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1. INTRODUCTION

1.1. What is cellular automata? A cellular automaton (pl. cellular automata,
abbrev. CA) is a discrete model consisting of a regular grid of cells, each in one of
a finite number of states, such as ?On” and ”Off”. The grid can be in any finite
number of dimensions. For each cell, a set of cells called its neighborhood (usually
including the cell itself) is defined relative to the specified cell. For example, the
neighborhood of a cell might be defined as the set of cells a distance of 2 or less
from the cell.

An initial state (time t=0) is selected by assigning a state for each cell. A new
generation is created (advancing t by 1), according to some fixed rule (generally, a
mathematical function) that determines the new state of each cell in terms of the
current state of the cell and the states of the cells in its neighborhood.

For example, the rule might be that the cell is "On” in the next generation if
exactly two of the cells in the neighborhood are ”On” in the current generation,
otherwise the cell is 7Off” in the next generation. Typically, the rule for updating
the state of cells is the same for each cell and does not change over time, and is
applied to the whole grid simultaneously, though exceptions are known.

The Game of Life, also known simply as Life, is a cellular automaton devised
by the British mathematician John Horton Conway in 1970. The ”"game” is
a zero-player game, meaning that its evolution is determined by its initial state,
requiring no further input. One interacts with the Game of Life by creating an
initial configuration and observing how it evolves.

The universe of the Game of Life is an infinite two-dimensional orthogonal grid
of square cells, each of which is in one of two possible states, alive or dead. Every
cell interacts with its eight neighbours, which are the cells that are horizontally,
vertically, or diagonally adjacent. At each step in time, the following transitions
occur:

e Any live cell with fewer than two live neighbours dies, as if caused by
under-population.

e Any live cell with two or three live neighbours lives on to the next genera-
tion.

e Any live cell with more than three live neighbours dies, as if by overcrowd-
ing.

e Any dead cell with exactly three live neighbours becomes a live cell, as if
by reproduction.
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The initial pattern constitutes the seed of the system. The first generation is
created by applying the above rules simultaneously to every cell in the seed-births
and deaths occur simultaneously, and the discrete moment at which this happens
is sometimes called a tick (in other words, each generation is a pure function of
the preceding one). The rules continue to be applied repeatedly to create further
generations.

Ever since its publication, Conway’s Game of Life has attracted much interest,
because of the surprising ways in which the patterns can evolve. Life provides an
example of emergence and self-organization. It is interesting for computer scientists,
physicists, biologists, biochemists, economists, mathematicians, philosophers, gen-
erative scientists and others to observe the way that complex patterns can emerge
from the implementation of very simple rules. The game can also serve as a didactic
analogy, used to convey the somewhat counter-intuitive notion that ”design” and
”organization” can spontaneously emerge in the absence of a designer. For exam-
ple, philosopher and cognitive scientist Daniel Dennett has used the analogue of
Conway’s Life ”universe” extensively to illustrate the possible evolution of complex
philosophical constructs, such as consciousness and free will, from the relatively
simple set of deterministic physical laws governing our own universe.

1.2. Life patterns. A good way to get started in Life is to try out different patterns
and see what happens. Even completely random starting patterns rapidly turn into
Life objects recognizable to anyone with a little experience. In this section, we
follow a simple-looking pattern called the R-pentomino. It starts out with just five
cells, but gets complicated very fast. The R-pentomino is the first pattern Conway

FIGURE 1. R-pentomino

found that defied his attempts to simulate by hand. In fact, the pattern eventually
becomes ”stable” or easy to predict, but this does not happen until 1103 steps have
passed. Some of the earliest computer programs for Life were written to determine
the fate of this small pattern. This was a challenging problem for many computers
of that time, but a modern PC can run the complete sequence of steps many times
in one second.

