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This lecture is about Brauer groups.
Reference: Chapter X of Serre’s Local Fields.

1 The Definition

Let k be a field, and fix a separable closure k%P of k.

Definition 1.1. The Brauer group of k is

Brj, = H?(k, (k*°P)").

The Brauer group of a field is a measure of the complexity of the field. It also plays
a central role in duality theorems, and in class field theory.

1.1

1.

Some Motivating Examples

Let E be an elliptic curve over k and n a positive integer coprime to char(k).
Consider the Weil pairing
E[n] ® Eln] = fin.

Cup product defines a map
H'(k, E[n]) @ H'(k, E[n]) — B?(k, itn).
The inclusion p,, — (k*P)* defines a homomorphism
H2 (b, i) — H2(k, (°7)") = Bry,.

We thus have a pairing on H'(k, E[n]) with values Brj. It would thus be very
handy to understand Brauer groups better.

If A is a simple abelian variety over k, then R = End(A) ® k is a division algebra
over k. Its center is an extension F' of k, and R is a central simple F-algebra.
As we will see later, the isomorphism classes of central simple F-algebras are in
natural bijection with the elements of Brg. It would thus be very handy, indeed,
to understand Brauer groups better.



2 Examples

Recall that if G is a finite cyclic group and A is a G-module, then I:I2q(G, A)~ I:IO(G7 A)
and H271 (G, A) ~ HY(G, A), a fact we proved by explicitly writing down the following
very simple complete resolution of G:

1 N s—1 N
—_—

- — Z[G] = Z|G] — Z|G] Z|G] = Z|G] = - -,

where N = )" s* is the norm.

Proposition 2.1. The Brauer group of the field R of real numbers has order 2.
Proof. We have C = R**P, and G = Gal(C/R) is cyclic of order 2. Thus

Brg = H*(G,C*) 2 H(G, C*) ~ (C*)9/NC* = R*/R*. = {+1}.

Lemma 2.2. Suppose G is a finite cyclic group and A is a finite G-module. Then
#H1(G, A) = #H°(G, A)

forallq € Z, i.e., #ﬁq(G,A) is independent of q.

Proof. Since, as was mentioned above, ﬁQq(G,A)

H'(G, A), it suffices to show that #H (G, A) = #H(G
of G. We have an exact sequence

HO(G, A) and H2H (G, A) ~
(G, ) Let s be a generator

OHAGHAi_—lﬂAHA/(s—l)AHO.
Since every term in the sequence is finite,

#AY = #(A/(s —1)A).

Letting Ng = Y s be the norm, we have by definition an exact sequence
0—HYG,A) - A/(s —1)A —% A - HY(G, A) — 0.

The middle two terms in the above sequence have the same cardinality, so the outer two
terms do as well, which proves the lemma. O

Proposition 2.3. If k is a finite field, then Bry = 0.

Proof. By definition,
Br = H*(k, k") = im H?(F/k, F*),
F
where F runs over finite extensions of k. Because G = Gal(F/k) is a finite cyclic group,
Lemma 2.2 and triviality of the first cohomology of the multiplicative group of a field
together imply that
#H2(F/k,F*) = #HY (F/k, F*) = 1.

Example 2.4. The following field all have Bry = 0.



1. Let k be any algebraically or separably closed field. Then Bry = 0, obviously,
since k%P = k.

2. Let k be any extension of transcendance degree 1 of an algebraically closed field.
Then Brg = 0. (See §X.7 of Serre’s Local Fields for references.)

3. Let k be the maximal unramified extension K" of a local field K with perfect
residue field (e.g., the maximal unramified extension of a finite extension of Q).
Then Bry, = 0. (See §X.7 of Serre’s Local Fields for references.)

4. Let k be any algebraic extension k of Q that contains all roots of unity (thus & is
necessarily an infinite degree extension of Q). Then Br, = 0.

The following theorem is one of the main results of local class field theory.

Theorem 2.5. Let k be a local field with perfect residue field (e.g., a finite extension
of Qp). Then Bry = Q/Z.

The following theorem is one of the main results of global class field theory.

Theorem 2.6. Let k be a number field, and for any place v of k, let k., be the completion
of k at v, so k, is a p-adic local field, R, or C. We have a natural exact sequence

Ty) Y Ty
- =

O—»Brke@Brkv ( Q/7 — 0,

We obtain the map to Q/Z by using Theorem 2.5 to view each Brg, as Q/Z, and we
view Brg = 1Z/Z.

3 Brauer Groups and Central Simple Algebras

Definition 3.1. Let k be a field. Then a central simple k-algebra is a finite dimensional
k-algebra A that satisfies any one of the following equivalent conditions:

1. A has no nontrivial two-sided ideals, and A has center k.
2. The algebra A; = A ®y k is isomorphic to a matrix algebra over k.

3. There is a finite extension F/k such that Ap is isomorphic to a matrix algebra
over F.

4. A is isomorphic to a matrix algebra over a division algebra D with center k.

We say that two central simple k-algebras are equivalent if the corresponding division
algebras D in 4 above are k-isomorphic. Tensor product endows the set of equivalence
classes of central simple k-algebras with the structure of abelian group.

Theorem 3.2. The group By, of equivalence classes of central simple k-algebras is iso-
morphic to the Brauer group Bry.

The proof of Theorem 3.2 is somewhat involved. We will content ourselves with
sketching some of the main ideas; in particular, we will explicitly construct the homo-
morphism By, — Bry, but will not prove that it is an isomorphism (the argument, which
uses descent, is given in Serre’s Local Fields).



Fix a finite Galois extension F of k and let B(n, F//k) be the set of equivalence classes
of central simple k-algebras A such that Ap &~ M, (F), where M, (F) is the algebra of
n X n matrices over F. Then B is the union of all B(n, F'/k) over all n and F.

Given A € B(n, F/k), let ¢ : Ap — M, (F') be a fixed choice of isomorphism. Define
a set-theoretic map

f:Gal(F/k) — Autp(M,(F)) =~ PGL, (F)

by
fls)=¢ los(p)=¢p losopos™!

Then
[f] € H'(F/k,PGL,(F)),

where this H' is a cohomology set (!).

Proposition 3.3. The above construction A — [f] defines a bijection between B(n, F/K)
and H' (F/k,PCL, (F)).

(The above proposition is proved in Serre’s Local Fields.)
Consider the exact sequence

1— F* — GL,(F) — PGL,(F) — 1.
There is a well defined connecting homorphism
H'(F/k,PGL,(F)) — H*(F/k, F*).

Since H?(F/k, F*) 1o, Bry, we thus obtain a natural map

B(TL,F/K) — BI‘k.

This induces the claimed isomorphism B — Bry.

Next time: Galois cohomology of abelian varieties. Principal homogenous spaces.
Hopefully, a complete proof that for any abelian variety over a finite field k, we have
HY(k,A) =0 for all ¢ > 1.



