of $(\mathbb{Z}/p\mathbb{Z})^*$ of order p-1.

Question: For which primes p is there a primitive root? (Ans. Every prime.)

Lemma 2.2. Suppose $a, b \in (\mathbb{Z}/n\mathbb{Z})^*$ have orders r and s, respectively, and that gcd(r, s) = 1. Then ab has order rs.

This is a general fact about commuting elements of a group.

Proof. Since $(ab)^{rs} = a^{rs}b^{rs} = 1$, the order of ab is a divisor r_1s_1 of rs, where $r_1 \mid r$ and $s_1 \mid s$. Thus

$$a^{r_1s_1}b^{r_1s_1} = (ab)^{r_1s_1} = 1.$$

Raise both sides to the power r_2 , where $r_1r_2=r$. Then

$$a^{r_1r_2s_1}b^{r_1r_2s_1}=1$$
.

so, since $a^{r_1 r_2 s_1} = (a^{r_1 r_2})^{s_1} = 1$,

$$b^{r_1 r_2 s_1} = 1$$

This implies that $s \mid r_1r_2s_1$, and, since $\gcd(s, r_1r_2) = 1$, it follows that $s = s_1$. A similar argument shows that $r = r_1$, so the order of ab is rs.

Theorem 2.3. For every prime p there is a primitive root mod p. In other words, the group $(\mathbb{Z}/p\mathbb{Z})^*$ is a cyclic group of order p-1.

Proof. Write

$$p-1 = q_1^{n_1} q_2^{n_2} \cdots q_r^{n_r}$$

as a product of distinct primes q_i .

By Proposition 1.2, the polynomial $x^{q_i^{n_i}} - 1$ has exactly $q_i^{n_i}$ roots, and the polynomial $x^{q_i^{n_i-1}} - 1$ has exactly $q_i^{n_i-1}$ roots. Thus there is an $a_i \in \mathbb{Z}/p\mathbb{Z}$ such that $a_i^{q_i^{n_i}} = 1$ but $a_i^{q_i^{n_i-1}} \neq 1$. This a_i has order $q_i^{n_i}$. For each $i = 1, \ldots, r$, choose such an a_i . By repeated application of Lemma 2.2, we see that

$$a = a_1 a_2 \cdots a_r$$

has order $q_1^{n_1} \cdots q_r^{n_r} = p - 1$, so a is a primitive root.

Remark 2.4. There are $\varphi(p-1)$ primitive roots modulo p, since there are $q_i^{n_i} - q_i^{n_{i-1}}$ ways to choose a_i . To see this, we check that two distinct choices of sequence a_1, \ldots, a_r define two different primitive roots. Suppose that

$$a_1 a_2 \cdots a_r = a_1' a_2' \cdots a_r',$$

with a_i , a_i' of order $q_i^{n_i}$, for i = 1, ..., r. Upon raising both sides of this equality to the power $s = q_2^{n_2} \cdots q_r^{n_r}$, we see that $a_1^s = a_1'^s$. Since $\gcd(s, q_1^{n_1}) = 1$, there exists t such that $st \equiv 1 \pmod{q_1^{n_1}}$. It follows that

$$a_1 = (a_1^s)^t = (a_1^{\prime s})^t = a_1^{\prime}.$$

Upon canceling a_1 from both sides, we see that $a_2 \cdots a_r = a'_2 \cdots a'_r$; by repeating the above argument, we see that $a_i = a'_i$ for all i. Thus, different choices of the a_i must lead to different primitive roots; in other words, if the primitive roots are the same, then the a_i were the same.

For example, there are $\varphi(16) = 2^4 - 2^4 = 8$ primitive roots mod 17:

? for(n=1,16,if(znorder(Mod(n,17))==16,print1(n," ")))
3 5 6 7 10 11 12 14

Example 2.5. In this example, we illustrate the proof of Theorem 2.3 when p = 13. We have

$$p - 1 = 12 = 2^2 \cdot 3.$$

The polynomial $x^4 - 1$ has roots $\{1, 5, 8, 12\}$ and $x^2 - 1$ has roots $\{1, 12\}$, so we take $a_1 = 5$. The polynomial $x^3 - 1$ has roots $\{1, 3, 9\}$, so set $a_2 = 3$. Finally, $a = 5 \cdot 3 = 15 = 2$. Note that the successive powers of 2 are

so 2 really does have order 12.

Example 2.6. The result is false if, e.g., p is replaced by a big power of 2. The elements of $(\mathbb{Z}/8\mathbb{Z})^*$ all have order dividing 2, but $\varphi(8) = 4$.

Theorem 2.7. Let p^n be a power of an odd prime. Then there is an element of $(\mathbb{Z}/p^n\mathbb{Z})^*$ of order $\varphi(p^n)$. Thus $(\mathbb{Z}/p^n\mathbb{Z})^*$ is cyclic.

I will not prove Theorem 2.7 in class. I will probably put a problem on your next homework set that will guide you to a proof.

3 Artin's Conjecture

Conjecture 3.1 (Emil Artin). If $a \in \mathbb{Z}$ is not -1 or a perfect square, then the number N(x, a) of primes $p \leq x$ such that a is a primitive root modulo p is asymptotic to $C(a)\pi(x)$, where C(a) is a constant that depends only on a. In particular, there are infinitely many primes p such that a is a primitive root modulo p.

Nobody has proved this conjecture for even a single choice of a. There are partial results, e.g., that there are infinitely many p such that the order of a is divisible by the largest prime factor of p-1. (See, e.g., Moree, Pieter, A note on Artin's conjecture.)