1.3. Still life objects. Some of the most common objects in Life remain the same
from step to step. No live cells die and no new cells are born. Conway, who is fond
of making puns, called this kind of object a ”still life.” For an object to be a still
life, every live cell most have 2 or 3 live neighbors, and every dead cell may have
any number of neighbors except 3. The most common still life is called the block.
It is simply a 2x2 square of live cells:
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You will see it appear many times as you run the R-pentomino. Every live cell
has exactly three neighbors, but no dead cell has more than two neighbors. Some
other still lifes you will see are:

FIGURE 2. beehive

FIGURE 3. boat

FIGURE 4. ship

FIGURE 5. loaf

1.4. Oscillators. Oscillators are objects that change from step to step, but even-
tually repeat themselves. The simplest kind are period-2 oscillators, or those that
repeat themselves after two steps. The most common is the blinker, which consists
of three cells.

1.5. Gliders. These common moving patterns, called gliders, consist of just 5 cells.

You will see that after four steps, it looks just like it did when it started. The
only difference is that it is shifted along a diagonal. Repeat this process, and you
have a moving Life object, which in general we call a spaceship. Remember, the
rules said nothing about movement; moving patterns just appear. This is a simple
but convincing demonstration of emergent complexity.
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FIGURE 6. oscillator

FIGURE 7. glider

FIGURE 8. light weight

FIGURE 9. medium weight

1.6. Other interesting objects. There are some early discoveries that do not
show up in the R-pentomino, but which sometimes show up from random starting
states. The orthogonal spaceships move left, right, up, or down instead of on
diagonals like gliders. These are much less common than gliders, but very important
in certain kinds of patterns. They come in three sizes:

Finally, here are some simple starting patterns that develop into oscillators. A
row of 10 live cells becomes the period-15 oscillator called the pentadecathlon:

1.7. Do all patterns stabilize eventually? We say a pattern has stabilized when
it becomes obvious that the population has stopped growing. For example, we say
the R-pentomino stabilizes at step 1103 because at this point it consists of just
gliders and oscillators, and it is clear that the gliders will never collide with each
other or with any oscillators. It was observed early on in the study of Life that
random starting states all seem to stabilize eventually. Conway offered a prize for
any example of patterns that grow forever. Conway’s prize was collected soon after
its announcement, when two different ways were discovered for designing a pattern
that grows forever. The first of these patterns is the period-30 glider gun, which is
based on the interaction of two queen bee shuttles. Where these shuttles collide,
instead of producing beehives, they produce a new glider. This glider moves away
in time for the process to repeat itself 30 steps later
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FIGURE 10. heavy weight

FIGURE 11. pentadecathlon

Another kind of pattern that grows forever is called a puffer. Unlike the glider
gun, which remains stationary and produces moving objects, puffers move while
producing objects, which may be either moving or stationary. Here is one of the
simplest, and earliest puffers.

2. THE ALGORITHM AND CODE

2.1. Continuous approximation. Let M be a Game of Life universe (realized
as a two-dimensional matrix of Os and 1s) and let M’ be the the universe after one
generation. We view the Game of Life rules in the following way: let

Al) = 1 ?f:cE{Z,S}
0 ifze{0,1,4,56,78}

and

D(x) 1 ifz=3
€Tr) =
0 ifxe{0,1,2,4,56,7,8}

Then for N the neighbors matrix of M,

MI - A(Nl,j) lf Mi7j =1
B D(N;y) if My = 0.

We approximate A(z) and D(x) continuously:
A(z) ~ exp [—(1.8(z — 5/2))'"], D(z) =~ exp [—(25(z — 3))'"°] .

The approximations are graphed below in red (A(z) and D(x) in blue):



6 Z. FOLWICK, S. GANGULY AND G.
1+ r—w
0.8

0.6

SISODIA

0.8

0.2

[e)] &

~N¢

® ® * ®
1 2 3 4 5

We now allow real-number entries between 0 and 1. We try to answer three ques-

tions:

(1) How does our approximation affect computation time?

(2) How good is our approximation?

*
6

(3) What happens if we (slightly) deform the rules?

2.2. The twoDCA class. We develop the twoDCA class to encapsulate the universe

and rules of a Life-like CA. It has as class variables

e the current universe M as a two-dimensional numpy array, and the shape

(r,c) of M,
the original universe (or seed) orig,
a function Alive to apply to "alive” cells,

The neighbors matrix is the matrix to which the functions Alive and Dead are
applied. For Life, we take the neighbors matrix N of a matrix M to be

(1) N;,; = # of neighbors of cell (¢, j) in M.

