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1 Kummer Theory of Fields

Kummer theory is concerned with classifying the abelian extensions of exponent n of a
field K, assuming that K contains the nth roots of unity. It’s a generalization of the
correspondence between quadratic extensions of Q and non-square squarefree integers.

Let n be a positive integer, and let K be a field of characteristic prime to n. Let L
be a separable closure of K. Let u, (L) denote the set of elements of order dividing n
in L.

Lemma 1.1. pu,(L) is a cyclic group of order n.

Proof. The elements of u, (L) are exactly the roots in L of the polynomial 2™ — 1. Since
n is coprime to the characteristic, all roots of ™ — 1 are in L, so p,(L) has order at
least n. But K is a field, so ™ — 1 can have at most n roots, so u, (L) has order n. Any
finite subgroup of the multiplicative group of a field is cyclic, so u, (L) is cyclic. O

Consider the exact sequence

—ax”

1= pn(L) - L 222 LF — 1
of Gk = Gal(L/K)-modules. The associated long exact sequence of Galois cohomology
yields

1o K () — B(K (L)) — B, L) — -

We proved that H' (K, L*) = 0, so we conclude that
K*/(K*)" = HY(K, pn (L)),

where the isomorphism is via the § connecting homomorphism. If & € L*, we obtain the
corresponding element §(a) € H' (K, u,, (L)) by finding some 8 € L* such that " = a;
then the corresponding cocycle is o — o(3)/8 € pn(L).

As a special case, consider n = 2 and K = Q. Then we have u3(Q) = {£1}, on
which Gg acts trivially. Recall that H'(G, A) = Hom(G, A) when G acts trivially on A.
Thus

Q"/(Q")* = Hom(Gq, {+1}),

where the homomorphisms are continuous. The set of squarefree integers are represen-
tative elements for the left hand side of the above isomorphism. The right hand side is
the set of continuous homomorphisms ¢ : Gg — {£1}. To give such a nontrivial homor-
phism ¢ is exactly the same as giving a quadratic extension of Q. We thus recover—in a
conceptual way—the standard bijection between quadratic fields and squarefree integers
# 1, which is one of the basic facts one learns in a first algebraic number theory course.



We generalize the above construction as follows. Suppose u, C K, i.e., all the nth
roots of unity are already in K. Then we have

K*/(K*)" 2 Hom(Gg, Z/nZ), (1.1)

where as usual the homomorphisms are continuous. We associate to a homomor-
phism ¢ : Gx — Z/nZ an extension LY of K, where H = ker(p), and by Ga-
lois theory, Gal(L¥ /K) = image(y) C Z/nZ. Conversely, given any Galois exten-
sion M /K with Galois group contained in Z/nZ, there is an associated homorphism
¢ : Gg — Gal(M/K) C Z/nZ. Define an equivalence relation ~ on Hom(Gg,Z/nZ)
by ¢ ~ 1 if ker(p) = ker(¢)) (equivalently, ¢ = m for some integer m coprime to n).
Then we have a bijection

Hom(G g, Z/nZ) )~ = { Galois extensions M/K with Gal(M/K) C Z/nZ }.

Using Equation 1.1 along with the explicit description of § mentioned above, we thus
see that the Galois extensions of K with Gal(M/K) C Z/nZ are the extensions of the
form K({/a) for some o € K*. An element o € Gal(M/K) acts by /a +— {/517 for
some b, and the map Gal(M/K) C Z/nZ is o — b.

The above observation is Kummer theory: There is a conceptually simple descrip-
tion of the exponent n abelian extensions of K, assuming that all nth roots of unity are
in K. Of course, understanding K*/(K*)™ well involves understanding the failure of
unique factorization into primes, hence understanding the unit group and class group
of the ring of integers of K well.

When the nth roots of unity are not in K, the situation is much more complicated,
and is answered by Class Field Theory.

Remark 1.2. A concise general reference about Kummer theory of fields is Birch’s
article Cyclotomic Fields and Kummer Fxtensions in Cassels-Frohlich. For a Galois-
cohomological approach to Class Field Theory, see the whole Cassels-Frohlich book.

