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1 Motivation

In class this quarter we spent a considerable amount of time studying the curves
X(N) = Γ(N) \ H∗, X0(N) = Γ0(N) \ H∗, X1(N)Γ1(N) \ H∗, where H is the
upper half of the complex plain and H∗ = H∪P1(Q) and and Γ(N), Γ0(N), and
Γ1(N) are the usual congruence subgroups of SL2(Z). These curves are closely
related to modular forms and elliptic curves. They have been extensively studied
and are rich in theory.

A reasonable question to ask is how to generalize the classical congruence sub-
groups of SL2(R) and the modular curves associated to them. Are their other
subgroups of SL2(Z) that give us curves and modular forms besides Γ0(N),
Γ1(N), and Γ(N)? Can we generalize these subgroups of SL2(R) to number
fields? That is, instead of working with SL2(Z), is it reasonable to work with
SL2(ZF ) where F is a number field? One way is to work with groups aris-
ing from quaternion algebras over totally real number fields. Let H denote the
Hamiltonians. By working over a totally real number field F of degree n we can
pick quaternion algebras that have an embedding of B⊗Q R ↪→M2(R)r⊕Hn−r.
We can restrict the elements of B further, to get subgroups Γ ⊂ B which embed
in SL2(R)r and thus act on Hr. This construction gives us Shimura varieties.
If we restrict ourselves to examing embeddings of B ⊕ R ↪→ M2(R), we get
Shimura curves.

Why study Shimura curves? Shimura curves are close analogues of the tra-
ditional modular curves. Modular curves even arise as examples of Shimura
curves over Q. Modular curves parameterize elliptic curves with some other
structure. Shimura curves parameterize abelian varieties in a similar way. Us-
ing the explicit formulas for elliptic curves and for the maps between them we
are able to write down models for the first few curves X1(N) parameterizing an
elliptic curve and an N torsion point. Similarly, we can obtain explicit models
for Shimura curves over number fields.

This is not the only way in which the theory generalizes. From the subgroups
Γ of SL2(R) we get from these quaternion algebras, we also have quaternionic
modular forms, i.e., modular forms acted on by Γ. Interested parties should
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know that in the Shimura variety case, some of these groups are the ones we
associate with Hilbert modular forms.

Shimura curves are also studied because they provide interesting examples of low
genus curves and maps between them. Some of the buzz words where are error-
correcting code, Drinfeld-Vladut upper bound, and arithmetic triangle groups.
And recently, some interesting Heegner point constructions have been studied
via CM computations on Shimura curves.

2 Quaternion Algebras

A quaternion algebra B over a field F is a central simple algebra of dimension
4. A more concrete way to view B is as an F -algebra generated by elements i
and j such that for some a, b ∈ F×,

i2 = a, j2 = b, , and ji = −ij.

B is denoted by B =
(

a,b
F

)
. Two well known examples are the Hamiltonian

quaternions, H =
(−1,−1

R
)

and the 2× 2 matrices
(

1,1
R

) ∼= M2(R) via

i 7→
[

1 0
0 −1

]
and j 7→

[
0 1
1 0

]
.

Back to the general case to clear up some more preliminaries, let B a quaternion
algebra over a field F . Let K be a field containing F . Tensoring we get a
quaternion algebra over K: BK = B⊗F K. We say K splits B if BK

∼= M2(K).
Let v be a non-complex place of F and let Fv be the completion of F at v. Then
Bv = B ⊗F Fv is either M2(Fv) or the unique division ring of dimension 4 over
Fv. If Fv splits B, i.e., Bv

∼= M2(Fv) we say that B is unramified or split at v.
Otherwise we say that B is ramified at v.

It is a theorem that a quaternion algebra is ramified at an even (finit) number of
places. Let B be a quaternion algebra over a number field F . Then discriminant
of B is the ideal in ZF which is the product of the ramified places of B.

Quaternion algebras over number fields have a structure somewhat analogous to
the ring of integers of a number field. A ZF -lattice of B is a finitely generated
ZF -submodule O such that FO = B. If O is also a subring of B then we say
O is an order of B and a maximal order is an order that is not contained in
any other order of B. The somewhat above is due to the fact that in general
maximal orders of quaternion algebras fail to be unique. For example, if O is
a maximal order of a quaternion algebra B and x ∈ B, then x−1Ox is another
maximal order of B.
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Let’s have a working example. Let F be a totally real number field. Say
B =

(
1,1
F

)
. Then M2(F ) ∼= B under the same isomorphism as before,

i 7→
[

1 0
0 −1

]
and j 7→

[
0 1
1 0

]
.