We call the function which returns the Life neighbors matrix LifeNeighbors.

The class methods are

a function Dead to apply to "dead” cells, and
a function neighbors to return the neighbors matrix.

*
7

*
8



A CONTINUOUS APPROXIMATION OF CONWAY’S GAME OF LIFE USING SAGE 7

e nextMatrix, which updates M to the next generation by applying the prescibed
rules,

e gener(m), which updates M by m generations (by calling nextMatrix m

times),

npcount, which returns the population of M (the sum of all entries),

resetM(N), which sets M to N,

mplot, which returns a matrix_plot of M, and

anigen(n), which returns an animation of matrix_plots of the next n

generations of M.

2.3. The algorithm in detail. InnextMatrix, we update M to the next generation
via

(2) M=M= Alive(N) + (1 — M) * Dead(N)

where N = neighbors(M), Alive and Dead are applied entry-wise, and * is entry-
wise multiplication. For Life, we (naively) define

def LifeAlive(n):
if n == 2 or n ==
return 1
else:
return O

def LifeDead(n):
if n ==
return 1
else:
return O

Along with the LifeNeighbors function described in (I]), the instance

Life = twoDCA(M, LifeAlive, LifeDead, LifeNeighbors)

represents classical Life.
We use cython for a fast implementation of LifeNeighbors (we name the cython
function cyneighbors).

2.4. The boundary. Currently, the cyneighbors function computes the neigh-
bors of a cell on the boundary of the array to be zeros. This means that the
universe of a twoDCA instance using cyneighbors will maintain a boundary of ze-
ros throughout its generations. When using cyneighbors, leave healthy buffers of
zeros on all sides for accurate results.

2.5. Read from file. There are many libraries of interesting Game of Life seeds.
One such library, at

http://www.radicaleye.com/lifepage/patterns/contents.html

stores the seeds as files in the .LIF format. We implement a function which takes
as input a file in the .LIF format and returns the corresponding seed as a numpy
matrix. In the next section, we analyze how our code behaves on some classical
Game of Life seeds.


http://www.radicaleye.com/lifepage/patterns/contents.html
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3. ANALYSIS

We show that our approximation is a good one. We start with a 50 x 50 matrix
with random entries (either 0 or 1) with a border of zeros on all sides, pictured
below as a matrix_plot.

The matrix after 40 generations is

We notice various still lifes, blinkers and gliders.

Let’s test our code on some classical patterns from the library mentioned above,
like the Gosper glider gun (Figure [12).

Figure shows the universe after 180 generations. We observe that our ap-
proximation behaves very much like classical Game of Life with respect to this
pattern.

We can input larger patterns, like the prime number computer (Figure, which
sends a light weight spaceship to the left after 120n + 100 generations if n is prime.
However, our code is too slow to do serious analysis of such large patterns. The
prime number computer builds to the right indefinitely, and even at this fixed size



A CONTINUOUS APPROXIMATION OF CONWAY’S GAME OF LIFE USING SAGE 9

FIGURE 12. Glider gun

FIGURE 13. Glider gun after 180 generations

(about 650 x 450), 100 generations takes about 7.5 seconds, so one would see the
spaceship corresponding to 5 after more than 53 seconds.

3.1. Vastly different rules. Our framework for two-dimensional CA can handle
a wide variety of rules. As an example, let’s implement the rule which allows entries
strictly between 0 and 1 and replaces a cell with the average of the cells around it.
Then our alive (and dead) function would be

def aliveAvg(n):
return n/8
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FIGURE 14. Prime number computer

and an instance with a random seed M

avgCA = twoDCA(M, aliveAvg, aliveAvg, cyneighbors).

Figure 15| shows M, [16] the universe after 1 generation and [L7] the universe after
2 generations.
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FIGURE 16. M after 1 generation
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FIGURE 17. M after 2 generations
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