2 Kummer Theory for an Elliptic Curve

Let n be a positive integer, and let E be an elliptic curve over a field K of characteristic
coprime to n, and let L = K®P. We mimic the previous section, but for the G g-module
E(L) instead of L*. Consider the exact sequence

0—»E[n]—>Eﬂ>E—>O.

Taking cohomology we obtain an exact sequence
0 — E(K)/nE(K) — H (K, E[n]) — H' (K, E)[n] — 0.

Unlike the above situation where H' (K, L*) = 0, the group H'(K, E)[n] is often very
large, e.g., when K is a number field, this group is always infinite.

In Kummer theory, we obtained a nice result under the hypothesis that u, C K.
The analogous hypothesis in the context of elliptic curves is that every element of E[n]
is defined over K, in which case

H'(K, E[n]) ~ Hom(Gx, (Z/nZ)?),

where we have used that E[n](L) ~ (Z/nZ)?, which is a standard fact about elliptic
curves, and as usual all homomorphisms are continuous. Another consequence of our



hypothesis that E[n](K) = E[n] is that u,, C K; this later fact can be proved using the
Weil pairing, which is a nondegenerate G g-invariant map

E[n] ® En] — fin.

As above, we can interpret the elements ¢ € Hom(G g, (Z/nZ)?) (modulo an equiv-
alence relation) as corresponding to abelian extensions M of K such that Gal(M/K) C
(Z/nZ)?. Moreover, we have upon fixing a choice of basis for E[n], an exact sequence

0 — E(K)/nE(K) — Hom(Gg, (Z/nZ)?) — H' (K, E)[n] — 0,
or, using Kummer theory from the previous section,
0 — E(K)/nE(K) — (K*/(K*)")* - H (K, E)[n] — 0.

Another standard fact about elliptic curves—the (weak) Mordell-Weil theorem—is that
when K is a number field, then F(K)/nE(K) is finite. Thus when E[n](K) = E[n] ,
we have a fairly explicit description of H' (K, E)[n] in terms of K* and E(K). This idea
is one of the foundations for using descent to compute Mordell-Weil groups of elliptic
curves.

If we restrict to classes whose restriction everywhere locally is 0 we obtain the se-
quence

0 — E(K)/nE(K) — Sel™(E/K) — ILL(E/K)[n] — 0.

Here

Sel™ (E/K) = ker (Hl(K, Eln)) — H'(K,, E)) :

all v
and
II(E/K) = ker (Hl(K, E) —» P H (K., E)) .
all v
When K is a number field, it is possible to describe Sel™ (E/K) so explicitly as a
subgroup of (K*/(K*)™)? that one can prove that Sel'™ (E/K) is computable.

Theorem 2.1. Given any elliptic curve E over any number field K, and any integer
n, the group Sel™ (E/K) defined above is computable.

It is a major open problem to show that E(K) is computable. A positive solution
would follow from the following conjecture:

Conjecture 2.2 (Shafarevich-Tate). The group III(E/K) is finite.

Conjecture 2.2 is extremely deep; for example, it is a very deep (hundreds of pages!)
theorem when E/Q has “analytic rank” 0 or 1, and is not known for even a single elliptic
curve defined over Q with analytic rank > 2.

Example 2.3. Consider an elliptic curve E over Q of the form y* = z(x — a)(x + b),
so that all the 2-torsion of F is Q-rational. As above, we obtain an exact sequence

0 — E(Q)/2B(Q) — (@)/(Q")*)* — H'(Q B)[2] — 0.
From this diagram and the fact that E(Q)/2E(Q) is finite, we see that H'(Q, E)[2]

is infinite. Moreover, given any pair (a, 3) of nonzero rational numbers, we can write
down an explicit Galois cohomology class in H'(Q, E)[2], and given any rational point
P € E(Q) we obtain a pair of rationals in ((Q*)/(Q*)?)2.



