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This lecture is about Brauer groups.
Reference: Chapter X of Serre’s Local Fields.

1 The Definition

Let k be a field, and fix a separable closure ksep of k.

Definition 1.1. The Brauer group of k is

Brk = H2(k, (ksep)∗).

The Brauer group of a field is a measure of the complexity of the field. It also plays
a central role in duality theorems, and in class field theory.

1.1 Some Motivating Examples

1. Let E be an elliptic curve over k and n a positive integer coprime to char(k).
Consider the Weil pairing

E[n]⊗ E[n]→ µn.

Cup product defines a map

H1(k,E[n])⊗H1(k,E[n])→ H2(k, µn).

The inclusion µn ↪→ (ksep)∗ defines a homomorphism

H2(k, µn)→ H2(k, (ksep)∗) = Brk .

We thus have a pairing on H1(k,E[n]) with values Brk. It would thus be very
handy to understand Brauer groups better.

2. If A is a simple abelian variety over k, then R = End(A)⊗ k is a division algebra
over k. Its center is an extension F of k, and R is a central simple F -algebra.
As we will see later, the isomorphism classes of central simple F -algebras are in
natural bijection with the elements of BrF . It would thus be very handy, indeed,
to understand Brauer groups better.
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2 Examples

Recall that if G is a finite cyclic group and A is a G-module, then Ĥ2q(G,A) ≈ Ĥ0(G,A)
and Ĥ2q+1(G,A) ≈ Ĥ1(G,A), a fact we proved by explicitly writing down the following
very simple complete resolution of G:

· · · → Z[G] s−1−−→ Z[G] N−→ Z[G] s−1−−→ Z[G] N−→ Z[G]→ · · · ,

where N =
∑
si is the norm.

Proposition 2.1. The Brauer group of the field R of real numbers has order 2.

Proof. We have C = Rsep, and G = Gal(C/R) is cyclic of order 2. Thus

BrR = H2(G,C∗) ∼= Ĥ0(G,C∗) ≈ (C∗)G/NC∗ ∼= R∗/R∗+ ∼= {±1}.

Lemma 2.2. Suppose G is a finite cyclic group and A is a finite G-module. Then

#Ĥq(G,A) = #Ĥ0(G,A)

for all q ∈ Z, i.e., #Ĥq(G,A) is independent of q.

Proof. Since, as was mentioned above, Ĥ2q(G,A) ≈ Ĥ0(G,A) and Ĥ2q+1(G,A) ≈
Ĥ1(G,A), it suffices to show that #Ĥ−1(G,A) = #Ĥ0(G,A). Let s be a generator
of G. We have an exact sequence

0→ AG → A
s−1−−−→ A→ A/(s− 1)A→ 0.

Since every term in the sequence is finite,

#AG = #(A/(s− 1)A).

Letting NG =
∑
si be the norm, we have by definition an exact sequence

0→ Ĥ−1(G,A)→ A/(s− 1)A NG−−−−→ AG → Ĥ0(G,A)→ 0.

The middle two terms in the above sequence have the same cardinality, so the outer two
terms do as well, which proves the lemma.

Proposition 2.3. If k is a finite field, then Brk = 0.

Proof. By definition,
Brk = H2(k, k

∗
) = lim−→

F

H2(F/k, F ∗),

where F runs over finite extensions of k. Because G = Gal(F/k) is a finite cyclic group,
Lemma 2.2 and triviality of the first cohomology of the multiplicative group of a field
together imply that

# H2(F/k, F ∗) = #Ĥ1(F/k, F ∗) = 1.

Example 2.4. The following field all have Brk = 0.
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1. Let k be any algebraically or separably closed field. Then Brk = 0, obviously,
since ksep = k.

2. Let k be any extension of transcendance degree 1 of an algebraically closed field.
Then Brk = 0. (See §X.7 of Serre’s Local Fields for references.)

3. Let k be the maximal unramified extension Kur of a local field K with perfect
residue field (e.g., the maximal unramified extension of a finite extension of Qp).
Then Brk = 0. (See §X.7 of Serre’s Local Fields for references.)

4. Let k be any algebraic extension k of Q that contains all roots of unity (thus k is
necessarily an infinite degree extension of Q). Then Brk = 0.

The following theorem is one of the main results of local class field theory.

Theorem 2.5. Let k be a local field with perfect residue field (e.g., a finite extension
of Qp). Then Brk

∼= Q/Z.

The following theorem is one of the main results of global class field theory.

Theorem 2.6. Let k be a number field, and for any place v of k, let kv be the completion
of k at v, so kv is a p-adic local field, R, or C. We have a natural exact sequence

0→ Brk →
⊕

v

Brkv

(xv)7→
P

xv−−−−−−−−→ Q/Z→ 0,

We obtain the map to Q/Z by using Theorem 2.5 to view each Brkv as Q/Z, and we
view BrR = 1

2Z/Z.

3 Brauer Groups and Central Simple Algebras

Definition 3.1. Let k be a field. Then a central simple k-algebra is a finite dimensional
k-algebra A that satisfies any one of the following equivalent conditions:

1. A has no nontrivial two-sided ideals, and A has center k.

2. The algebra Ak = A⊗k k is isomorphic to a matrix algebra over k.

3. There is a finite extension F/k such that AF is isomorphic to a matrix algebra
over F .

4. A is isomorphic to a matrix algebra over a division algebra D with center k.

We say that two central simple k-algebras are equivalent if the corresponding division
algebras D in 4 above are k-isomorphic. Tensor product endows the set of equivalence
classes of central simple k-algebras with the structure of abelian group.

Theorem 3.2. The group Bk of equivalence classes of central simple k-algebras is iso-
morphic to the Brauer group Brk.

The proof of Theorem 3.2 is somewhat involved. We will content ourselves with
sketching some of the main ideas; in particular, we will explicitly construct the homo-
morphism Bk → Brk, but will not prove that it is an isomorphism (the argument, which
uses descent, is given in Serre’s Local Fields).
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Fix a finite Galois extension F of k and let B(n, F/k) be the set of equivalence classes
of central simple k-algebras A such that AF ≈ Mn(F ), where Mn(F ) is the algebra of
n× n matrices over F . Then B is the union of all B(n, F/k) over all n and F .

Given A ∈ B(n, F/k), let ϕ : AF →Mn(F ) be a fixed choice of isomorphism. Define
a set-theoretic map

f : Gal(F/k)→ AutF (Mn(F )) ≈ PGLn(F )

by
f(s) = ϕ−1 ◦ s(ϕ) = ϕ−1 ◦ s ◦ ϕ ◦ s−1

Then
[f ] ∈ H1(F/k,PGLn(F )),

where this H1 is a cohomology set (!).

Proposition 3.3. The above construction A 7→ [f ] defines a bijection between B(n, F/K)
and H1(F/k,PGLn(F )).

(The above proposition is proved in Serre’s Local Fields.)
Consider the exact sequence

1→ F ∗ → GLn(F )→ PGLn(F )→ 1.

There is a well defined connecting homorphism

H1(F/k,PGLn(F ))→ H2(F/k, F ∗).

Since H2(F/k, F ∗) inf−−→ Brk, we thus obtain a natural map

B(n, F/K)→ Brk .

This induces the claimed isomorphism B → Brk.

Next time: Galois cohomology of abelian varieties. Principal homogenous spaces.
Hopefully, a complete proof that for any abelian variety over a finite field k, we have
Hq(k,A) = 0 for all q ≥ 1.
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