ThenO ∼= M2(ZF ) is a maximal order of B. If we take all the invertible elements
of O× ∼= GL2(ZF ). But how do we get to SL2(ZF )?

Conjugation is the unique involution : B → F such that for x ∈ B, xx ∈ F .
This gives us the reduced norm, or nrd(x) = xx. For B =

(
a,b
F

)
and x ∈ B,

x = u+ vi+ zj + wij:

x = u− vi− zi− wij and nrd(x) = u2 − av2 − bz2 + abw2,

and because we’ll want it later, the reduced trace is defined to be

trd(x) = x+ x = 2u.

Looking again at our example, If we restrict to units ofO reduced norm one:

O×1 = {γ ∈ O : nrd(γ) = 1}.

So O×1 ∼= SL2(ZF ).

This works in even more generality. Let F be a totally real number field of
degree n and let B =

(
a,b
F

)
be a quaternion algebra over F that splits at

exactly one real place. This gives us the following map via the image of B
under each embedding of F ↪→ R:

B ↪→ B ⊗Q R ∼= M2(R)×Hn−1.

Let ι∞ : B →M2(R) be the projection of B onto M2(R).

Then as before let O be a maximal order and

O×1 = {γ ∈ O : nrd(γ) = 1}.

We now get our generalization of Γ:

ΓB(1) = ι∞(O×1 /{±1}) ⊂ PSL2(R).

To get our first example of a Shimura curve, we take the quotient XB(1)C =
ΓB(1) \ H.

Examples: First, we can see that over Q we can get back Let B =
(

1,1
Q

)
, with

generators i and j, i2 = 1 = j2 ij = −ji. Then B ∼= M2(Q) via

i 7→
[

1 0
0 −1

]
and j 7→

[
0 1
1 0

]
.
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We can take O = M2(Z). Then O×1 = SL2(Z) and ΓB(1) ∼= PSL2(R). Notice
that this gives us the classical case of modular curves, XB(1) = X(1).

Notice that if we take B =
(
−1,−1

Q

)
then B⊕Q R = H is an un-example.

What else can we get? Now let B =
(
−1,3

Q

)
. Take α2 = −1 and β2 = 3. Then

ι∞ takes

α 7→
[

0 −1
1 0

]
and β 7→

[ √
3 0

0 −
√

3

]
.

So B ↪→M2(Q(
√

3)). Let δ = (1 +α+β+αβ)/2 so we can pick maximal order
O = Z⊕Zα⊕Zβ⊕Zδ. The Shimura curve that arises from this maximal order
is one that does not appear in the classical setting.

3 Level Structures

We’ve seen how to get Γ(1), but what about any of the congruences subgroups
we studied all quarter? What if we want level structure? What we are looking
for now are non-maximal orders. An easy way to get a non-maximal order is
to take the intersection of two maximal orders. The resulting order is called an
Eichler order.

Take γ1, ..., γ4 ∈ B, B a quaternion algebra. Define the discriminant of γ1, ..., γ4

to be disc(γ1, ..., γ4) = det(trd(γkγn))k,n=1,2,3,4. Let O be an order of a quater-
nion algebra B. This allows us to define the discriminant of O,

disc(O) = {disc(γ1, ..., γ4) : γk ∈ O}.

The level of O is coprime to disc(B).

It is easy to create Eichler orders of a prescribed level. Now let B be a quaternion
algebra over F and letO be a maximal order of B. Pick an ideal N of ZF coprime
to disc(B). Letting ZF,N be the completion of ZF at N, we have the embedding
ιN : O ↪→M2(ZF,N). Then an Eichler order of level N is

O(N) = {γ ∈ O : ιN(γ) is upper triangular mod N}.

Further, by conjugating we get all Eichler orders.

Let B be a quaternion algebra over a number field F and let O be an Eichler
order. The level of an Eichler order O is the ideal N ⊂ ZF such that disc(O) =
Ndisc(B). So we see that Eichler orders give us our level structure.

For example, over M2(Q) we have maximal orders(
Z Z
Z Z

)
and

(
Z N−1Z
NZ Z

)
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which are conjuate via (
n 0
0 1

)
.

The intersection of these two ideas is

O(N) =
(

Z Z
NZ Z

)
an Eichler order of level N . Then ΓB(O(N)) = Γ0(N) and X(O(N)) =
X0(N).
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