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1 Cup Product

1.1 Introduction

We will define and construct the cup product pairing on Tate cohomology groups and
describe some of its basic properties. The main references are §7 of Atiyah-Wall, §VIII.3
of Serre’s Local Fields, Washington’s paper Galois Cohomology (in Cornell-Silverman-
Stevens), and §7 of Tate’s Galois Cohomology (PCMI). The cusp product is absolutely
central to Galois cohomology, in that many of the central theorems and constructions
involve various types of duality results, which involve cup products at their core.

1.2 The Definition

Let G be a finite group.

Theorem 1.1. There is a unique family of “cup product” homomorphisms

Ĥp(G, A)⊗ Ĥq(G, B)→ Ĥp+q(G, A⊗B)

a⊗ b 7→ a ∪ b,

for all p, q ∈ Z and G-modules A, B, such that:

1. Cup product is functorial in A, B, e.g., if A → A′, B → B′ are G-module homo-
morphisms, then we have a commutative diagram (with vertical maps that I have
not typeset below):

Ĥp(G, A)⊗ Ĥq(G, B)→ Ĥp+q(G, A⊗B)

Ĥp(G, A′)⊗ Ĥq(G, B′)→ Ĥp+q(G, A′ ⊗B′)

2. When p = q = 0 the cup product is induced by the natural map

AG ⊗BG → (A⊗B)G.

3. A natural compatibility statement that allows for dimension shifting and ensure
uniqueness (see Cassels-Frohlich or Serre for the exact statement).
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1.3 Existence

Let Pn be a complete resolution of G, e.g., Pn could be the standard resolution:

Pn =

{
Z[Gn+1] if n ≥ 0,

Hom(P|n|−1, Z) if n < 0.

Recall that this fit together to form an exact sequence of free G-modules:

· · · d−−→ P2
d−−→ P1

d−−→ P0
d−−→ P−1

d−−→ P−2
d−−→ · · · .

Moreover, we have
Ĥq(G, A) = Hq(HomG(P∗, A))

is the qth cohomology of the complex HomG(P∗, A). In particular

Ĥq(G, A) =
ker(HomG(Pq, A)→ HomG(Pq+1, A))
im(HomG(Pq−1, A)→ HomG(Pq, A))

.

To prove that the family of cup product morphisms exist, we will construct a G-
module homomorphism from the complete resolution with certain properties.

Proposition 1.2. There exist G-module homorphisms

ϕp,q : Pp+q → Pp ⊗Qq

for all p, q ∈ Z such that

1. ϕp,q ◦ d = (d⊗ 1) ◦ ϕp+1,q + (−1)p(1⊗ d) ◦ ϕp,q+1, and

2. (ε⊗ ε) ◦ ϕ0,0 = ε, where ε : P0 → Z is defined by ε(g) = 1 for all g ∈ G.

Assume that the proposition has been proved. Then we define the cup product
explicitly on the level of cochains as follows. Let

f ∈ HomG(Pp, A), g ∈ HomG(Pq, B)

be cochains (so elements of the kernel of d). Define the cochain

f ∪ g ∈ HomG(Pp+q, A⊗B)

by
f ∪ g = (f ⊗ g) ◦ ϕp,q.

Lemma 1.3. We have

f ∪ g = (df) ∪ g + (−1)pf ∪ (dg).

Corollary 1.4. If f, g are cochains, then:

1. f ∪ g is a cochain

2. f ∪ g only depends on the classes of f and g.

We conclude that we have a well-defined homomorphism

Ĥp(G, A)⊗ Ĥq(G, B)→ Ĥp+q(G, A⊗B).
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Proposition 1.5. Condition 2 of Theorem 1.1 is satisfied.

Proof. This uses from Proposition 1.2 that (ε⊗ ε) ◦ ϕ0,0 = ε.

It remains to construct the maps ϕp,q. These maps are constructed in a natural way
in terms of the standard complete resolution Pn mentioned above, as follows. First note
that if q ≥ 1, then P−q = P ∗q−1 = Hom(Pq−1, Z) has a Z-module basis consisting of all
(g∗1 , . . . , g∗q ), where (g∗1 , . . . , g∗q ) maps (g1, . . . , gq) ∈ Pq−1 to 1 ∈ Z, and every other basis
element of Pq−1 to 0. The map d : P−q → P−q−1 is then

d(g∗1 , . . . , g∗q ) =
∑
s∈G

q∑
i=0

(−1)i(g∗1 , . . . , g∗i , s∗, g∗i+1, . . . g
∗
q ).

and d : P0 → P−1 is given by d(g0) =
∑

s∈G s∗.
If p ≥ 0 and q ≥ 0, then

ϕp,q(g0, . . . gp+q) = (g0, . . . , gp)⊗ (gp, . . . gp+q),

and if p, q ≥ 1 then

ϕ−p,−q(g∗1 , . . . , g∗p+q) = (g∗1 , . . . g∗p)⊗ (g∗p+1, . . . , g
∗
p+q),

and similar definitions in other cases, when one of p, q is positive and the other is
negative. (Again, see Cassels-Frohlich for more details.) The moral of all this is that
one can construct the cup product by simply following your nose.

1.4 Properties

Proposition 1.6. The cup product has these properties:

1. (a ∪ b) ∪ c = a ∪ (b ∪ c)

2. res(a ∪ b) = res(a) ∪ res(b)

3. cores(a ∪ res(b)) = cores(a) ∪ b.

The above properties are proved by proving them when p = q = 0, then using
dimension shifting.

Finally, notice that if A⊗B → C is a G-homomorphism, then cup product induces

Ĥp(G, A)⊗ Ĥq(G, B)→ Ĥp+q(G, C).

See Tate’s paper Galois Cohomology for an explicit description of the cup product
for p, q ≥ 0 on cocycles, which would make computation of the cup product of classes
represented by cocycles explicit.

2 Cohomology of a Cyclic Group

Suppose that G = 〈s〉 is a finite cyclic group. In this section we give a quick summary
of the basic facts about Ĥq(G, A).

Let Ki = Z[G] and define maps d : Ki+1 → Ki by multiplication by s− 1 if i is even
and multiplication by N =

∑
t∈G t if i is odd. Then

· · · d−→ Ki
d−→ Ki−1

d−→ Ki−2
d−→ · · ·
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is a complete resolution of G, since

ker(T ) = Z[G]G = N(Z[G]) = image(N),

and since Ĥ0(G, Z[G]) = 0,

ker(N) = IGZ[G] = image(T ).

Then HomG(K•, A) is
· · · ← A

N←− A
T←− A

N←− · · · .

Proposition 2.1. For every integer q we have

Ĥ2q(G, A) ∼= Ĥ0(G, A) = AG/N(A)

and
Ĥ2q+1(G, A) ∼= Ĥ−1(G, A) = ker(NA)/IG(A).

If n = #G, then we have

Ĥ2(G, Z) ∼= Ĥ0(G, Z) ∼= ZG/N(Z) = Z/nZ.

Theorem 2.2. Cup product by a generator of Ĥ2(G, Z) induces an isomorphism

Ĥq(G, A)
∼=−−−−−→ Ĥq+2(G, A)

for all q ∈ Z and all G-modules A.

For the proof, see Cassels-Frohlich, Section 8.

——————————————

NEXT: We will finally start a systematic study of Galois Cohomology... so finally have
lots of examples! This will begin on Friday of next week.
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